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Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a

significant threat to wheat production, necessitating the development of

genetically resistant varieties for long-term control. Therefore, exploring

genetic architecture of PM in wheat to uncover important genomic regions is

an important area of wheat research. In recent years, the utilization of meta-QTL

(MQTL) analysis has gained prominence as an essential tool for unraveling the

complex genetic architecture underlying complex quantitative traits. The aim of

this research was to conduct a QTL meta-analysis to pinpoint the specific

genomic regions in wheat responsible for governing PM resistance. This study

integrated 222 QTLs from 33 linkage-based studies using a consensus map with

54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence

MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had

an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71

Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes

like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene

models within hcMQTLs, providing potential targets for marker-assisted

breeding and genomic prediction programs to enhance PM resistance. These

MQTLs would serve as a foundation for fine mapping, gene isolation, and

functional genomics studies, facilitating a deeper understanding of molecular

mechanisms. The identification of candidate genes opens up exciting possibilities

for the development of PM-resistant wheat varieties after validation.
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Introduction

Powdery mildew (PM), caused by the obligate biotrophic fungus

Blumeria graminisis f. sp. tritici (Bgt), is a widespread global disease

resulting in substantial wheat yield losses. Over the past forty years,

there have been numerous global outbreaks of wheat PM

(Morgounov et al., 2012). The pathogen is the sixth most

significant fungal disease of wheat (Dean et al., 2012) and the

eighth largest cause of wheat production loss worldwide (Savary

et al., 2019). Generally, PM has predominantly been observed in

regions characterized by ample rainfall and humid climate (Bennett,

1984). Nonetheless, its emergence as a significant concern in drier

and warmer regions is leading to substantial reductions in wheat yield

in these areas. This shift could be attributed to the cultivation of semi-

dwarf wheat varieties, the increased use of nitrogen-based fertilizers,

and the practice of dense planting in the field (Wang et al., 2005;

Morgounov et al., 2012). Resistance towards PM is genetically

inherited in wheat crop and is controlled by both race-specific and

non-race specific genes conferring a qualitative and quantitative

resistance. Race-specific resistance is largely heritable, conferred by

a single resistance gene, and provides complete resistance to some

specific pathogen infections but not others. Non-racial resistance

provides a form of partial resistance that is not reliant on specific

pathogen avirulence genes. This type of resistance permits infection

but limits the spread of the disease (Maurya et al., 2021; Cheng et al.,

2022; Mapuranga et al., 2022c).

Most PM resistance research has concentrated on key genes that

are thought to be qualitatively race-specific. For instance, extensive

research is conducted on the Pm3 resistance gene and its various

alleles due to their ease of manipulation, transient expression,

simple inheritance, and ability to confer complete resistance. This

resistance is often associated with the hypersensitive response, but it

is effective only against a small number of pathogen races and can

be readily overcome by new virulent pathogen strains (Yahiaoui

et al., 2004; Koller et al., 2018; Simeone et al., 2020). Until recently,

the primary emphasis in plant studies has been on adult-plant

resistance, which is associated with long-lasting and non-specific

resistance. This resistance involves the interplay of multiple genes

that delay and obstruct fungal infection, growth, and reproduction

during the adult-plant phase (Jakobson et al., 2012). Therefore,

combining multiple resistance genes is considered as the most

economical and environmentally friendly strategy for increasing

the persistence of resistance against most fungal infections in wheat.

The attainment of this goal necessitates the integration of

conventional breeding methods with molecular techniques,

offering the potential to enhance the selection efficiency for

resistance to PM and traits related to crop yield (Bapela et al.,

2023).In recent decades, the introduction of Next-Generation

Sequencing (NGS) technology for genotyping and advancements

in genomic-assisted breeding has significantly expedited the

identification and incorporation of genes for PM resistance into

commercially grown wheat varieties. Moreover, 19 PM resistance

genes/alleles have been cloned, e.g., Pm1a, Pm2, Pm3 (Pm3a to

Pm3g, Pm3k, and Pm3r), Pm4, Pm8, Pm17, Pm21, Pm24, Pm38/

Yr18/Lr34/Sr57, Pm46/Yr46/Lr67/Sr55, Pm60 andWTK4 (Yahiaoui
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et al., 2004; Srichumpa et al., 2005; Bhullar et al., 2009; Cao et al.,

2011; Hurni et al., 2014; He et al., 2018; Hewitt et al., 2021; Sánchez-

Martıń et al., 2021; Gaurav et al., 2022). Of these, only Pm3k belongs

to tetraploid wheat (Yahiaoui et al., 2009). Most of these genes have

been incorporated into wheat from closely related species and their

wild relatives. However, due to their reduced resistance levels and

the undesirable linkage drag they carry, these genes have not seen

widespread commercial utilization (Friebe et al., 1994).

Various research groups have previously developed high-

density linkage maps and used them in QTL mapping studies for

PM resistance (Singh et al., 2022). Nonetheless, the majority of the

QTLs identified in different research studies have not undergone

fine mapping due to overlapping genomic regions and have seldom

been utilized in marker-assisted breeding programs. This appears to

be due to variations in experimental designs, environmental

conditions, genetic backgrounds of the parental strains,

population sizes, types, and densities of molecular markers

employed, as well as the statistical methodologies employed in

subsequent analyses. Moreover, when focusing on wheat

specifically, additional factors come into play, including the

complexity of the hexaploid wheat genome, the prevalence of

highly repetitive sequences within the genome, and the lack of

comprehensive high-density linkage maps (Kumar et al., 2023).

