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Oat—an alternative crop under
waterlogging stress?
Britta Pitann* and Karl H. Mühling*

Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
Introduction: Waterlogging is one vast environmental constraint that limits crop

growth and yield worldwide. Most major crop species are very sensitive to

waterlogging, leading to enormous yield losses every year. Much is already

known about wheat, barley or maize; however, hardly any data exist on oat

and its tolerance against waterlogging. Thus, this study aimed to investigate if

oats can be an adequate alternative in crop rotation under conditions of temporal

submergence and if cultivar differences exist. Furthermore, this study was to test

(1) whether yield was differently affected when stress is applied at different

developmental stages (BBCH 31 and 51), and (2) nutrient imbalances are the

reason for growth restrictions.

Methods: In a large-scale container experiment, three different oat varieties were

cultivated and exposed to 14 consecutive days of waterlogging stress at two

developmental stages.

Results: Even though vegetative growth was impaired after early waterlogging and

which persists till maturity, mainly due to transient nutrient deficiencies, growth

performance after late waterlogging and grain yield of all three oat varieties at

maturity was not affected. A high tolerance was also confirmed after late

waterlogging in the beginning generative stage: grain yield was even increased.

Discussion:Overall, all oat varieties performed well under both stress treatments,

even though transient nutrient imbalances occurred, but which were ineffective

on grain yield. Based on these results, we conclude that oats, independently of

the cultivar, should be considered a good alternative in crop production,

especially when waterlogging is to be expected during the cultivation phase.
KEYWORDS

nitrogen, oat, phosphorus, waterlogging, yield
1 Introduction

Climate change has been and is a serious topical global issue. While in the past the focus

was mostly laid on the increase of climate-relevant gases, today, it is also important to

understand the impact of hydrological changes. For example, in the course of climate

change, an increase in the frequency and intensity of extreme weather events is to be
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expected, which threatens not only the security of the water supply

but also food production as such. According to the

Intergovernmental Panel on Climate Change (IPCC, 2022),

almost half of the world’s population is already particularly

affected by water scarcity. However, also the opposite is to be

expected with more phases of heavy rainfall events, resulting in

an increased risk of flooding associated with temporary

waterlogging. Climate models already show that the global

amount of precipitation increases by approximately 2% for every

one-degree increase in temperature (Kreienkamp et al., 2016).

According to actual estimates, approximately 12% of the world’s

arable land is currently at risk of waterlogging, and this is being

exacerbated by unfavorable soil conditions (e.g., high clay content)

and/or poor management systems (e.g., soil compaction and poor

drainage) (Najeeb et al., 2015; Ploschuk et al., 2018; Alifu et al.,

2022). Also, in Europe, the problem of waterlogging has long since

arrived, with prolonged phases of heavy rainfall in winter and early

spring, being more the rule than the exception (Deumlich and

Gericke, 2020).

For Germany, it is undisputed that so-called heavy rainfall

events have occurred more frequently over the past 15 years, at least

regionally (Winterrath et al., 2017). This, in turn, has a vast effect on

the agricultural sector, causing high yield losses of the major crops

(e.g., Ploschuk et al., 2018).

Waterlogging induces several physiological changes in crops and

thus affects various aspects of plant metabolism and growth

(Horchani et al., 2009). These changes are primarily a response to a

reduced availability of oxygen in the soil. Waterlogging as such is

defined as the saturation of soil with water beyond its holding

capacity (Striker, 2012). As a result, gaseous exchange with the

atmosphere is inhibited, and gas diffusion in the soil is impeded

(Jackson and Ricard, 2003), further driven as remaining oxygen is

consumed by microbial activity. This lack of oxygen together with an

increase in CO2 leads to anoxic soils (Ponnamperuma, 1972) and,

consequently, results in severe hypoxia/anoxia within plant roots

(Armstrong, 1980). This leads to root damage and decay, and also

oxygen-depleted roots immediately shift from aerobic respiration to

low ATP-yielding fermentation (Gibbs and Greenway, 2003). As a

consequence, plants subsequently respond with stomata closure,

which in turn reduces transpiration, a driver for water uptake and

translocation. As an inevitable result, also nutrient uptake and

translocation are restricted (Jackson and Drew, 1984; Colmer and

Voesenek, 2009; McDonald, 2021), which may be further exacerbated

by a shift of redox potential toward more reducing conditions.

