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To be or not to be tetraploid—
the impact of marker ploidy on
genomic prediction and
GWAS of potato
Trine Aalborg1* and Kåre Lehmann Nielsen1,2

1Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark, 2Research and
Development, Kartoffelmelcentralen (KMC) Amba, Brande, Denmark
Cultivated potato, Solanum tuberosum L., is considered an autotetraploid with 12

chromosomes with four homologous phases. However, recent evidence found

that, due to frequent large phase deletions in the genome, gene ploidy is not

constant across the genome. The elite cultivar “Otava” was found to have an

average gene copy number of 3.2 across all loci. Breeding programs for elite

potato cultivars rely increasingly on genomic prediction tools for selection

breeding and elucidation of quantitative trait loci underpinning trait genetic

variance. These are typically based on anonymous single nucleotide

polymorphism (SNP) markers, which are usually called from, for example, SNP

array or sequencing data using a tetraploid model. In this study, we analyzed the

impact of using whole genome markers genotyped as either tetraploid or

observed allele frequencies from genotype-by-sequencing data on single-trait

additive genomic best linear unbiased prediction (GBLUP) genomic prediction

(GP) models and single-marker regression genome-wide association studies of

potato to evaluate the implications of capturing varying ploidy on the statistical

models employed in genomic breeding. A panel of 762 offspring of a diallel cross

of 18 parents of elite breeding material was used for modeling. These were

genotyped by sequencing and phenotyped for five key performance traits:

chipping quality, length/width ratio, senescence, dry matter content, and yield.

We also estimated the read coverage required to confidently discriminate

between a heterozygous triploid and tetraploid state from simulated data. It

was found that using a tetraploid model neither impaired nor improved genomic

predictions compared to using the observed allele frequencies that account for

true marker ploidy. In genome-wide associations studies (GWAS), very minor

variations of both signal amplitude and number of SNPs supporting both minor

and major quantitative trait loci (QTLs) were observed between the two data sets.

However, all major QTLs were reproducible using both data sets.
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1 Introduction
The cultivated tetraploid potato, Solanum tuberosum L., is the

world’s third most important food crop for global human

consumption (FAOSTAT, 2024) and is of principal interest for

future global food security (Devaux et al., 2014), as elite cultivars

can be grown in diverse climate regions, and it is the highest

yielding food crop (Haverkort and Struik, 2015). Most

commercially grown cultivars are highly heterozygous

autotetraploids (2n = 4x = 48) with four homologues of 12

chromosomes. This complicates breeding, because of the

complex, tetrasomic inheritance of key performance traits (Ortiz

and Mihovilovich, 2019) such as yield and other quantitative traits.

Consequences include ineffective purging of deleterious alleles from

populations and their accumulation in breeding clones (Pham et al.,

2017), leading to signs of acute inbreeding depression in potatoes

(Zhang et al., 2019), as well as arduous fixation of the desirable,

recessive alleles underpinning improved trait phenotype in a single

breeding line (Muthoni et al., 2015). Recently, the complexities of

potato genetics have been further increased. In their chromosome-

scale haplotype-resolved genome assembly of the tetraploid cultivar

“Otava,” Sun et al. (2022) found that this elite potato cultivar was in

fact not tetraploid across all loci (only 54% of genes) but rather

presented with an average of 3.2 copies per gene and possible allelic

gene copies of 1, 2, 3, and 4. This is caused by the frequent

occurrence of large deletions in one or more of the phases, which

often encompasses several genes. Missing alleles were similarly

detected in assemblies of six other tetraploid cultivars, where the

orthologous genes identified using a pan-genomics approach

displayed an average of 2.65 copies per tetraploid (Hoopes et al.,

2022). With irregular gene copy numbers, issues such as

haploinsufficiency can become more prevalent compared to

assumptions of an absolute tetraploid as gene expression

correlates with both gene copy number and allele copy number

(Sun et al., 2022). Extrapolating this argument, it is unknown how

genomic regions with lower gene ploidy coincide with areas of

segregation distortion and how/if variations in allele copy numbers

are maintained during sexual crossing.