Meta-analysis of QTLs retrieved from different independent

studies, is an alternate method that can help in precise mapping of

traits (Sharma et al., 2023). MQTL analysis is a relatively new

concept and is rapidly emerging an efficient method for narrowing

the confidence intervals (CI) of overlapping QTLs, allowing for

rapid and efficient discovery of candidate markers and genes linked

to the trait of interest (Kumari et al., 2023; Sharma et al., 2023).

Meta-analysis has already been performed for various traits in

wheat (Kumar et al., 2021; Pal et al., 2021, Saini et al., 2022b)

including resistance to different diseases such as leaf rust (Soriano

and Royo, 2015; Amo and Soriano, 2022), stem rust (Yu et al.,

2014), tan spot (Liu et al., 2020), Fusarium head blight (Liu et al.,

2009; Löffler et al., 2009; Venske et al., 2019; Zheng et al., 2021),

stripe rust (Jan et al., 2021; Kumar et al., 2023), multiple disease

resistance (Pal et al., 2022; Saini et al., 2022a) and PM resistance

(Marone et al., 2013). The most recent study on PM resistance,

published in 2013, conducted a meta-analysis with a dataset

consisting of only 96 QTLs and identified 24 MQTLs (Marone

et al., 2013). Since considerable number of QTLs for parameters

contributing to PM resistance have been reported after this last

report of MQTL analysis for PM resistance in wheat, the present

study involving MQTL analysis was conducted (based on QTL

studies published until July 2021) to supplement the list of MQTLs

and candidate genes reported in the earlier MQTL study for PM

resistance. Overall, the primary aim of this study is to investigate the

genetic basis of PM resistance by identifying promising genomic

regions and candidate genes using the newly available wheat

genome data, integrating it with GWAS information and

analyzing the roles of the identified candidate genes in various

wheat tissues. The outcomes of this research will have significant

utility for wheat breeders, providing valuable resources for

enhancing resistance to PM in wheat varieties.
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Materials and methods

Literature survey for collection of QTLs for
powdery mildew

We conducted a comprehensive search for articles that reported

QTLs linked to PM resistance in wheat, spanning from 1996 to

2021. This search was performed using Google Scholar (https://

scholar.google.com/) and other accessible data sources. An

additional resource for this search was a recently created Wheat

QTL database (http://wheatqtldb.net/; Singh et al., 2022). Each QTL

mapping study was screened to extract the following information:

(i) mapping population type (e.g., F2:3, RILs, DH, BC) and their

parents, (ii) population size, (iii) chromosome number, (iv) position

of the QTLs and flanking markers, (v) logarithm of odds (LOD)

values and (vi) variance explained by the individual QTLs (PVE)

and (vii) different disease resistance parameters, such as area under

disease progression cure (AUDPC), infection type (IT), maximum

disease severity (MDS) and vernalized seedling score (VSS). QTLs

with missing data were excluded from the meta-analysis.
Development of a comprehensive
consensus map

The R package called ‘LPmerge’ (Endelman and Plomion, 2014)

was used to construct the consensus map following the steps

described recently (Kumar et al., 2023). The following genetic

maps were employed as the framework maps in this process: (i)

the ‘ITMI_SSR map,’ containing 1406 loci (Song et al., 2005); (ii)

the ‘Wheat, Consensus SSR, 2004’ map, which includes 1235

marker loci (Somers et al., 2004); (iii) an integrated map for

durum wheat with 30,144 markers (Maccaferri et al., 2015); and

(iv) the ‘Illumina iSelect 90 K SNP Array-based genetic map,’

comprising 40,267 loci (Wen et al., 2017). For the construction of

the consensus map, markers flanking individual QTLs were also

included. The genetic maps contained several common markers

located at different genetic positions, and these markers were taken

into consideration during the construction of the consensus

chromosomes maps.
QTL projection on the consensus map

The genetic map file and the QTL information file from each

study were compiled and employed as input text files for QTL

projection through BioMercator V4.2 (Sosnowski et al., 2012). This

software requires a set of distinct descriptors for each QTL such as

the genetic position of the QTL (both peak position and CI), LOD

score, PVE value, the trait linked with the QTL, and the size of the

mapping population used to identify the QTLs. The QTLProj

command of the software was used to homothetically project the

peak positions and confidence intervals of each individual QTL

onto the consensus map (Gudi et al., 2022). If a specific study did

not provide the CI for a particular QTL, we employed population-

specific formulas to calculate the 95% CI as follows:
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For the F2 : 3 and Backcross populations, CI(95% ) = 530=(R2 �  N)

For the RIL population, CI    (95% ) = 163=(R2 �N)

For the DH population, CI (95% ) = 287=(R2 �N)

Where R2,is the phenotypic variance explained by the

individual QTL.

N is the population size.
Meta-analysis of the QTLs

QTL meta-analysis for individual wheat chromosomes was

conducted using BioMercator v4.3.2 (Goffinet and Gerber, 2000;

Veyrieras et al., 2007). Two different approaches were used, while

conducting the analysis, depending upon the number of QTLs

projected on each chromosome. We followed the method proposed

by Goffinet and Gerber (2000), when the count of projected QTLs

per chromosome was 10 or fewer and we applied the method

outlined by Veyrieras et al. (2007) when the number of QTLs per

chromosome exceeded 10. In the initial approach, the selection of

the best model was determined by examining the model with the

lowest Akaike information criterion (AIC) scores. In the second

approach, the optimal model was identified from a range of models,

which encompassed the Bayesian information criterion (BIC), AIC,

corrected AIC, AIC3, and average weight of evidence (AWE). If a

model met the criteria of having the lowest score in at least three of

the other models, it was considered the most suitable choice.
Candidate gene discovery within the
MQTLs and their comparison with
GWAS-MTAs