Together with the hampered gas exchange at the stomata and thus

CO2 uptake, also photosynthesis is reduced, which in combination

with restricted nutrient uptake leads to a marked decrease in plant

biomass production and yield (Ashraf, 2012; Shao et al., 2013;

Voesenek and Sasidharan, 2013; Arguello et al., 2016).

Depending on plant species, physiological tolerance, timing,

and duration of the waterlogging event, yield losses can largely vary

(Setter and Waters, 2003; de San Celedonio et al., 2014; Arduini

et al., 2016; Ploschuk et al., 2018). Notably, high-yielding crops such

as wheat or rapeseed are more susceptible to waterlogging in later

developmental stages (Araki et al., 2012; Wollmer et al., 2018a, b;

Hussain et al., 2022, 2023). According to Pampana et al. (2016), the
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yield of durum wheat was not affected when waterlogging occurs at

the three- to four-leaf stage, which is also in line with de San

Celedonio et al. (2014), who reported that wheat and barley are

more sensitive at anthesis compared to tillering. This contradicts

the results of Wu et al. (2015) and Ghobadi and Ghobadi (2010),

who found that wheat was more prone to waterlogging when

stressed at the seedling stage compared to later growth stages.

However, there is a great consensus that the longer the

waterlogging event persists, the greater the yield loss (Ghobadi

and Ghobadi, 2010; Zhang et al., 2016; Tian et al., 2020).

Oats (Avena sativa L.) are among the food crops that rank sixth

regarding cereal production right after wheat, maize, rice, barley,

and sorghum (Ruja et al., 2021). Although being displaced by

higher-yielding energy and protein crops in the past (Hoffman,

1995), today, oats are experiencing a revival as “super food” owing

to their nutritional composition, and their production is gaining

popularity again. Oats are well known for their versatility, thus

tolerating a wide range of climatic conditions (Welsh, 1995; Ruja

et al., 2021). However, while yield performance under waterlogging

of the major crops has been well documented, studies on the

response of oats to waterlogging are still scarce. However, there

are indications that oats show a higher agronomic tolerance; i.e.,

they have the capability to maintain yields despite facing

waterlogging during their growth cycle (Arduini et al., 2019).

Watson et al. (1976) and Cannell et al. (1985) suggested that the

better recovery potential of oats may be due to their capability to

stay green during waterlogging and higher tiller fertility at maturity

(Setter and Waters, 2003).

Based on these early findings and a lack of information, this

study aims to investigate whether oats can be used as an alternative

crop, especially under the changing climatic conditions present in

Northern Germany. To gain further knowledge about possible

cultivar variations, three oat varieties, namely, black oats, white

oats, and yellow oats, were compared to facilitate cultivar choice on

waterlogging-affected sites. Thus, it is hypothesized that 1) oats

growth performance is less affected by waterlogging at later

compared to earlier growth stages, 2) different oat varieties show

no differences in growth performance and yield formation upon

waterlogging, and 3) waterlogging-induced nutrient deficiencies are

not yield-effective in oats.
2 Materials and methods

2.1 Plant cultivation and
SPAD measurements

The experiment was conducted in the outdoor area of the

Experimental Station of the Institute of Plant Nutrition and Soil

Science, Kiel University, Germany (54°20′50″N, 10°6′55″E) starting
in March 2021. Three oat (A. sativa L.) varieties (obtained from

Saaten Union, Niedersachsen, Germany), Zorro (black oat; A. sativa

var. nigra), Symphony (white oat; A. sativa var. alba), and Apollon

(yellow oat; A. sativa var. aurea), were grown to maturity in large-

scale containers (height, 0.9 m; area, 0.16 m2; volume, 120 L; see also

Hohmann et al., 2016) with a seeding density of 300 seeds per
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container, which were later thinned to 90 plants after emergence. As a

substrate, a subsoil (Cambisol; IUSS Working Group WRB, 2015)

from the experimental station “Hohenschulen” of Kiel University,

Germany, and arable topsoil from the district of Ost-Holstein

(Schleswig-Holstein, Germany) were selected (see details in Table 1).

The containers were filled with air-dried and homogenized soil

as follows (from bottom to top): 1) 20 kg gravel as a drainage layer,

2) 100 kg subsoil + sand (1:1, w/w), 3) 30 kg subsoil + topsoil (1:1,

w/w), 4) 10 kg topsoil plus fertilizer according to standard

application for oats [in kg/ha: 100 N (split into N1 prior to

seeding and N2 at shooting stage), 55 P, 80 K]. Weed and

pathogen control were applied as required.