SNP array or sequence-based genotyping data is usually

converted into allele dosages using a fixed tetraploid model and

used by breeders and researchers to predict breeding values using

genomic selection or identify trait quantitative trait loci (QTLs)

using genome-wide association studies (GWAS) (Stich and Van

Inghelandt, 2018; Selga et al., 2021; Wilson et al., 2021). Obviously,

when >40% of all loci (extrapolating from “Otava”) are likely not

tetraploid, this is not a true representation of the underlying genetic

architecture and thus constitutes a formal systematic error, which

might impact statistical models such as genomic prediction (GP) or

GWAS. Furthermore, estimation of allele dosage in autopolyploids

is notoriously challenging as the number of genotypes increases

with ploidy, hence escalating the complexity of correctly assigning

heterozygous allele dosages, eventually leading to misclassification

issues (de Bem Oliveira et al., 2019; Yadav et al., 2024). Because high

read depth is required to confidently call heterozygous classes (60–

80× for tetraploids) (Uitdewilligen et al., 2013), another approach in
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polyploids is pseudo-diploidization, where all heterozygous states

are concatenated into a single diploidized heterozygous class, for

example, for an autotetraploid the simplex (AAAB), duplex

(AABB), and triplex (ABBB) are represented by a single diploid

class AB (Matias et al., 2019). In potato, such pseudo-diploidization

resulted in a consistent deflation of prediction accuracy of 0.13 on

average compared to using tetraploid genotypes (Endelman et al.,

2018) with a trait-dependent response (Gemenet et al., 2020),

indicating that the method of allele dosage estimation impacts

prediction performance. Collapsing the heterozygosity also fails to

capture gene level variation of dosage values, similar to using a

tetraploid model.

The effect of various genotype classifications on GP and GWAS

have previously been assessed in polyploid crop plants, including

potatoes, sweet potatoes, tropical forages, blueberries,

chrysanthemum, and sugar cane (Grandke et al., 2016; Endelman

et al., 2018; de Bem Oliveira et al., 2019; Matias et al., 2019; de Bem

Oliveira et al., 2020; Gemenet et al., 2020; Ferrão et al., 2021; Yadav

et al., 2024). This includes using continuous genotypes alternative to

discrete allele dosages, that is, using extracted allele frequencies

directly from the observed genotype data (Ashraf et al., 2016),

effectively reducing computational time by circumventing genotype

calling steps. This approach is ideal for species with complex or

poorly defined ploidy levels, and the application of continuous

genotypes might improve the accuracy of GP and GWAS results by

including a more realistic representation of the true genotype

classes (de Bem Oliveira et al., 2019; Yadav et al., 2024).

Continuous genotypes have been successfully used in GWAS of

hexaploid chrysanthemum with comparable results to discrete

genotype classes (Grandke et al., 2016). In sugar cane, a

genetically highly complex crop with varying ploidy, continuous

genotypes have been used to capture true allele dosage, compared to

traditional strategies of pseudo-diploidization, and results showed

trait-dependent responses in GP accuracy (Yadav et al., 2024).

Similarly, a trait-dependent response to allele dosage strategies

was found in GP of autotetraploid blueberry (de Bem Oliveira

et al., 2019), while low-mid sequencing depth (6–12×) was sufficient

to obtain prediction accuracies comparable to those using high-

depth (60×) (de Bem Oliveira et al., 2020). Employing ratio

genotypes, rather than calling discrete heterozygous genotypes

that require high-sequencing depths, estimated 60–80× in

tetraploids (Uitdewilligen et al., 2013), indicates that high-

accuracy genomic models can be implemented in polyploids

without substantial increases in genotyping costs (Ferrão

et al., 2021).

While continuous genotypes have been evaluated in other crop

plants, previous studies of potatoes have not included comparisons

with between parametrized genotypes, either tetraploid or

diploidized, and continuous genotypes (Endelman et al., 2018).

However, allele frequency ratio genotypes have led to useful results

in tetraploid potato (Sverrisdóttir et al., 2017, 2018; Aalborg et al.,

2024). Prompted by the discovery of gene-level ploidy variation in

potato, this raises the question of whether calling tetraploid SNPs

across the genome, as commonly practiced, influences the results of

genomic prediction and GWAS statistical models in potato, as this

introduces genotype misclassifications across all non-tetraploid loci.
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To assess whether using the observed SNP ratio as a measure of

ploidy at each SNP locus in the genome, that is, using continuous

genotypes, affects model performance relative to calling tetraploid

SNPs at all loci, we have compared the performance of standard

additive GBLUP GP model and single-marker regression GWAS on

a set of ~31k SNPs genotyped by GBS (genotyping-by-sequencing)

of a 762-clone panel, called MASPOT, that were called as (1)