For identifying the genes underlying the MQTL regions, the

sequences of the markers flanking the MQTL regions were retrieved

from public data repositories such as Grain Genes (https://

wheat.pw.usda.gov/GG3) or Cereals DB (https://www.cerealsdb.uk.net/

cerealgenomics/CerealsDB/indexNEW.php) databases. To ascertain the

physical locations of markers, we conducted BLASTN searches against

the Wheat Chinese Spring IWGSC RefSeq v1.0 genome assembly,

available on the Ensembl Plants database (http://plants.ensembl.org/

index.html). The “JBrowse-WHEAT URGI database” (https://

urgi.versailles.inra.fr/jbrowseiwgsc/) was also used to determine the

physical locations/genomic co-ordinates of specific SNP markers. The

peak positions of the MQTLs were calculated using the following

formula proposed by Saini et al. (2022a). Furthermore, some high-

confidence MQTLs (hcMQTLs) were chosen and investigated for the

identification of available CGs. The following criteria was used to choose

these hcMQTLs- (i) involvement of at least 3 initial QTLs, (ii) LOD

score ≥ 3 and (iii) PVE value >10. The ‘BioMart’ tool, accessible in the

Ensembl Plants database, was utilized to retrieve gene models located

within a 2Mb genomic region (1Mb region on either side of theMQTL

peak position). From the InterPro database (https://www.ebi.ac.uk/

interpro/), functional annotations for the available gene models were
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obtained. The genes were further narrowed down based on their Knet

scores (Knetminer.com). Additionally, to confirm the effectiveness of the

MQTLs, data on PM resistance from 11GWAS published between 2017

and 2023 were collected and used. The details of these GWAS studies

with respect to the population size, type of wheat, platform used for

genotyping the mapping panel are given in Supplementary Table S5. To

pinpoint the significant SNPs and/or marker-trait associations (MTAs)

as reported in these GWAS studies, their physical locations were

determined using methods such as BLASTN searches, referencing

databases, or consulting the source papers. This process was similar to

how the physical locations of MQTLs were determined. The MTAs

identified through GWAS within 5 Mb genomic areas nearby a MQTL

were considered to be co-located. This is because wheat exhibits an

extensive linkage disequilibrium (LD) decay range, which is

approximately 5 Mb (Yang et al., 2021).
Identification of known major resistance
genes co-localizing with MQTLs

The nucleotide sequences for previously characterized PM genes or

sequences of markers linked to these genes were retrieved from

databases such as Grain Genes and NCBI (www.ncbi.nlm.nih.gov).

Subsequently, BLAST searches were performed using these sequences

against the wheat reference genome available in the Ensembl Plants

database. After identifying the physical locations of the genes, their
Frontiers in Plant Science 04
positions were compared with the physical coordinates of the MQTLs

to determine whether they co-located with the MQTLs.
Results

Distribution of QTLs associated with
powdery mildew on wheat genome

QTLs from 34 individual mapping studies (published from 1996 to

2021) were collected and screened for information related to different

types of mapping population used, chromosome number, marker

positions, LOD score and PVE values. A total of 222 QTLs from PM

resistance traits were available for meta-QTL analysis. The detailed

information on these QTLs is given in Supplementary Table S1. The

number of QTLs present on individual chromosomes varied from a

minimum of 3 QTLs on chromosome 6D to a maximum of 21 QTLs

on 2B (Figure 1A). Moreover, the distribution QTLs across the three

sub-genomes displayed significant differences, with 79 QTLs located on

sub-genome A, 86 on sub-genome B, and 57 on sub-genome D. LOD

scores for individual QTLs ranged from 2.1 to 82.6 with an average of

11.3. Most QTLs (83.3% of the total) had their LOD score of< 6

(Figure 1B). The phenotypic variation explained by an individual QTL

varied from 2.3 to 90% with an average of 16.4%. Approximately,

36.93% of QTLs exhibited a PVE value of< 10% and only a small

fraction (6.75%) had a PVE value of > 40%, which suggests the
A

B C

FIGURE 1

Basic characteristics of QTLs associated with PM resistance (A) chromosome-wise distribution of QTLs, (B) LOD scores of QTLs, (C) % PVE of
the QTLs.
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involvement of both major and minor QTLs governing PM

resistance (Figure 1C).
Wheat consensus map and QTL projection

The high-density Wheat_Consensus_Map_2023 generated in the

present study using four different genetic maps exhibited a huge

variation in the distribution of markers. The marker density on

individual chromosomes varied from 1.37 markers/cM on

chromosome 4D to 15.92 markers/cM on chromosome 5B, with a

mean of 6.40 markers/cM throughout the genome. The marker

density on sub-genome B was highest (9.91 markers/cM) followed

by sub-genome A (7.21 markers/cM) and sub-genome D (2.54

markers/cM). The length of individual chromosomes also varied

significantly (ranged from 157.78 cM for chromosome 4B to 743.48

cM for chromosome 5A with an average of 406.28 cM). The

cumulative genetic map length of all the chromosomes in the map

was 8531.99 cM spanned by 54,672 markers. On average, there were

approximately 2,603 markers mapped per chromosome and the

number of different genetic markers that were mapped on a single

chromosome ranged from a few hundred (400 on chromosome 4D)

to several thousand (4,769 on chromosome 3B) (Figure 2).
Meta-analysis of QTLs associated with
powdery mildew resistance

The method proposed by Gerber and Goffinet (Goffinet and

Gerber, 2000) was employed for meta-analysis of QTLs across all

wheat chromosomes, except for chromosome 1A, 2A, 2B, 2D, 4A, 5D,
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and 7D, for which the Veyrieras approach was used (Veyrieras et al.,