Soil plant analysis development (SPAD) values were measured

on the fifth leaf after waterlogging at BBCH 31 and on the flag leaf

after stress treatment at BBCH 51 (Meier, 2001). An average of 10

readings per container was taken using a chlorophyll meter (SPAD-

502, Konica Minolta Sensing Europe B.V., Wrocław, Poland).
2.2 Stress treatments

Soil moisture was maintained at 60% water-holding capacity

(WHC) until treatments started. While the respective controls (W0)

were watered at 60% WHC throughout the entire crop cycle,

waterlogging (100% WHC) was imposed for a total of two

consecutive weeks: 1) W1 = early waterlogging at BBCH 31 and

2) W2 = late waterlogging at BBCH 51. Water treatment was

checked every 2 days, and re-irrigation was performed based on

weight loss if necessary. After terminating waterlogging, water was

drained to achieve a target WHC of 60%, which was then retained

until harvest. The experiment was set up with four replicates per

treatment and oat variety in a completely randomized design

(CRD). Randomization of the position of containers was

performed twice a week together with the check of WHC.
2.3 Plant sampling and analysis

Two weeks after terminating waterlogging (W1 and W2), 30

plants (including side shoots) were randomly selected and
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harvested, and fresh weights were recorded. At maturity, the 30

remaining plants (including side shoots) per container were

harvested and separated into straw and panicles. Subsequently,

the biomass of straw and panicles, grain yield, and yield

parameters were quantified. Panicles per container were counted

and hand-threshed to determine total grain and thousand kernel

weight. The number of grains per panicle was calculated as follows

(Equation 1):

Grains   per   panicle

=
Total   grain  weight ÷ thousand   kernel  weight � 1, 000  

Panicles   per   container
(1)

To record dry weights, samples of each treatment were oven-

dried at 60°C to constant weight and subsequently milled (Cyclotec

1093, Foss Tecator, Höganäs, Sweden) to fine powder for

further analysis.

For mineral nutrient analysis, 200 mg of finely ground plant

material of each plant part per replicate was digested with 10 mL

69% HNO3 in a microwave oven (1800 W, MARS 6, Xpress, CEM,

Matthews, MC, USA) at 190°C for 45 min and subsequently

analyzed by inductively coupled plasma–mass spectrometry (ICP-

MS; Agilent Technologies 7700 Series, Böblingen, Germany)

according to the method described by Jezek et al. (2015).

Determination of total N was conducted using a CNS elemental

analyzer (Flash EA 1112 NCS, Thermo Fisher Scientific, Waltham,

MA, USA), for which 5–10 mg of finely ground plant material was

weighed into tin capsules. Results were validated using a certified

wheat flour standard (Isotopenstandard Weizenmehl, IVA

Analysentechnik, Meerbusch, Germany) as a reference.
2.4 Statistical analysis

Data were statistically analyzed using SPSS software (version

25.0). The analysis was based on four replicate containers per

treatment set up as CRD. The effects of treatments per cultivar

were tested using one-way ANOVA according to Duncan’s

(homogeneity of variance) or Games–Howell (heterogeneity of

variance) multiple-range tests at p ≤ 0.05. Significant differences are

indicated by different letters. The significance of the correlations was

tested using two-tailed Pearson’s correlation coefficient at p ≤ 1%.
3 Results

3.1 Fresh weights and SPAD values

After 14 days of waterlogging at BBCH 31 (W1), all oat varieties

clearly showed stunted growth and beginning chlorosis at older

leaves (see Supplementary Figure 1). All oat varieties were similarly

affected and showed a significant reduction in fresh weight of 58%,

57%, and 53% for black, white, and yellow oats, respectively

(Figure 1A). Except in white oats, dry weight was not significantly

reduced compared to the corresponding non-stressed control (data

not shown).
TABLE 1 Physico-chemical properties of the soils.

Subsoila Topsoilb

Soil type sL lS

pH (CaCl2) 5.5 6.1

Total N (g/kg soil) <0.3 n.a.