observed variant allele frequencies (continuous) or (2) tetraploid

at all loci. Screening five single key performance traits of varying

genetic architectures (chipping quality, length/width ratio,

senescence, dry matter content, and yield), we report on the effect

of true SNP ploidy on the models commonly used in augmenting

potato breeding and trait QTL characterization with the purpose of

providing directives for future accommodation to the true ploidy of

elite potato cultivars. Furthermore, we explore the practical

possibility of resolving the ploidy status for each individual locus

directly from sequencing data using simulated data.
2 Results and discussion

2.1 Triploid and tetraploid SNP status
cannot be discriminated with confidence

It has previously been found that calling tetraploid allele

dosages from sequence-based genotyping data is challenging from

low-sequence coverage studies (Li et al., 2014), and it has been

suggested that a coverage of 60–80× is appropriate to secure

concordance between sequence-based genotyping calls and KASP

analysis (Uitdewilligen et al., 2013). However, the recent finding

that elite autotetraploid potato has an observed average ploidy of 3.2

across all loci (Sun et al., 2022) complicates this problem even

further. An even higher resolution is demanded for distinguishing

between all the possible heterozygous genotypes of both tetraploid

and triploid loci, which can be expected to occur at high

frequencies: AAAB, AABB, ABBB, AAB, and ABB. When plotting

the observed frequency ratio of heterozygous SNPs across all

MASPOT genotypes, peaks corresponding to 0.25, 0.33, 0.5, 0.67,

and 0.75 are apparent (Figure 1A), supporting the finding that

many loci deviate from a tetraploid state. Furthermore, peaks are

observed at 0.125, 0.375, 0.625, and 0.875, which seem to suggest

octoploid heterozygous loci, as well as peaks at 0.167 and 0.833

would suggest hexaploid heterozygous loci. We speculate that these

may stem from the mapping of duplicated gene loci in the

genotyped cultivars to a single locus in the reference. In such a

case, the observed octoploid distribution is expected for the

mapping of two tetraploid loci, and the observed hexaploid

distribution for the mapping of two triploid loci. Following this

notion, another two loci scenario (tetraploid at one locus and

triploid at another) would give rise to peaks in the histogram at

0.143, 0.286, 0.428, 0.571, 0.714, and 0.857 and, indeed, peaks can be

observed at these positions. A diploid locus and a triploid locus

mapping to one locus would give rise to peaks at 0.2, 0.4, 0.6, and

0.8, which is also observed. Overall, this is in agreement with the

finding by Sun et al. (2022) that allele copy numbers of 1–4 were

observed across loci in the Otava genome. On the other hand, the
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read coverage of SNPs included in the analysis was in the range of

5–60, with a mean of 19.2 and a median of 14.6 (Supplementary

Figure S1). Therefore, we cannot exclude that the observed structure

in the data stems from binomial sampling at low sampling depth

which is also expected to give rise to structure in the data. However,

the frequency ratios of the subset of markers with the highest

coverage (between 20 and 60) also display the distinct 0.25, 0.33, 0.5,

0.67, and 0.75 peaks representing the cooccurrence of loci of varying

ploidy in the potato genome (Figure 1B), supporting that the

observed non-tetraploid ratios are not caused by sampling errors.

Regardless, it is apparent from Figures 1A, B that, with the read

coverage in our study, the main distributions, representing triploid

and tetraploid loci, are overlapping and hence, there is insufficient

resolution to reliably determine the per-loci ploidy state using the

observed data directly for most loci. Therefore, we sought to

simulate how the ability to distinguish between the “worst case

scenario”—ABB and ABBB is developing with sequence coverage by

simulating a random sampling of N depth from a distribution of

0.33 A/0.67 B and 0.25 A/0.75 B, respectively. In Figure 1C, the 95th

and 5th percentiles of the simulated distribution of SNP frequency

ratios are shown for tetraploid and triploid loci, respectively. It is

obvious, that even in this ideal case in the absence of sequencing

errors, extreme sequence depth in excess of ~320X is needed to

distinguish between a heterozygous triploid and a heterozygous

tetraploid state with 95% confidence. This underscores that it is not

practically feasible to distinguish between tetraploid and triploid

loci with sequence-based genotyping methods, at least with the

current cost of sequencing technologies. Similarly, Grandke et al.

(2016) found that heterozygous states could not successfully be

called in hexaploid chrysanthemum, because allele signals did not

segregate into distinguishable clusters—an assumption of the

applied genotype caller SuperMASSA. The poor resolution of

heterozygous signals in polyploids, an issue of escalating

complexity with increased ploidy (de Bem Oliveira et al., 2019),

indicates that the continuous genotypes are currently the best

option for genotyping polyploids. This adds to the relevance of

investigating whether calling discrete genotypes affects GP and

GWAS performance in potatoes compared to continuous

genotype values.
2.2 Genomic prediction of five single traits
yields similar results irrespective of calling
allele dosage

Single-trait GP of the five traits using the true marker dosage

(continuous allele frequency SNPs) and forced tetraploid markers

performed almost identically (Figure 2, Supplementary Figure S2,

Table 1), only chipping quality (with the highest amount of missing

phenotype data [30%]) (p = 1.3*10−8) and senescence (p = 0.018)

being modeled to improved mean correlation coefficients using the

tetraploid compared to continuous SNPs. However, the numerical

increase of the mean correlation is only a diminutive rise from 0.534

to 0.543 for chipping quality and from 0.343 to 0.347 for senescence.