2007), as these had >10 QTLs projected per chromosome. Out of 222

QTLs, only 168 could be projected (75.6% of the total no. of QTLs)

onto the newly constructed consensus map. The remaining QTLs

could not be projected because of either of the underlying reasons

including (i) lack of sufficient number of shared markers between the

consensus and initial genetic maps, and (ii) large CI associated with the

initial QTLs. A total of 39 MQTLs were predicted for resistance to PM,

consisting of 125 initial QTLs out of the total 168 projected QTLs

(Supplementary Table S2). The remaining 36 QTLs were singletons

(Supplementary Table S3) and therefore they were excluded from

subsequent analysis. Further, three QTL hotspots were also identified

which consisted of initial QTLs from the same studies. These hotspots

were located on chromosomes 2B and 2D (Supplementary Table S4).

Across the three sub-genomes, the maximum number of MQTLs were

predicted on sub-genome A (18), followed by sub-genome D (12) and

sub-genome B (9). Within sub-genome A, chromosome 1A harbored

the highest number of MQTLs (4) while chromosome 3A had the

lowest number of MQTLs (1). Similarly, for sub-genome B,

chromosomes 2B, 3B, 5B, 6B, 7B comprised of 2 MQTLs each while

chromosome 1B comprised of only a singleMQTL. For sub-genomeD,

chromosomes 5D and 7D had 4 MQTLs each which is the highest

whereas chromosomes 2D and 4D had 2 MQTLs each Figure 3A. No

MQTLs were predicted on chromosomes 4B, 1D, 3D and 6D. The

number of QTLs per MQTL ranged from ≤ 2 in 16 MQTLs to ≥ 6

QTLs in the 4 MQTLs (viz., MQTL2B.1, MQTL7A.2, MQTL7A.3 and

MQTL7D.3) Figure 3B.

The PVE of individual MQTLs varied from aminimum of 5.9 to

a maximum of 76.5% with a mean of 21.17% and the LOD score

varied from 1.5 to 30.4 with an average of 6.48. Notable features

displayed by the initial QTLs, MQTLs and their distribution across
FIGURE 2

Distribution of marker on the consensus map used in MQTL analysis in the current study.
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different wheat chromosomes are illustrated in Figures 1, 3, 4,

respectively. The CI of the predicted MQTLs and QTL hotspots

varied from 0.06 to 28.14 cM and 0.52 to 1.12 respectively. On an

average, the CI of MQTLs and QTL hotspots were significantly

reduced by a factor of 2.07 and 1.73 respectively compared to the

initial QTLs and there were substantial differences in the extent of

CI reduction across different wheat chromosomes (Figure 3D). The

mean physical CI of the MQTLs was 41.00 Mb, which ranged from

0.000048 Mb (MQTL5B.2) to 380.71 Mb (MQTL6A.2).
Gene models available in MQTL regions

A total of 39 MQTLs were mapped to the physical map of the

wheat consensus map used in the present study. However, the exact

physical positions of three MQTLs (viz., MQTL2A.3, MQTL7A.2

and MQTL7A.3) could not be ascertained due to the unavailability

of nucleotide sequences of the markers flanking these MQTLs

(Figure 5, Table 1). To enhance the reliability of the predicted

MQTLs, we further refined them, leading to the identification of

regions referred to as high-confidence MQTLs (hcMQTLs). In

general, each hcMQTL cluster included a minimum of three

initial QTLs, with a PVE value greater than 10% and a LOD score

greater than three. Further analysis involving gene mining was

conducted on 9 hcMQTLs, resulting in the identification of a total

of 256 gene models. Among the MQTLs, the one located on

chromosome 4D had the maximum number of associated gene

models (51). Conversely, the MQTL situated on chromosome 6A

had the fewest associated gene models (9) (Supplementary Table

S7). These gene models encoded different types of proteins, a few of

the important ones are as follows-, including (i) NBS-LRR proteins,

(ii) transcription factors (TFs) like MADS box and GRAS, (iii)

proteins belonging to oxidoreductase class such as cytochrome
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P450, (iv) proteins with lectin domain, (v) glycoside hydrolases,

and (vi) protein kinases.
Comparison of MQTLs with GWAS-MTAs

The physical coordinates of 39 MQTLs identified in our study

were compared to MTAs reported in 10 previous GWAS that

comprised a total of 281 MTAs for PM resistance. Among these

39 MQTLs, only 18 were found to be overlapped with GWAS-

MTAs (Supplementary Table S5). Some MQTLs were found to be

co-localized with MTAs available from multiple GWAS; For

instance, MQTL6A.1 co-localized with MTAs identified in three

different GWAS. Additionally, three MQTLs (viz., 2B.1, 3B.2 and

5A.2) contained at least 3 initial QTL which were co-localized with

multiple MTAs reported from two distinct GWAS.
Co-localization of MQTLs with known
PM genes

The identification of the association of known PM genes with

individual MQTLs revealed that a total of 2 genes associated with

PM resistance, including Pm2 and Pm3 were found to be co-

localized with 2 MQTLs identified in this study, whereas Pm8,

Pm21, Pm38 and Pm41 were found in proximity of MQTLs

identified in the present study. (Supplementary Table S6).
Discussion

Multiple QTLmapping studies in wheat related to PM havemade

significant contributions in advancing our knowledge of the genetic
B

C D

A

FIGURE 3

Basic characteristics of MQTLs associated with PM resistance (A) chromosome wise distribution of MQTLs, (B) the number of QTLs involved in
different MQTLs, (C) the number of QTL studies involved in different MQTLs, (D) fold reduction in confidence intervals of QTLs after meta-analysis.
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basis of quantitative resistance to PM in wheat (Mohler and