Phosphorus (mg/100
g soil)

5.0 5.0

Potassium (mg/100
g soil)

4.0 7.9

Magnesium (mg/100
g soil)

8.1 5.1
aAccording to analysis by Institut Koldingen GmbH, Germany.
bAccording to analysis by AGROLAB Agrar und Umwelt GmbH, Germany.
n.a., not applicable.
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At the second sampling date, 1 week after the late waterlogging

event (W2), differences in the recovery potential between varieties

became obvious (Figure 1B). While black oats were able to

recover from early waterlogging, white and yellow oats still

showed significantly impaired growth 6 weeks after water

drainage. Interestingly, late waterlogging at BBCH 51 had no

negative effect on the total fresh weight of all oat varieties

and could maintain weights similar to the corresponding

control (Figure 1B).

These results were largely confirmed at the final harvest

(Figure 1C). While the recovery of white oats after the early

waterlogging was not confirmed till maturity, fresh weight
Frontiers in Plant Science 04
increased to the level of control for black and yellow oats

(Figure 1C). However, the fresh weight of all oat varieties

remained unaffected by late waterlogging.

SPAD values were measured always right after the termination

of the waterlogging treatment. Significant differences were

monitored between control plants and plants waterlogged at

BBCH 31 for all three oat varieties (Figure 2A; Supplementary

Figure 2). This waterlogging-induced decline in SPAD values was

even more pronounced after stress treatment at BBCH 51 for white

and yellow oats when compared to early waterlogging and control,

while SPAD values in black oats remained unaffected by late

waterlogging (Figure 2B; Supplementary Figure 3).
A

B

C

FIGURE 1

Fresh weight of the whole aboveground plant material after 14 days of waterlogging (A) at BBCH 31 and (B) at BBCH 51, as well as (C) at harvest
after maturity. Bars represent means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant)
between waterlogging treatments always within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
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3.2 Yield and yield parameters

Whether the fresh weight was now broken down into the

individual main major yield components, differences between oat

varieties became obvious. While the number of panicles of black

oats showed a slight but non-significant reduction at W1 and W2,

white and yellow oats showed a significant reduction (Figure 3A).

Concerning the number of grains per panicle, in black and white

oats, W1 had a negative effect, leading to a reduced number of

grains, while yellow oats were not influenced (Figure 3B). However,

after W2, white oats compensated for the reduced number of

panicles with the number of grains per panicle on the level of the

control. Similarly, also, black and yellow oats significantly increased

the number of grains after late waterlogging compared to W1 and

remained on the level of their respective control (Figure 3B).

Contrary to this, thousand kernel weight was not responsive at all

to W1 and W2 in either black or white oats, while it was on a

relatively high level in yellow oats compared to the other two

varieties, but with a reduction after W2 (Figure 3C). This in turn

led to an unchanged grain yield under W1 for both black and white

oats, while under W2, there was even an increase in grain yield for

both varieties (Figure 3D). However, yellow oats were the only

variety that reacted sensitively to early waterlogging but could

regain grain yield at least on the level of the control after late

waterlogging (Figure 3D). Although differences in the major yield

parameters were recognizable, the harvest index and the grain:straw

ratio were unresponsive to both timings of waterlogging (data

not shown).

Correlating yield with the single yield parameters showed that

there was no correlation between yield and the number of panicles

per container and thousand kernel weight for all three oat varieties,

with all coefficients of determination being non-significant

(Supplementary Figures 3A–C, G–I). However, yield significantly

correlated to the number of grains per panicle at least for black oats
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(R2 = 0.735; Supplementary Figure 3D) and white oats (R2 = 0.779;

Supplementary Figure 3E). Only yellow oats lacked such a

correlation between yield and number of grains (R2 = 0.118,

Supplementary Figure 3F).
3.3 Nutrient concentration in plant tissues

Early waterlogging (W1) resulted in a reduction of nitrogen (N)

concentration in all three oat varieties. Hereby, the decrease was the

highest in white oats (55%) followed by yellow oats (44%), and the

lowest was in black oats (36%) (Figure 4A). Similarly to N, all oat

varieties showed a strong decline in phosphorus (P) concentration,

with white oats being most responsive compared to yellow oats and

black oats (Figure 4B). Additionally, also S showed a marked

decrease after early waterlogging (data not shown).

After late waterlogging, all oat varieties were able to recover,

showing a N concentration similar to their respective control

(Figure 5A). Furthermore, no effect of W2 on shoot N

concentration could be determined. Similarly, the P status could

be restored to the control level (black oats) or even increased (white

oats and yellow oats) till BBCH 51 (Figure 5B). However, similar to

early waterlogging, W2 led to a significant decrease in P in all three

oat varieties (Figure 5B).