This could be a result of a very small trait-dependent response to the

genotyping method, similar to previous reports on diploidization in
frontiersin.org
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potato (Gemenet et al., 2020). However, the difference in mean

correlation for chipping quality could also be attributable to the

effectively smaller training population for this trait, due to the large

amounts of missing phenotypic data. Overall, based on these results

genomic prediction is largely insensitive to calling genotypes as

continuous or using a tetraploid model.
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It has already been shown for loci with relatively low read

coverage that it is not possible to distinguish between all three

heterozygous states of an autotetraploid (Uitdewilligen et al., 2013;

Li et al., 2014; Byrne et al., 2020), and our simulation shows that it is

practically unattainable to confidently discriminate between

heterozygous triploid and tetraploid loci with coverage below
A

B

C

FIGURE 1

Histogram of the observed allele frequency ratio across all heterozygous genotypes (i.e., 0.1< ratio< 0.9, bin width = 0.01) of the MASPOT genotypes
for read depth of (A) 5–60 (N = 19601684 post-filtering: 755 samples, 31,007 SNPs) and (B) 20–60 (N = 8101905: 755 samples, 10,731 SNPs). Peaks
corresponding to discrete heterozygous states are marked. (C) Confidence intervals (95%) of simulated allele frequency ratio distributions of
heterozygous tetraploid (ABBB, 0.25 A/0.75 B) and triploid (ABB, 0.33 A/0.67 B) states as a function of sequencing depth.
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<320×. Irrespective of this, forcing tetraploid SNP calls in our case

with loci of read depth greater than 5× and smaller than 60× did not

affect model performance compared to using the observed allele

frequencies—effectively validating previous genomic prediction

model results based on tetraploid SNP calls in potato. Notably,

while high coverage is needed to confidently call heterozygous

tetraploid genotypes and discriminate ploidy, using read depths

>60× to determine allele frequencies has been reported to result in

changes in allele frequency variances (Ashraf et al., 2016), possibly

influenced by signal from abundant repetitive elements, why using

loci with extremely high read coverage is generally not

recommended or employed. Results from autotetraploid blueberry

further indicates that for accurate predictions using continuous

genotypes, it is sufficient to use low-mid read depths of 6–12×

compared to 60× (de Bem Oliveira et al., 2020).

We previously established that prioritizing continuous SNPs

according to type (i.e., nsSNP, sSNP, ncSNP, or all combined) also

did not affect GP model performance for most of the traits analyzed

here (except yield) (Aalborg et al., 2024). Likely, the reasons for the

invariability of the prediction performances observed in these two

cases are similar and both related to the LD decay of the potato

genome and the distance between the anonymous marker and the

causal variant. With an estimated LD block size of 0.6–1.5 Mb and

2–5 Mb in introgressed genome regions (Vos et al., 2017), it can be

extrapolated that, for an LD block size of 1 Mb, all markers in a 500
Frontiers in Plant Science 05
kb window on either side of a causal variant can be used as a

reasonably reliable marker, that is, with a redundant SNP set of

~31k genome-wide markers there is likely to be found correctly

called variants in LD with causal trait variants when using a

tetraploid model. Hence, the linkage effect is likely sufficiently

large to predominate over any erroneous signals of miscalled

allele dosages. While we did not examine the effect of read depth

on prediction accuracy in potato, it is plausible that a similar effect

could support the use of low read depth data. As genotype quality is

proportional to read depth, the effective pool of accurately sampled

SNPs is lowered with decreased sequencing depth but is likely still

sufficiently large to include reliable LD block markers. Previous

results have shown that GP models are resilient to marker

reductions in a trait-dependent manner in potato, but that across

several traits only 1–10k markers of read depth between 5–60x were

required to reach optimal model performance (Aalborg et al., 2024).
2.3 Genome-wide association studies yield
similar results irrespective of calling
allele dosage

An elaborate description of the major QTLs identified is

presented in (Aalborg et al., 2024). The GWAS analyses with

tetraploid SNPs reproduced the major QTLs found with
TABLE 1 Mean prediction Pearson correlation coefficients and prediction biases between GEBVs and observed phenotypic values for 10 repeats of
random eightfold cross-validated GBLUP genomic predictions of allele frequency (AF) and tetraploid (T) markers on the MASPOT panel.