Stadlmeier, 2019; Xu et al., 2020; Liu et al., 2021). These studies

involve the discovery and mapping of distinct genetic regions

associated with resistance against PM, offering valuable insights

into the genetic complexity of this trait. However, it is widely

acknowledged that QTLs identified using one specific mapping

population or parental lines may not always perform effectively in

a breeding program involving diverse genetic backgrounds (Yang

et al., 2021). This phenomenon highlights the need for a more

comprehensive and adaptable approach to harness the potential of

these QTLs in wheat improvement programme. Overall, MQTL

analysis is a powerful method to gather and synthesize information

from multiple QTL mapping studies. It provides a more

comprehensive understanding of the genetic basis underlying the

trait which further helps to refine QTL positions with reduced CI’s

(Welcker et al., 2011). Meta-QTL analysis has been extensively

employed to study a plethora of traits, including disease resistance,

across various crop species like rice (Kumar and Nagarajah, 2020;

Kumar et al., 2020; Shashiprabha et al., 2022), wheat (Marone et al.,

2013; Soriano and Royo, 2015; Venske et al., 2019; Zheng et al., 2021;

Pal et al., 2022; Saini et al., 2022b), barley (Schweizer and Stein, 2011)
Frontiers in Plant Science 07
and maize (Rossi et al., 2019). In a previous research effort, MQTLs

were identified for wheat’s resistance to PM using a limited number

of initial QTLs for PM resistance, resulting in the identification of

only a small number of MQTLs associated with this trait (Marone

et al., 2013). The precision of the meta-analysis findings tends to

increase in tandem with the number of initial QTLs employed. It is

important to emphasize that a positive relationship typically exists

between the precision of results derived from meta-analysis and the

number of initial QTLs involved in the analysis (Kumar et al., 2023).

Moreover, with the continuous progress in molecular genetics and

QTL mapping techniques, there is a consistent discovery and

publication of new QTLs. Consequently, it is essential for us to stay

updated with these developments to incorporate the latest QTL

information into more robust and stable (MQTL) analyses. Hence,

in this current study, we conducted a MQTL analysis by integrating

QTL data reported in 34 different studies during 1996–2021 on PM

resistance and identified 39 MQTLs. to acquire a more profound

understanding of how genetic factors regulate resistance to PM in

wheat. The first step in the meta-analysis process involved mapping

the original QTLs onto a consensus map, which is crucial for

identifying common regions of interest through meta-analysis.
FIGURE 4

Circos diagram representing the features of QTLs and MQTLs associated with powdery mildew resistance. The information projected includes,
(moving inwards) the outermost ring represents consensus map, the positions of projected QTLs on the consensus map, and the innermost ring
represents the positions of MQTLs on different wheat chromosomes.
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FIGURE 5

Distribution of MQTLs across the different wheat chromosomes.
TABLE 1 MQTLs associated with powdery mildew resistance identified in the present study.

MQTL Flanking Markers CI (cM) LOD Score PVE% No. of
QTLs involved

MQTL1A.1 Glu-A3- Xgwm136 22.98–31.79 5.2 14.4 3

MQTL1A.2 XGli1- BS00062658_51 34.78–36.40 10.5 30.2 5

MQTL1A.3 wPt-731846- Excalibur_c5139_198 47.98–48.48 2.9 22.9 2

MQTL1A.4 Xbarc263- wmc95 52.52–52.95 8.9 46 3

MQTL1B.3 Xgwm550- D_GDS7LZN02GBBZ2_143 453.80–457.71 5.8 21.8 4

MQTL2A.1 Xfba198–2A-Excalibur_c15379_1305 48.58–49.92 30.4 50.7 4

MQTL2A.2 Excalibur_rep_c102244_1103- BS00044272_51 99.84–127.98 12.2 38.2 2

MQTL2A.3 Xgwm356- Xfba385 123.95–125.73 8.4 21.9 5

MQTL2B.1 BobWhite_c39184_140- BS00049876_51 60.15–60.64 9.1 20.4 6

MQTL2B.2 Kukri_c23822_580- BS00010318_51 75.00–76.60 4 9.5 2

MQTL2D.1 Xbarc90- Xbarc292 36.69–36.99 3.6 5.9 2

MQTL2D.2 XksuD23- wsnp_CAP12_c1503_764765 59.33–72.83 2.7 11.7 2

(Continued)
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Sub-genome B revealed the highest density of genetic markers, thus

harboring maximum number of initial QTLs. This finding aligns with

previous reports that have explored genetic diversity and the intricate

genetic makeup of disease resistance in wheat (Soriano and Royo, 2015;

Amo and Soriano, 2022; Pal et al., 2022; Saini et al., 2022b). Conversely,

the comparatively low level of genetic variation in the sub-genome D

may explain the relatively small number of QTLs detected across

various QTL mapping studies which is consistent with previously

conducted meta-analyses for disease resistance in wheat that also

reported less number of QTLs on sub-genome D (Venske et al.,

2019; Liu et al., 2020; Zheng et al., 2021; Pal et al., 2022; Saini et al.,

2022a). We believe that our current effort in gathering and analyzing

QTL data for PM resistance in wheat represents the most extensive and

thorough compilation to date. The highly dense consensus map
Frontiers in Plant Science 09
constructed in our study using four different genetic maps allowed us

to identify markers that were closely associated with corresponding

MQTLs. The consensus map used in the current study consists of a

higher number of markers in comparison to the consensus map

utilized in a prior study on MQTL related to PM resistance in wheat,

where only 3,618 markers were used and these were obtained by

merging only two wheat linkage maps. A higher proportion of QTLs

(75.6%) were projected on the consensus map. One potential

explanation could be the use of a comprehensive consensus map in

the present research. The discovery of 39 MQTLs from the initial pool

of 168 QTLs led to a notable decrease by a factor of 2.07 (=10.35/5) in

the number of genomic regions or QTLs linked to PM resistance in

wheat. Our study stands out as a more up-to-date and comprehensive

compilation as compared to a prior meta-analysis on PM resistance
TABLE 1 Continued