At the timepoint of maturity, all plants were harvested, and

nutrient concentrations in straw and grains were determined. With

respect to straw N, it was observed that both black oats and white

oats showed no changes in N concentration (Figure 6A). Only in

yellow oats was a significant difference between W1 and W2

measurable, whereas no significant difference between W2 and

the respective control was obvious. Likewise, also in grains of

black and white oats, no effect of either W1 or W2 could be

detected on N concentration (Figure 6B). However, yellow oats

showed an increase in N at maturity when waterlogged at BBCH 51.
A B

FIGURE 2

SPAD values after waterlogging (A) at BBCH 31 and (B) at BBCH 51. Bars represent means + standard errors (n = 4). Different letters refer to
significant differences (p = 0.05) between waterlogging treatments always within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2,
waterlogging at BBCH 51; SPAD, soil plant analysis development.
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A similar pattern was measured for P concentration. Black oats

were unable to regenerate the straw P level at W2, while in white

and yellow oats, P concentration increased to the level of the well-

drained control (Figure 6C). However, in grains of black and yellow

oats, no waterlogging effect was measured (Figure 6D), but a

significant increase in P in white oats at W1 and W2.

Furthermore, N and P concentrations in total shoot biomass as

well as in grain at harvest were not effective on grain yield, with all

coefficients of the determination being non-significant

(Supplementary Figure 4).
4 Discussion

Globally, anthropogenic climate change intensified the risk of

waterlogging, having multifaceted and severe impacts on economic

and political pathways (IPCC, 2022), but also on crop production as

such (Yang et al., 2017; Kaur et al., 2020b). Excess soil water has

reduced rice, maize, soybean, and wheat yields by up to 50%

annually (Hossain and Uddin, 2011; Ploschuk et al., 2018;

Borgomeo et al., 2020; Ding et al., 2020; Tian et al., 2021). In
Frontiers in Plant Science
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Europe, according to actual estimates, flood-related risks and thus

waterlogging will increase with a mean increment in annual output

losses of approximately 11 million € per 1.5°C increase in global

warming level (GWL) (Koks et al., 2019). However, are there any

options to counteract such losses?

Identifying and breeding crop species being tolerant to

waterlogging, in addition to other agronomical tools, can help

mitigate the negative impact on crop physiology and improve overall

agricultural resilience, especially in the long term (Kaur et al., 2020b).

To date, many studies have focused on the major high-yielding energy

and protein crops, such as wheat, oilseed rape, or maize. However, less

is known about whether there are alternative crops that can be included

in crop rotations and thus increase crop diversity when there is a risk of

temporal waterlogging, which otherwise will delay farm operations

(e.g., planting, fertilization, and harvest). Oats may represent one such

alternative; that is why this study was conducted to evaluate the

response of three different oat varieties to temporal waterlogging at

two important developmental stages: shooting and panicle emergence.

In order to simulate field-like conditions and to overcome limitations

such as root growth restriction, which ultimately will affect nutrient

uptake, large containers were chosen.
D

A B

C

FIGURE 3

Yield components after harvest at maturity. (A) Number of panicles. (B) Grains per panicle. (C) Thousand kernel weight. (D) Grain yield. Bars
represent means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s. = non-significant) between waterlogging
treatments within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
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4.1 Growth performance and nutrient
status of oats under temporal waterlogging

Waterlogged plants usually show wilting and development of

chlorosis especially of the older basal leaves (Arbona et al., 2008).

Also, Wollmer et al. (2018a) reported chlorosis formation on older

leaves and even spot necrosis in winter wheat, which they explain as

the oxidation of cell membranes by reactive oxygen species (ROS)

formation and their reduced detoxification under waterlogging (Tan

et al., 2008). Generally, chlorophyll reduction can be accredited to

oxygen deficiency-induced changes in plant metabolism, promoting

overproduction of ROS, mainly H2O2, and thus photooxidative

damage of chloroplast (Yordanova et al., 2004; Zhang et al., 2015;

Ren et al., 2016; Hasanuzzaman et al., 2017). As a consequence,

photosynthesis will be decreased and thus biomass production (Zeng
Frontiers in Plant Science 07
et al., 2020; Pais et al., 2023). However, even though SPAD

measurements confirmed a decrease in chlorophyll in this study

after early waterlogging (Figure 2), all tested oat varieties showed no

distinct chlorosis but slightly brighter color compared to non-

stressed plants (see Supplementary Figure 1). This is in contrast to

wheat or barley, as oats have the capability to become less chlorotic

and stay green even under waterlogged conditions, which gives an

advantage to tolerate transient water stress (Setter and Waters,

2003). However, even though reduced biomass production under

waterlogging is associated with lower photosynthetic activity

(Ashraf, 2012), it is more likely a consequence of disturbed water

and mineral uptake, rather than a photosynthesis effect (Colmer and

Greenway, 2010; de San Celedonio et al., 2017).