Chipping quality Length/
width ratio

Senescence Dry
matter content

Yield

AF T AF T AF T AF T AF T

Correlation 0.534 0.543 0.477 0.476 0.343 0.347 0.740 0.739 0.243 0.245

Prediction bias 1.040 1.066 1.011 1.014 0.997 1.001 1.024 1.031 0.906 0.924
fr
A B D EC

FIGURE 2

Boxplots of single-trait GBLUP prediction correlation coefficients, calculated for 10 repeats of eightfold random cross validation, between observed
phenotype and genomic estimated breeding values (GEBVs) of the MASPOT panel on an identical set of SNPs called as either observed allele
frequencies (left) or tetraploid genotypes (right) for the five traits: (A) chipping quality, (B) length/width ratio, (C) senescence, (D) dry matter content,
and (E) yield.
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continuous genotypes (Figure 3; Supplementary Files S1, S2).

Differences constituted possible minor QTLs, major QTL

significance, and therefore also the number of significant SNPs

constituting the major QTL signals. The latter is observed for dry

matter content, where continuous SNPs generate a major QTL

signal on chromosome 10 from 48 to 58 Mb constituted of 13

significant markers, whereas the chromosome 10 signal is reduced

to four SNPs in the 53–56 Mb range when using tetraploid SNPs.

For major trait QTLs, the tetraploid SNPs hence hold sufficient true

information about the trait genetic variation to accurately map

those QTLs, albeit with slightly reduced significance, observed as

variation in signal intensity in terms of both range and amplitude.

However, for the identification of candidate minor QTL effects, a

differential outcome is observed, underscoring the need for

validation of such QTLs. The higher sensitivity of GWAS
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performance compared to GP is in agreement with what we

previously found when analyzing the effect of marker type

(Aalborg et al., 2024).

This indicates that, while the overall amount of additive genetic

variance explained is similar across the two genotyping methods, as

it is captured to the same level by the genomic prediction model,

continuous genotypes contribute alternative information when

resolved to chromosomal signal location. We speculate that this

may vary across traits for two reasons. First, this could reflect

uneven dispersion of the gene copy number variations, a likely

result of progressive phase deletions during successive meiotic

recombination events, effectively generating a locus-dependent

response to the genotyping method. In regions where the local

LD-decay is low due to hot spots for recombination events, the local

concentration of true markers becomes site-dependent using the
A

B

D

E

C

FIGURE 3

Manhattan plots of −log10 (p-value) GWAS results of the allele frequency markers (left) and tetraploid markers (right) for the five traits: (A) Chipping
quality, (B) length/width ratio, (C) senescence, (D) dry matter content, and (E) yield. Chromosome 0 is a bin of unanchored contigs and scaffolds in
the reference genome. The horizontal line indicates the genome-wide Bonferroni-corrected significance threshold.
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tetraploid model. Secondly, our inability to reliably call the missing

phase for any locus and, hence, the potential haploinsufficiency

effects of a triploid versus tetraploid site becomes cryptic. If there

indeed is an effect, it is not specially specified as a potential feature

in the statistical models and, hence, we have no marker for the

specific difference of triploid/tetraploid and therefore it is not fully

included in the analysis with either genotyping method.
2.4 Consequences for breeding

The resilience of population/family structure-corrected GP

models to marker reduction (Sverrisdóttir et al., 2018; Selga et al.,

2021; Aalborg et al., 2024), their indifference to marker type

filtration (Aalborg et al., 2024), and, as seen here, their general

tolerance to allele dosage parametrization (Endelman et al., 2018; de

Bem Oliveira et al., 2019; Matias et al., 2019; Gemenet et al., 2020;

Yadav et al., 2024) all suggest that efforts such as SNP pruning,

high-depth sequencing (de Bem Oliveira et al., 2020), and so forth

can neither notably improve model performance in potato for

complex, quantitative traits such as yield nor detection of single

major QTL traits such as senescence and length/width ratio beyond

a plateau level, which is reached with relatively shallow analyses.

Rather, future efforts in increasing model performance should be

directed toward increasing the size of phenotype/genotype datasets

and capturing the non-additive genetic variation of traits, for

example, dominance, epistasis [though this has generated mixed

results in previous studies (Su et al., 2012; Endelman et al., 2018;

Wilson et al., 2021)], pleiotropy, as well as gene–environment

interactions. Such studies are further complicated by the fact that

a full tetraploid model is not appropriate for modeling these effects

across all loci. To capture the effects of haploinsufficiency of phase

deletions these should also be specified in models for continuous

markers capable of capturing ploidy variations.