MQTL Flanking Markers CI (cM) LOD Score PVE% No. of
QTLs involved

MQTL3A.1 Excalibur_c61765_220- Xfba91 81.10–82.26 2.8 10.3 2

MQTL3B.1 Xfba190- Xgwm493 135.66–141.90 8 15.9 3

MQTL3B.2 BARC131-Xwmc623 151.83–164.03 4.6 11.4 3

MQTL4A.1 Ku_c2478_227- Tdurum_contig12696_528 61.37–64.45 15.3 22 2

MQTL4A.2 Xwmc96- BS00043286_51 94.16–97.93 3.6 36.4 2

MQTL4A.3 Xgwm637- Ra_c74035_586 105.34–115.46 3.1 11.8 2

MQTL4D.1 Xcfd84-Xwmc622 70.41–71.53 8.9 21.3 2

MQTL4D.2 Xcfd84- Xgwm194 71.20–84.14 7.5 18.2 3

MQTL5A.1 RAC875_c53808_1027- Kukri_c95189_124 480.00–483.36 3.2 14.2 3

MQTL5A.2 RAC875_c53808_1027- Kukri_c95189_124 492.41–499.97 3 18.9 2

MQTL5B.1 wmc149- Kukri_c912_1423 35.23–37.58 3.3 8.5 2

MQTL5B.2 Tdurum_contig70554_1004-
Tdurum_contig70554_1006

44.17–44.56 3.1 10 2

MQTL5D.1 gwm959c- Xwgm583 32.86–49.95 3.4 21.2 2

MQTL5D.2 Xgwm583-gbxG083c 60.92–62.68 9.4 34.9 5

MQTL5D.3 gbxG083c- Xbarc286 63.03–64.55 10.8 76.5 5

MQTL5D.4 Xgwm639-Xcfd12 67.63–67.69 2.6 21.7 3

MQTL6A.1 6A-BS00103442_51-Xcdo388 84.49–88.52 15.3 35.4 4

MQTL6A.2 Xwmc254- Xwmc59 180.11–184.49 8.8 16 2

MQTL7A.1 Ku_c416_1522- Tdurum_contig12832_116 464.72–472.43 3.4 13.4 5

MQTL7A.2 Xfbb121-Xcdo545 476.97–480.91 3.1 15.2 6

MQTL7A.3 Xwmc158- BS00033782_51 483.13–484.00 2.7 14.4 6

MQTL7B.1 Xwmc606- Xwmc323 136.90–137.95 4.3 21.3 3

MQTL7B.2 CAP12_c1816_325- Xgwm537 177.03–179.95 1.5 14.3 3

MQTL7D.1 Xwmc506- Xwmc450 19.39–29.83 5.1 7.1 2

MQTL7D.2 Xmwg710.2- Xgwm130 41.02–41.93 3.3 21.1 3

MQTL7D.3 Xgwm1220- BS00027514_51 55.57–57.52 5 8.7 6

MQTL7D.4 GENE-4592_95- Xwmc121 65.11–75.13 4 12.1 3
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(Marone et al., 2013); for several reasons. Firstly, we incorporated a

larger dataset, utilizing 222 QTLs from 34 mapping studies, in contrast

to 101 QTLs from 20 studies, which has been shown to improve the

accuracy of statistical findings. Secondly, we employed a highly dense

consensus map with 54,672 markers, as opposed to the earlier study’s

use of 3,618 markers. Thirdly, our study integrated a greater number of

QTLs (168) into MQTLs due to the use of the dense consensus map.

Additionally, we validated 18 MQTLs using GWAS-based MTAs,

demonstrating the broader genetic impact of these regions on PM

resistance. Moreover, our study employed specific criteria to prioritize

hcMQTLs for CG mining, leading to the identification of more

promising CGs.
Candidate genes within the hcMQTLs and
their association with PM responses

Candidate gene mining within 9 hcMQTLs revealed 256 unique

gene models. Twenty-five promising candidate genes were chosen

based on Knet score (Table 2). The roles of some genes in conferring

resistance to PM is discussed as follows: (i) NBS-LRR domain-

containing proteins are also encoded by some cloned Pm genes such

as Pm2b, Pm60 and Pm21 that confer PM resistance in wheat (He

et al., 2018; Zou et al., 2018; Jin et al., 2022), (ii) Proteins belonging

to the protein kinase family are essential components of the defense

mechanism in wheat. Receptor-like kinases (RLKs) and plant

protection kinases participate in the recognition and initiation of

a diverse array of signals connected to various developmental and

physiological functions. These include processes related to defense

mechanisms as well as beneficial symbiotic interactions (Rentel

et al., 2004; Garcia et al., 2012), (iii) Jacalin like lectin domain

containing genes have the ability to bind to carbohydrates,

recognizing those derived from pathogens or injury during

infections (Lannoo and Van Damme, 2014; Esch and Schaffrath,

2017). A mannose-specific JRL (mJRL)-like gene (TaJRLL1) which

codes for a protein containing two jacalin-like lectin domains has

been discovered in wheat. When TaJRLL1 was introduced into

Arabidopsis thaliana, resistance towards two fungal pathogens, F.

