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Genetic basis of local adaptation
in the cold-tolerant mangrove
Kandelia obovata
Chuangchao Zou, Yushuai Wang, Renchao Zhou*

and Tian Tang*

State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life
Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
Understanding the genetic basis of local adaption is crucial in the context of global

climate change. Mangroves, as salt-tolerant trees and shrubs in the intertidal zone of

tropical and subtropical coastlines, are particularly vulnerable to climate change.

Kandelia obovata, the most cold-tolerant mangrove species, has undergone

ecological speciation from its cold-intolerant counterpart, Kandelia candel, with

geographic separation by the South China Sea. In this study, we conducted whole-

genome re-sequencing of K. obovata populations along China’s southeast coast, to

elucidate the genetic basis responsible formangrove local adaptation to climate. Our

analysis revealed a strong population structure among the three K. obovata

populations, with complex demographic histories involving population expansion,

bottleneck, and gene flow. Genome-wide scans unveiled pronounced patterns of

selective sweeps in highly differentiated regions among pairwise populations, with

stronger signatures observed in the northern populations compared to the southern

population. Additionally, significant genotype-environment associations for

temperature-related variables were identified, while no associations were detected

for precipitation. A set of 39 high-confidence candidate genes underlying local

adaptation of K. obovata were identified, which are distinct from genes under

selection detected by comparison between K. obovata and its cold-intolerant

relative K. candel. These results significantly contribute to our understanding of

the genetic underpinnings of local adaptation in K. obovata and provide valuable

insights into the evolutionary processes shaping the genetic diversity of mangrove

populations in response to climate change.
KEYWORDS

local adaptation, population genomics, demographic history, selective sweeps,

genome-environment association, mangroves
1 Introduction

Understanding the evolutionary processes and genetic basis of local adaptation has been a

longstanding interest in evolutionary biology (Hoban et al., 2016; López-Goldar & Agrawal,

2021). Abiotic and biotic effects such as low and high temperature, drought, flooding, herbivore

and pathogen stresses impose different selective pressures across habitats (Vanwallendael et al.,
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2019). The interactions among selection, gene flow and genetic drift

shape genetic variation within and between populations, leading to

evolutionary differentiation at different spatial scales (Orsini et al., 2013;

von Takach, Penton, et al., 2021). Local adaptation can occur when

genetic differentiation allows a single population to become better

adapted in a particular set of environmental conditions within its range

(Angert et al., 2020). The genomic architecture of natural populations

thus provides an opportunity to reveal and link molecular mechanisms

underlying species’ phenotypic diversity with diverse environments in

which the species lives. This knowledge is important for informing

management decisions in the context of rapid contemporary

environmental changes (Isabel et al., 2020).

Climate adaptation is one of the most prevalent forms of local

adaptation that has significant impact on the distribution of a

species. Classical experimental approaches explore to which

extent morphological, physiological and transcriptional responses

are associated with changes in environmental factors, typically

through transplants and common gardens (Carley et al., 2021;

Oomen & Hutchings, 2022). Nevertheless, as most traits are

polygenic, genes involved in ecological, physiological, or

transcriptional changes may only be weakly related to fitness.

With recent advance of sequencing technology, population

genetic or genomic analyses are typically utilized to identify

selective signatures linked to local adaptation, with allele

frequencies expected to demonstrate ecological differentiation or

correlation with specific environmental factors (von Takach, et al.,

2021; Hu et al., 2022; Wang J. et al., 2022). As adaptation to climate

change progresses, genetically distinct populations undergoing local

adaptation may eventually become separate species if they no longer

interbreed or exchange genes. Therefore, studying the genetic basis

of climate adaptation can also provide insights into the evolutionary

processes leading to the fixation of genetic differentiation and

subsequent speciation (Levin, 2019; Dool et al., 2022).