In practice, as documented in this study, using a tetraploid

model for calling SNPs in potato had largely no effect on genomic

predictions compared to using observed allele frequencies and only

resulted in very minor variations in GWAS results. This constitutes

a relief for existing genomics-assisted breeding programs since

existing GP models that are used need not be remade.

Particularly, because determining gene allele dosage from

sequence data directly is practically infeasible. Nonetheless, a

general conservative statistical modeling approach is generally

advocated where models are kept as simple as possible unless an

explicit argument for more complicated models is presented and the

differential effects documented. This dictates that tetraploid SNP

calls should not be used, but rather the observed allele frequencies

computed directly from sequencing data as continuous genotypes.

As results from (de Bem Oliveira et al., 2020) indicates that low-mid

sequencing depth is sufficient for accurate prediction with

continuous genotypes, this does not necessarily entail inflated

genotyping costs (Ferrão et al., 2021). In extension, pseudo-

diploidization is also discouraged based on results from

(Endelman et al., 2018), showing deflated prediction accuracies

with this parametrization. Using continuous genotypes also entails

a reduction in computational time, as the genotype calling step is
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circumvented by calculating allele frequencies directly from

sequencing data (de Bem Oliveira et al., 2019).
3 Conclusions

In conclusion, the impact of using continuous SNP markers

based on allele frequency from read coverage compared to

enforcing a tetraploid dosage model on potato was not found to

impact the performance of genomic prediction models but did

result in minor variations of signal amplitude in GWAS, hence

effecting minor QTL detection. Inspection of the distribution of

allele frequency ratios of the continuous biallelic markers revealed

peaks consistent with the ploidy variation previously reported for

the “Otava” cultivar. Simulation data also revealed that extreme

read depths of >320× are required to accurately distinguish between

heterozygous triploid and tetraploid states, in addition to known

high read depth requirements to separate the three heterozygous

tetraploid states. While results did not indicate that genomic

prediction performance is affected by using a tetraploid model for

genotype calling, we encourage using continuous markers for

statistical modeling of potato to represent most accurately the

true genomic architecture of the plant crop.
4 Methods

Statistical analyses were processed using R Statistical Software

(v4.3.2) (R Core Team, 2023) in RStudio (v2023.9.1.494) (Posit

team, 2023) and graphics were prepared using the ggplot2 package

(v3.4.4) in R (Wickham, 2016) unless otherwise stated.

See Aalborg et al. (2024) for detailed description and analysis of

plant material, phenotype distributions, and population structure in

the MASPOT panel.
4.1 Genotyping

Genotyping of the MASPOT panel was performed by

genotyping-by-sequencing (GBS) as described in (Sverrisdóttir

et al., 2017). GBS libraries were prepared following a protocol

adapted from (Elshire et al., 2011). Illumina 5′ and 3′ adaptors
for sequencing were designed for a 96-multiplexing system. Leaf

tissue DNA was extracted and digested with ApeKI, the fragments

were ligated to adaptors and pooled in 96-plex libraries, purified,

and amplified by PCR. The libraries were then sequenced on a

HiSeq 2000 (Illumina, San Diego, USA) with single-read sequencing

(100 bp). Each 96-plex library was sequenced on three channels of a

flow cell.
4.2 Simulation of SNP ratio data

Custom bash scripts (Supplementary File S3) were used to

simulate a random sampling of N depth at 2,500 loci from

parental distributions of ABB or ABBB, respectively. N was varied
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from 3 to1,000. The SNP ratio average, the 95th and 5th percentiles

was calculated from either case and plotted using Microsoft Excel.

The crossing of the 5th percentile of the ABBB case with the 95th

percentile of the ABB case was taken as 95% confidence threshold.
4.3 Filtering and mapping sequence data
and SNP calling

The sequenced reads were processed as described in

(Sverrisdóttir et al., 2017). The reads were demultiplexed,

trimmed, and mapped onto the reference genome of double

monoploid S. tuberosum Group Phureja DMv4.03 (Sharma et al.,

2013). Tetraploid SNPs were called using the Genome Analysis

Toolkits (McKenna et al., 2010) UnifiedGenotyper tool with ploidy

set to 4, a minimum phred-scaled confidence threshold of 50 for

variant calling and of 20 for variant omission (and filtered with

LowQual for below the calling threshold), cf (Sverrisdóttir et al.,

2017). SNPs were filtered to a minimum root mean squared quality

of 30 and reduced to only biallelic variants. In addition to the

tetraploid variant call, observed allele frequency estimated directly

from sequencing data was also used as genotyping method, cf.