graminearum and Botrytiscinerea was enhanced. The levels of

jasmonic acid (JA) and salicylic acid (SA) showed a substantial

increase in transgenic Arabidopsis plants. These results suggest that

TaJRLL1 could be a component of the SA and JA dependent defense

signaling pathways (Xiang et al., 2011), (iv) Glycoside hydrolases

(GHs) are the most prevalent and widely distributed class of

enzymes in fungi, as observed in various studies and their

primary function is to enzymatically break down the glycosidic

bonds between carbohydrate molecules or between carbohydrates

and non-carbohydrate groups (Zhou et al., 2013). One study

discovered that GH proteins are recognized by the leucine-rich-

repeat receptor-like protein in the dicot plant Nicotiana

benthamiana. Heterologous expression of this receptor in wheat,

made it responsive towards GH proteins, resulting in an increased

resistance to F. graminearum (a fungal pathogen) and lower levels

of the mycotoxin deoxynivalenol in wheat grains (Wang et al.,

2023a), (v) Transcription factors like GRAS, MYB and MADS-box

play an important role in plant disease resistance. 1R-MYB
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transcription factor was reported to play key role in disease

resistance against stripe rust fungus in wheat (Zhang et al., 2015).

Studies by Zhang et al. (2016) and Castelán-Muñoz et al. (2019)

have reported that members of the MADS-box gene family

participate in the control of both biotic and abiotic stress

reactions, which indicates a potential role in stress response.

Several MADS-box genes were activated and displayed varying

levels of expression after inoculation of wheat spikes with FHB

indicating their potential defensive roles against Fusarium

infections (Kugler et al., 2013), (vi) The gene TaCYP72A which

encodes cytochrome P450, plays a significant role enhancing host

resistance to Fusarium head blight (FHB) in wheat (Gunupuru

et al., 2018), (viii) Synaptobrevin domain containing proteins-

TaSYP137 and TaVAMP723, the SNAREs proteins containing

streptobrevin and longin domains have been reported to reduce

resistance to Blumeria graminis f. sp. Tritici in wheat (Wang

et al., 2023b).
Concordance between MQTLs and known
major genes

While there is a record of over 100 PM resistance genes/alleles

within 63 loci (Pm1-Pm66), only a handful of them have been

cloned and thoroughly characterized. These include Pm1a, Pm2a,

Pm2b, Pm3b, Pm5e, Pm8, Pm17, Pm21, Pm24, Pm38, Pm41, Pm46,

and Pm60, while the majority remain uncharacterized (Yahiaoui

et al., 2004; Krattinger et al., 2009; Moore et al., 2015; Sánchez-

Martıń et al., 2016; He et al., 2018; Singh et al., 2018; Xing et al.,

2018; Zou et al., 2018; Zhang et al., 2019; Li et al., 2020; Lu et al.,

2020; Xie et al., 2020; Hewitt et al., 2021; Jin et al., 2022). Except for

Pm24, Pm38, and Pm46, which code for a tandem kinase gene

known as WTK3, an ABC transporter, and a hexose transporter,

respectively, most of the characterized PM resistance genes in wheat

are categorized as NLR proteins and exhibit specificity to distinct

pathogen races (Mapuranga et al., 2022). As many as 2 PM

resistance genes, including Pm2 and Pm3 were found to share the

same genomic locations as overlap with 2 MQTLs that were

identified in this study. For instance, MQTL1A.1 co-localized

with Pm3a and Pm3b and MQTL5D.1 co-localized with both

Pm2a and Pm2b genes conferring resistance to PM in wheat, thus

confirming the effectiveness of employing a highly saturated

consensus map in MQTL analysis. Furthermore, 4 PM (Pm8,

Pm21, Pm38 and Pm41) genes were found in proximity to the

MQTLs identified in the present study.

Recently, Jin et al. (2022) established that the PM resistance

genes Pm2b was located within the same genomic region as Pm2a

and PmCH1357. However, these genes exhibited distinct resistance

profiles, suggesting that Pm2 exhibits a diverse resistance spectrum

among its multiple alleles. The researchers also identified a

transcription factor called TaWRKY76-D as an interacting partner

of Pm2b, and this interaction relied on the NB domain of Pm2b and

the WRKY domain of TaWRKY76-D. Interestingly, TaWRKY76-D

was found to have a negative regulatory effect on PM resistance in

wheat. Additionally, the team developed a specific KASP marker

known as K529, which offers the advantages of high-throughput
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and high-efficiency for the detection of Pm2b. In the current study,

MQTL1A.1 was discovered to co-localize with both Pm3a and

Pm3b, suggesting a connection between these genes and

reinforcing the fact that 10 alleles providing race-specific

resistance to PM exist at the Pm3 locus in hexaploid wheat.
Assessing the effectiveness of MQTL
through GWAS

GWAS is a promising approach for exploring intricate traits,

leveraging both recent and past recombination events within the
Frontiers in Plant Science 11
association panel, thereby enabling precise mapping of these traits

(Bush and Moore, 2012; Saini et al., 2022c; Singh et al., 2023; Reddy

et al., 2023). The emergence of cost-effective, high-throughput

sequencing technologies have simplified the discovery of MTAs

associated with various disease resistance traits using genome-wide

variants (Kumar et al., 2020; Alemu et al., 2021; Tomar et al., 2021;

Nannuru et al., 2022; Vikas et al., 2022; Pradhan et al., 2023). In this

study, approximately 46% (18 out of 39) of the identified MQTLs were

confirmed through associations with MTAs related to PM resistance.