As other crops (e.g., de San Celedonio et al., 2014; Ploschuk

et al., 2018; Arduini et al., 2019; Hussain et al., 2022), oats also
A B

FIGURE 5

(A) Nitrogen and (B) phosphorus concentration of the whole aboveground plant material after 14 days of waterlogging at BBCH 51. Bars represent
means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant) between waterlogging treatments
within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
A B

FIGURE 4

(A) Nitrogen and (B) phosphorus concentration of the whole aboveground plant material after 14 days of waterlogging at BBCH 31. Bars represent
means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant) between waterlogging treatments
within one oat variety. W0, control; W1, waterlogging at BBCH 31.
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respond with an initial reduction in shoot growth especially when

waterlogged in an early developmental phase (Figure 1A;

Supplementary Figure 1). In agreement with Watson et al. (1976),

growth reduction in oats under waterlogging was more pronounced

when applied in an early growth stage and must be ascribed to a

reduced or damaged root system. Notably, a loss in seminal roots

and death of seminal root apical meristem were described, e.g.,

wheat (see Herzog et al., 2016). Ploschuk et al. (2023) also showed

that root mass density was significantly reduced after early

waterlogging in wheat, barley, oilseed rape, and pea, triggered by

a lack of oxygen and the formation of ethylene. Likewise, also in

oats, an initial decrease in shoot dry weight of 40% was explained by

a decline in root dry weight of 50% (Watson et al., 1976; Cannell

et al., 1985).

Hampered root growth is always accompanied by a decline in

nutrient uptake, subsequently contributing to growth reduction.

This effect is further triggered by a drop of redox potential and

changes in pH in soil, also affecting nutrient transformation and

availability, i.e., N and P (Patrick and Mahapatra, 1968;

Hasanuzzaman et al., 2017, and literature within; Kaur et al.,

2020b, and literature within). Such an effect is also shown in this

study: nitrogen concentration dropped in W1 plants in all oat
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varieties (Figure 4A), corresponding to SPAD data (Figure 2),

indicating a transient undersupply in the shooting stage. These

results are in agreement with Arduini et al. (2019) for oats, Ren et al.

(2017) for maize, Zhou et al. (1997) for oilseed rape, and Wollmer

et al. (2018a) for wheat. In soil, nitrogen concentration, i.e., nitrate,

will be decreased by several processes under waterlogging, such as

runoff, denitrification, or nitrate leaching (see Kaur et al., 2020b,

and literature within). However, decreasing nutrient concentrations

in the vegetative shoot tissues can be explained not only by reduced

root growth but also by inhibited uptake mechanisms. As plants

switch to anaerobic respiration, they lack ATP, a necessity to drive

ion uptake and xylem loading mediated by H+-ATPases (Colmer

and Greenway, 2010; Elzenga and van Veen, 2010). Such decline in

N concentration was not prominent in W2 plants (Figure 5A),

which is attributed to the N fertilization (see Section 2.1) performed

right after drainage of W1. This N dose served as a “post-

waterlogging rescue N fertilizer” (Watson et al., 1976; Rasaei

et al., 2012; Kaur et al., 2020a), leading to a regeneration of N

status, which could be maintained until maturity in both straw and

grain (Figure 6A). However, among all temperate cereals, oats must

be considered as the crop with the greatest ability to regenerate from

waterlogging (Watson et al., 1976; Cannell et al., 1985; Solaiman
D

A B

C

FIGURE 6

(A, B) Nitrogen and (C, D) phosphorus concentration in straw (A, C) and grains (B, D) after harvest at maturity. Bars represent means + standard
errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant) between waterlogging treatments within one oat variety.
W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1386039
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pitann and Mühling 10.3389/fpls.2024.1386039
et al., 2007). Setter and Waters (2003) suggested that this is due to

an extensive formation of aerenchyma, which coincides with

increased root porosity (Herzog et al., 2016). Also, Solaiman et al.