(Ashraf et al., 2016) to accommodate the gene copy number

variation across loci in the potato genome (Sun et al., 2022). The

allele frequencies were determined as the ratio between allele counts

of the alternative allele and the total allele count, giving a

continuous allele ratio between 0 and 1, but not constricted to

tetraploid dosages (Equation 1).

AF =
ACalt

ACref + ACalt
(1)

This provided two sets of genotypes for the same SNPs, that is,

continuous genotypes and tetraploid genotypes. The five possible

tetraploid genotypes [AAAA, AAAB, AABB, ABBB, or BBBB] were

recoded to [0, 1, 2, 3, 4] allele dosages. Minor alleles frequency

(MAF) was calculated from read coverage, and SNPs were filtered to

an MAF of 1% (i.e., mean allele frequency<0.99 and >0.01), missing

rate of maximum 50%, and finally filtered to read coverage >5 at all

positions, introducing a missing genotype for low-quality positions

in individual samples. Based on the continuous genotypes, the SNPs

were further filtered to SNPs with read coverage between 5 and 60

and samples were filtered to clones with <70% missing data. A final

SNP set of ~31k positions of the filtered SNPs spanning the entire

genome was used for further analysis. The SNP set originates from

(Aalborg et al., 2024) and consists of 31,032 SNPs that are

approximately evenly composed of non-synonymous SNPs,

synonymous SNPs, and non-coding SNPs (Supplementary Figure

S3, Supplementary File S4). Both the continuous and tetraploid

genotypes were reduced to that SNP set. SNPs that were

monomorphic in either genotype matrix were filtered from both

sets, yielding two final genotype matrices of 31,007 markers. Finally,

the tetraploid genotypes were recoded from [0, 1, 2, 3, 4] to [0, 0.25,

0.50, 0.75, 1] to match the continuous genotype matrix format.
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4.4 Statistical analyses

4.4.1 Genomic prediction models
Single-trait standard additive GBLUP was used to directly

estimate GEBVs using the genomic relationship (G) matrix

(Meuwissen et al., 2001) (Equation 2):

y = 1m + g + e (2)

, where y is a vector of observed phenotypes, µ is the mean, g is a

vector of random genomic breeding values following distribution

g  ∼ (N ,  Gs2
g), where G is the genomic relationship matrix and s2

g

is the genetic variance of the model, and e is a vector of residuals

with distribution e  ∼ (N ,   Is2
e ), where I is an identity matrix and s2

e

is the residual variance.

Either marker set was corrected for missing data following the

correction, wi, described by VanRaden (2008) (Equation 3).

wi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
opk(1 − pk)   over   all   loci

opk(1 − pk)   over   only   non −missing   loci

s
(3)

, where pk is the mean genotype at locus k. The genotype

matrices were centered and adjusted for missing values according to

(Ashraf et al., 2016), and then missing genotypes were imputed by

mean imputation (means set to zero) (Equation 4). A total of 16.3%

of markers were imputed.

Zik = (Xik − pk) · wi (4)

, where Z is the genotype matrix, Xik is the genotype in family i

at locus k. From Z, the G-matrices were computed using global

scaling cf. the VanRaden (2008) method 1 with an adjustment for

tetraploidy (Equation 5).

G =
ZZ0

0:25opk(1 − pk)
(5)

, where 0:25opk(1 − pk) is the cumulative genotypic variance as

well as the average ZZ0 diagonal.
All GBLUP models were computed using the BGLR package

(v1.1.0) in R (Pérez and de los Campos, 2014) with 12,000

iterations, 2,000 burn-in, and default priors. Each analysis was

performed with eightfold random cross-validation in 10 repeats

of different cross-validation groupings. The accuracy of the GEBVs

was determined as the Pearson correlation coefficient between the

GEBVs and the observed phenotypes (Equation 6):

r(GEBV : y) (6)

The samples of 10 correlation coefficients obtained were

compared pairwise for allele marker frequency and tetraploid

genotypes for each of the five traits by paired sample t-tests of the

Fisher r-to-z-transformed correlation coefficients with a 0.05

significance threshold.

Prediction bias was calculated as the slope (b) of the linear

regression between the observed phenotypes and GEBVs, where b =

1 indicates no bias, b< 1 indicates that extremely high (low) GEBVs
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are over-(under-)estimated compared to the realized phenotypes,

and opposite for b > 1 (Luan et al., 2009).