The limited verification of MQTLs by GWAS-MTAsmay be attributed

to various factors or reasons. Firstly, neither of these methods (MQTL

or GWAS) comprehensively captures all the genetic diversity inherent
TABLE 2 Most promising candidate genes associated with powdery mildew resistance.

hcMQTL Gene Ids Gene Position (bp) Knet Score Functional
description

MQTL1A.1 TraesCS1A03G0022100 4497200- 4503419 184.25 NB-ARC

MQTL1A.1 TraesCS1A03G0025200 5645211- 5650510 39.16 NB-ARC

MQTL1A.1 TraesCS1A03G0026100 6007940- 6012646 16.07 NB-ARC

MQTL1A.2 TraesCS1A03G0027400 6293918- 6294835 21.76 Leucine-rich repeat
domain superfamily

MQTL1A.2 TraesCS1A03G0032400 7311700- 7312269 139.08 Transcription factor,
MADS-box

MQTL2B.1 TraesCS2B03G0094000 22781478- 22785668 32.12 NB-ARC

MQTL2B.1 TraesCS2B03G0098400 23575924- 23578715 24.98 Glycoside hydrolase, family
19, catalytic

MQTL2B.1 TraesCS2B03G0098900 23596456- 23597365 25.95 Jacalin-like lectin domain

MQTL3B.1 TraesCS3B03G0631000 381767017- 381759928 23.74 SANT/Myb domain

MQTL3B.2 TraesCS3B03G1090700 681100681- 681097254 151.3 Transcription factor GRAS

MQTL3B.2 TraesCS3B03G1087500 679645157- 679642968 21.6 Transcription factor,
MADS-box

MQTL4D.2 TraesCS4D03G0817500 503968880- 503969956 16.86 BTB/POZ domain

MQTL4D.2 TraesCS4D03G0815200 503615478- 503621888 13.89 EF-hand domain

MQTL4D.2 TraesCS4D03G0814000 503355740- 503359344 13.89 Palmitoyl protein thioesterase

MQTL5A.1 TraesCS5A03G0006500 2408514- 2406435 32.12 Synaptobrevin

MQTL5A.1 TraesCS5A03G0009300 3177753- 3175334 47.72 Cytochrome P450

MQTL5A.1 TraesCS5A03G0009400 3197691- 3194780 15.6 Cytochrome P450

MQTL5A.1 TraesCS5A03G0009500 3218868- 3215100 19.86 3-beta hydroxysteroid
dehydrogenase/isomerase

MQTL5A.1 TraesCS5A03G0009700 3294536- 3281861 19.86 Terpene synthase,
conserved site

MQTL5A.1 TraesCS5A03G0010300 3374577- 3370704 33.82 Protein kinase domain

MQTL6A.1 TraesCS6A03G0385400 149962969- 149954398 9.1 T-complex 11

MQTL6A.1 TraesCS6A03G0386400 150987049- 150982707 10.56 Fumarylacetoacetase

MQTL7D.4 TraesCS7D03G0436800 151917055- 151915776 13.89 Plant peroxidase

MQTL7D.4 TraesCS7D03G0437800 152121744- 152120457 10.08 Glycoside hydrolase family 16

MQTL7D.4 TraesCS7D03G0438700 152949088- 152947488 15.25 NAC domain
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within the crop species. Secondly, there is a notable disparity in the

genetic materials utilized between these two approaches. Furthermore,

it is important to note that GWAS primarily targets the identification of

common or frequent genetic variants, typically those with a minor

allele frequency exceeding 5%. Additionally, environmental factors can

significantly influence trait expression, and if not adequately controlled

for, they may obscure associations between markers and traits. On the

contrary, linkage-based interval mapping studies excel in detecting rare

alleles that significantly influence the phenotype.

The stability and reliability of MQTLs could be enhanced when

they are corroborated by MTAs identified through multiple GWAS

studies and encompass numerous QTLs derived from different interval

mapping studies. In our study, four such MQTLs (MQTL2B.1,

MQTL3B.2, MQTL6A.1, MQTL5A.2) with at least 2 initials QTLs

from different studies with reduced CI (95%) (average CI< 6cM) were

verified with multiple MTAs obtained from different GWAS. These

meta-QTLs have immense potential and can be regarded as valuable

candidates for use in marker-assisted breeding (MAB) initiatives aimed

at enhancing PM resistance in wheat.
Conclusions

Our current could identify the most stable and reliable QTLs

associated with PM resistance in wheat, providing insight into the

intricate quantitative genetic structure of PM resistance. Out of the 39

MQTLs which were identified, 9 hcMQTLs were selected for further

investigation to identify the underlying CGs. A total of 256 unique

candidate genes were identified within the hcMQTLs, with 25

promising candidates belonging to various gene families known to

play roles in disease resistance, such as NBS-LRR, protein kinases,

jacalin-like lectins, glycoside hydrolases, and transcription factors. The

co-localization of MQTLs with known powdery mildew resistance

genes (Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41) validated the

effectiveness of the MQTL analysis. The obtained MQTLs would be

useful for further understanding of the molecular mechanisms of PM

resistance and for the development of PM-resistant wheat varieties.

Additionally, information pertaining to markers flanking the MQTLs

can be integrated into genomic selectionmodels, thereby, improving the

accuracy of PM resistance through more accurate estimates of genomic

estimated breeding values (GEBVs). In the future, breeders have the

opportunity to enhance PM resistance trait in wheat by utilizing the

most promising MQTLs, specifically 1A.1, 1A.2, 2B.1, 3B.1, 3B.2, 4D.2,

5A.1, 6A.1 and 7D.4 as identified in this research. The candidate gene

underlying these MQTLs could bevalidated for marker-assisted

breeding programs aimed at enhancing PM resistance in wheat.
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