Mangroves are a group of phylogenetically diverse woody plants

that inhabit tropical and subtropical intertidal zones with great

ecological and economical significance (Tomlinson, 1986; Sribianti

et al., 2021). At the dynamic interface between sea and land, the

structure and biodiversity of mangrove communities are sensitive to

climate change (Jennerjahn et al., 2017). Mangrove forests have faced

and survived several catastrophic climate change events since their

origination during the Late Cretaceous-Early Tertiary period (Singh

et al., 2022). Sea-level rise significantly influences the historical

distribution of mangrove forests, leading to speciation in five

common mangrove species via multiple cycles of mixing, isolation,

and mixing (Lovelock et al., 2015; He et al., 2022). Meanwhile, low

temperature stress governs the latitudinal range limits for

contemporary mangrove flora (Lin, 1999) and plays a crucial role in

mangrove afforestation and restoration (Ellison, 2000; Quisthoudt

et al., 2012; Su et al., 2021; Chen et al., 2023). Given the ecological

importance of mangroves and the potential impact of climate change

on their habitats, further research into their adaptation to low

temperatures is vital. The complex demographic histories of

mangroves involving bottleneck, genetic drift, population expansion,

and gene flow also provide a challenge for studying local adaptation.

Kandelia obovata, regarded as the most cold-tolerant mangrove

species, is able to survive chilling temperatures as low as 4.2°C
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(Maxwell, 1995; Sheue et al., 2003; Zhou et al., 2007). This species

can be found from the Gulf of Tonkin in the northeast to southern

Japan, separated from its cold-intolerant relative, K. candel, by the

South China Sea (Sheue et al., 2003), representing a good case in

point for ecological speciation. Besides the clear differences in cold

tolerance between Kandelia species, common garden studies have

identified a greater cold tolerance in the northern populations of K.

obovata compared to the southern populations (Sheue et al., 2003;

Zhao et al., 2021), indicating the occurrence of local adaptation

within K. obovata. Whole-genome bisulfite sequencing and RNA-

seq of the K. obovata transplants suggest that modifications of DNA

methylation in MADS-box genes may contribute to the adaptation

to new environments, whereas the suppressed expression of lignin

biosynthesis genes appears to play a role in maladaptation (Zhao

et al., 2021). Additionally, the physiological and expressional

analyses have highlighted several key genes and pathways that are

potentially involved in cold tolerance in K. obovata, such as genes

involved in calcium signaling, cell wall modification, and post-

translational modifications of ubiquitination pathways (He et al.,

2023). However, how genetic differentiation is maintained and

whether the same genes underlying local adaptation to cold stress

within species can also be responsible for between-species

differences in cold tolerance remain largely unknown.

In this study, we investigated the genomic architecture of K.

obovata populations along a latitudinal gradient in China using

whole-genome resequencing, based on the chromosome-anchored

genome assembly of K. obovata (Hu et al., 2020). Our analysis aimed

to infer the demographic history and detect selective signatures within

K. obovata populations, with the underlying hypothesis that local

adaptation has occurred despite gene flow, driven by strong selection

pressures related to temperature. We expected the signatures of local

adaptation to be more pronounced in the northern population

compared to the southern population. Moreover, we identified

candidate genes under selection by comparing polymorphism within

K. obovata with divergence between K. obovata and K. candel. We

expected that the genes involved in local adaptation within K. obovata

would differ from those under selection in the lineage of K. obovata

since its divergence from K. candel.
2 Materials and Methods

2.1 Plant materials and
population resequencing

We sampled leaves from a total of 46 K. obovata individuals,

collecting plants at least 20 meters apart within each of three natural

populations along the southeast coast of China (Supplementary

Table S1). Specifically, we collected 14 individuals from Shacheng

Harbor (Fuding, Fujian Province), 17 from Yanzao Village

(Shenzhen, Guangdong Province), and 15 from Bamen Bay

(Wenchang, Hainan Province). The fresh leaves were air-dried

with silica gel before DNA extraction. Genomic DNA was then

extracted using a modified CTAB protocol (Yang et al., 2008).