4.4.2 Genome-wide association studies
Single-trait GWAS was performed using the tetraploid and the

allele frequency genotypes for each of the five traits by single-

marker regression in R using the regress package (v1.3.21) (Clifford

and McCullagh, 2006, 2020) (Equation 7):

y = 1m + X ibi + g + e (7)

where y is a vector of observed phenotypes, Xi is a vector of

SNP genotypes at the ith position and bi is the corresponding

additive effect, g is a vector of random genomic breeding values

following distribution g  ∼ (N ,  Gs2
g), where G is the genomic

relationship matrix, and e is a vector of residual effects with

distribution e  ∼ (N ,   Is2
e ). For each chromosome, a G-matrix was

calculated based on the variants on 11 of the 12 chromosomes,

excluding the chromosome encoding the ith position SNP to avoid

including the SNP in the model twice (Kristensen et al., 2018). The

genomic relationship matrix was then used to correct for

population structure in the diallel cross panel. Additional

population structure can arise from recurrent genetic variance in

the pedigrees of elite cultivars as a result of clonal propagation

through seed potatoes. This can result in overdispersion of the test

statistics in association analyses (Devlin et al., 2001), inflating the

associations and generating false positive associations. The p-values

were corrected for this using the genomic inflation factor, lgc
(Hinrichs et al., 2009; Kristensen et al., 2018). Inflation factors

were calculated for each trait and both tetraploid and allele

frequency genotypes.

lgc =
median(c2)
Q−1
c2
(0:5,1) ,

c2 = Q−1
c2 (P, 1)

(8)

The inflation factor was computed as the median value of the c2

-statistics of the SNPs, converted from each p-value (P) using the

inverse cumulative distribution function (CDF) of the c2

-distribution, Q−1
c2 , with 1 degree of freedom, divided by the

expected median, assuming no association between the SNP and

trait phenotype, that is, the c2-statistic of the 50th percentile

(Equation 8). For c2 > 1, indicating systematic effects not

captured by the model, the p-values were corrected by dividing

the SNP c2-statistic by lgc and the result converted to corrected p-

values using the CDF of the c2-distribution with 1 degree of

freedom (Equation 9).

Pcorrected = 1 − Qc2
c2

lgc

 !
, 1

 !
(9)

Bonferroni correction was used to control for false positive

associations with a false discovery rate of p < 0:05=N , where 0.05 is

the significance threshold and N is the number of markers analyzed.

QQ and Manhattan plots were generated using the qqman package

(v0.1.9) in R (Turner, 2018).
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Pérez, P., and de los Campos, G. (2014). Genome-wide regression and prediction
with the BGLR statistical package. Genetics 198, 483–495. doi: 10.1534/
GENETICS.114.164442/-/DC1

Pham, G. M., Newton, L., Wiegert-Rininger, K., Vaillancourt, B., Douches, D. S., and
Buell, C. R. (2017). Extensive genome heterogeneity leads to preferential allele
expression and copy number-dependent expression in cultivated potato. Plant J. 92,
624–637. doi: 10.1111/tpj.13706

Posit team (2023). RStudio: Integrated Development Environment for R. Available
online at: http://www.posit.co/.

R Core Team (2023). R: A Language and Environment for Statistical Computing.

Selga, C., Koc, A., Chawade, A., and Ortiz, R. (2021). A bioinformatics pipeline to
identify a subset of SNPs for genomics-assisted potato breeding. Plants 10, 1–14.
doi: 10.3390/plants10010030

Sharma, S. K., Bolser, D., de Boer, J., Sønderkær, M., Amoros, W., Carboni, M. F.,
et al. (2013). Construction of reference chromosome-scale pseudomolecules for potato:
Integrating the potato genome with genetic and physical maps. G3 Genes Genomes
Genet. 3, 2031–2047. doi: 10.1534/G3.113.007153/-/DC1

Stich, B., and Van Inghelandt, D. (2018). Prospects and potential uses of genomic
prediction of key performance traits in tetraploid potato. Front. Plant Sci. 9.
doi: 10.3389/fpls.2018.00159

Su, G., Christensen, O. F., Ostersen, T., Henryon, M., and Lund, M. S. (2012).
Estimating additive and non-additive genetic variances and predicting genetic merits
using genome-wide dense single nucleotide polymorphism markers. PloS One 7,
e45293. doi: 10.1371/journal.pone.0045293

Sun, H., Jiao, W.-B., Krause, K., Campoy, J. A., Goel, M., Folz-Donahue, K., et al.
(2022). Chromosome-scale and haplotype-resolved genome assembly of a tetraploid
potato cultivar. Nat. Genet. 54, 342–348. doi: 10.1038/s41588-022-01015-0
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