(2007) described an increase in root porosity from 6% (well

drained) to approximately 20% (waterlogged) in adventitious

roots of oats compared to 2% in seminal roots. By this, O2 in

roots is kept high, allowing the roots to maintain aerobic respiration

and high ATP levels and thus improve nutrient uptake

characteristics (Colmer and Greenway, 2010; Takahashi

et al., 2014).

As the redox potential drops, the solubility of P increases due to

a loss of sorption sites. This in turn leads to a higher pore water

concentration (Patrick and Mahapatra, 1968) and thus plant

availability and uptake. However, like N concentration, P

concentration also declined at W1 (Figure 4B), indicating a

period of deficiency. As this was not expected, it must be

reasoned that 1) P either leached down (Smith, 2020; Rupngam

et al., 2023), 2) P retention in soil was increased due to sorption

and/or precipitation with free Fe (Patrick and Mahapatra, 1968;

Smith, 2020; Rupngam et al., 2023), or 3) uptake is inhibited, as the

limited internal energy under waterlogging is directed to internal

pH regulations and transport of solutes involved in anaerobic

respiration (Greenway and Gibbs, 2003). This effect was reversed

at W2 for all oat varieties (Figure 5B), indicating a full regeneration

of the P status in W1 plants, which can be ascribed to an increased

uptake due to higher available P and uptake in submerged soils.

However, submergence at W2 again led to an undersupply of P in

all three oat varieties. However, these were only of a transient nature

in white and yellow oats (Figure 6C). Even though it seems that the

time span till maturity was not enough for full recovery in black

oats, a dilution effect must be assumed, as P content was on the level

of control for all waterlogging treatments in all oat varieties (data

not shown), though grains were not affected at all by all

waterlogging events (Figure 6D). This is in line with Cannell et al.

(1985), who also found no differences in N and P concentrations at

harvest between treatments.
4.2 Yield response of oats under early and
late waterlogging

Although much research was conducted on various crops, such

as wheat (e.g., de San Celedonio et al., 2017; Ploschuk et al., 2018;

Wollmer et al., 2018a; Pais et al., 2023), oilseed rape (e.g., Wollmer

et al., 2019; Hussain et al., 2023; Zhu et al., 2023), barley (e.g.,

Masoni et al., 2016; de San Celedonio et al., 2017), or maize (e.g.,

Tian et al., 2019; Liang et al., 2020), there are hardly any data

available on oats’ response to waterlogging, especially regarding

cultivar differences, the existence of flooding-related quantitative

trait loci (QTLs), or -omics data on waterlogging and associated O2

deprivation (Mustroph, 2018).

While yield decreases in a range of a few percent up to an almost

total loss are reported, a meta-study by Tian et al. (2021) revealed

that approximately 3% of all database samples showed contrasting

behavior, thus increasing yield. One explanation for this

phenomenon is the capability of such crop varieties to tolerate
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time periods of waterlogging. Thereby, it plays a crucial role in

which developmental stage waterlogging occurs and for how long

crops are submerged. In this study, it was found that oats, for the

most part, are characterized by a high tolerance to both early and

late waterlogging. While the grain yield of black and white oats was

unaffected by early waterlogging and even increased after late

waterlogging (Figure 3D), only yellow oats were sensitive to early

waterlogging. However, the grain yield reduction of yellow oats after

late waterlogging was only slightly but non-significantly reduced

(Figure 3D). Such high recovery rates, at least as shown for black

and white oats, are also consistent with the few published data for

oats. For example, Watson et al. (1976) showed that when

waterlogging ceased, oats recovered better than, e.g., wheat or

barley. They reported that especially ear emergence was more

delayed in these crops, which was even more pronounced at very

early waterlogging (2 weeks after seeding) or when seeding was

already delayed, shortening the recovery phase and leading to less

grain per ear. In contrast, similarly to waterlogging at BBCH 51 in

this study, waterlogging 6 weeks after seeding or at ear emergence

was of minor effect, which was also confirmed for winter wheat

(Watson et al., 1976; Cannell et al., 1985). Also, other studies, e.g.,

on wheat, report that early reproductive states are more adversely

affected than tillering stages (Setter and Waters, 2003). However,

this contradicts the results of Wollmer et al. (2018a), who showed

the highest yield reduction of wheat after waterlogging in the

generative phase.

In oats, the by far largest reduction in grain yield was observed

when plants were waterlogged at the tillering stage, caused by the

formation of smaller grains. This effect was almost completely

eliminated, when N was applied (Watson et al., 1976). This is in

agreement with this study, in which the grain yield of W1 and W2

plants was similar or even increased in the case of black and white

oats (Figure 3). Only in yellow oats was the speed of grain yield

recovery somewhat slower but could reach a value comparable to

the control after W2. Similar results were found for winter oats

(Cannell et al., 1985), where tillering was reduced but could be

reversed by N application. Reductions in tillers though were not

found in this study at W1, rather than an increase for white oats

(data not shown), probably compensation grain yield reductions.

Only white and yellow oats at W2 showed a reduced number of

panicle-bearing tillers, but this was also reversed and did not affect

grain yield due to compensation by a distinct increase in grain

number per panicle in yellow oats (Figure 3). A reduction in kernel

weight of 9% in oats, as reported by Cannell et al. (1985), could

thereby only be confirmed in yellow oats (Figure 3), while the other

two varieties did not show any change compared to the well-drained

treatment. In comparison, under similar conditions, for wheat, a

reduction of 10%–30% was reported (Cannell et al., 1985; Ploschuk

et al., 2018), indicating the high recovery potential of the tested oat

varieties in this study. However, the observed reduction is not

caused by a reduced number of grains per panicle rather than the

reduced number of panicles in total.

In complete contradiction to the already discussed studies are

data by Arduini et al. (2019). Similar to this study, oats were

waterlogged at tillering after seeding in spring, differently from

Watson et al. (1976), who used winter oats. This difference has of
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large effect on the regeneration period; while winter oats had a

prolonged phase of 118 days after draining, the recovery phase in

spring oats is much shorter. Therefore, Arduini et al. (2019) argued

that higher temperatures of 20°C during waterlogging could in part

be responsible for the higher sensitivity observed in their study.

Although after 14 days of waterlogging a not yet significant decrease

in harvest index became obvious, A. sativa compared to Avena

byzantina showed a 79% and 83% reduction in grain yield,

respectively, resulting in a decrease in harvest index of 8% and

10%, respectively, after 35 days of submergence (Arduini et al.,

2019). Similarly, in the present study, the harvest index remained on

the level of the respective controls for all three oat varieties (data not

shown) at W1 and W2 after only 14 days of waterlogging, which

may go back to an increased tiller fertility (Watson et al., 1976;

Cannell et al., 1985).
5 Conclusions

Even though there are only limited data on oats’ response to

waterlogging, it is obvious from the literature that a high diversity

exists among different varieties. Thus, this study contributes to the

understanding of the stress tolerance of oats and offers a solution to

rethink established crop rotations, especially in the context of

climate change and the associated risk of flooding/waterlogging in

the future.

The oat varieties tested in this study, i.e., black, white, and

yellow oats, are standard cultivars recommended in Germany due

to their stable yield potential. All varieties differed slightly in their

response to waterlogging, but all showed an initial decrease in fresh

weights when waterlogged in the vegetative phase. This growth

reduction was most probably caused by a transient deficiency in

nitrogen and phosphorus; however, N deficiency was counteracted

by a second N-fertilizer dose right after ceasing the stress,

guaranteeing a proper N supply till maturity. Further, also, the P

status recovered, although the oat varieties differed in the

regeneration time, which may be attributed to the restoration

capacity of the root system. Although all varieties were differently

affected regarding yield components, i.e., number of panicles, grains

per panicle, or thousand kernel weight, all oat varieties showed

grain yields comparable to well-drained soil conditions or even

higher in case of black and white oats, independent from the timing

of the waterlogging stress. However, early waterlogging in the

vegetative phase (BBCH 31) was more harmful in contrast to late

waterlogging in the generative phase (BBCH 51), but all varieties

were able to compensate till maturity. Thus, it is reasoned that oats,

or at least the varieties used in this study, showed a high tolerance

level to temporal submergence, which was not affected by

waterlogging-induced nutrient deficiency.

Therefore, we conclude that oats represent a suitable alternative

and can compete with high-yielding but more sensitive crops, such

as wheat, especially on marginal sites with lower yield potential and

sites that are prone to waterlogging in Northern Germany.
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