Subsequently, DNA libraries were obtained using Nextera Mate Pair

Sample Preparation Kit (Illumina USA), followed by whole-genome
frontiersin.org
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re-sequencing on an Illumina HiSeq 2500 platform (Illumina, San

Diego, CA, USA) with paired-end reads of 150 bp (PE150). The

average sequencing depth for each individual was approximately

40× (Supplementary Table S1).
2.2 Reads mapping, variant callings and
SNP filtering

A high-quality chromosome-scaled assembly of the K. obovata

genome, with a total length of 177 Mb, was published using PacBio,

Illumina and Hi-C sequencing (Hu et al., 2020) and served as the

reference genome for this study. Raw Illumina reads were initially

processed by trimming and filtering using Trimmomatic v0.39

(Bolger et al., 2014), followed by mapping onto the K. obovata

reference genome using Burrows-Wheeler-Alignment (BWA)

v0.7.12-r1039 (Li & Durbin, 2009). Subsequently, sorted bam files

were generated from sam files using SAMtools v1.6 (Li et al., 2009),

and PCR duplicates were removed using MarkDuplicates in the

Picard toolkit. Variants were called using HaplotypeCaller and

genotyped using GenotypeGVCFs in Genome Analysis Tool Kit

(GATK) (McKenna et al., 2010). The analysis solely focused on

single nucleotide polymorphism sties (SNPs) and employed specific

filtering criteria to reduce false positives: (1) SNPs with a read

number less than three for each individual were removed; (2) SNPs

with a minor allele frequency (MAF) less than 0.05 were discarded;

(3) SNPs were further filtered using VariantFiltration with the

following parameters: quality by depth (QD) < 2.0, Fisher strand

(FS) > 60.0, mapping quality (MQ) < 40.0, mapping quality tank

sum test (MQRankSum) > -12.5, and read pos rank sum test

(ReadPosRankSum) < -8.0. Finally, SNP annotation was

conducted based on the K. obovata genome using snpEff 4.3t

(Cingolani et al., 2012). Following sequence alignment, removal

of PCR duplicates, and SNP filtering, a set of high-quality SNPs sites

were retained for the subsequent analyses.
2.3 Genetic diversity and
population differentiation

The entire K. obovata genome was divided into non-

overlapping 20-kb bins. Nucleotide diversity (qp; Tajima, 1989)

for each K. obovata population and fixation index (FST; Weir &

Cockerham, 1984) between pairwise populations were calculated

within each bin using VCFtools v0.1.15 (Danecek et al., 2011).

Pairwise genetic distance (DXY; Nei & Miller, 1990) between

populations were calculated within each bin using pixy v1.2.7

(Korunes & Samuk, 2021).
2.4 Population structure analysis

A principal component analysis (PCA) was performed to

visualize inter-individual genetic relationships using PLINK v1.90

(Purcell et al., 2007). A phylogenetic tree based on the high-quality

SNPs was constructed using IQtree (Nguyen et al., 2015) with the
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parameter: -m GTR+F+G4+ASC, for which the input PHYLIP file

was converted using vcf2phylip.py (https://doi.org/10.5281/

zenodo.1257058). The number of genetic clusters (K) was

identified using ADMIXTURE v1.3.0 with default parameters

(Alexander et al., 2009). Various values of K ranging from 2 to 5

were tested, and the best K was selected based on the minimum

error rate of K value.
2.5 Demographic modelling

The demographic history of K. obovata was inferred based on its

observed population structure through the construction of a two-

dimensional joint unfolded site frequency spectrum (2D-SFS) using

the easySFS tools (https://github.com/isaacovercast/easySFS#easysfs),

with all SNPs and the projection number equal to the individual

number (i.e. 14, 17 and 15) for each of the three populations,

respectively. We considered various scenarios of divergence,

bottleneck, expansion, and/or migration, which were represented

by different models: (i) Models 1-4: Divergence, including one-step

isolation in model 1 and three two-step isolations of the K. obovata

populations in models 2-4; (ii) Model 5-7: Bottleneck, with one

population experiencing the reduction of population size and then

recovery; (iii) Model 8-10: Expansion, with one population

experiencing exponential population changes; (iv) Model 11-14:

Migration, with asymmetric gene flow and differences in

occurrence between different populations; (v) Model 15: Composite

model incorporating each of the estimated best scenario for

divergence (Model 1), bottleneck (Model 6), expansion (Model 10),

and migration (Model 14) (Supplementary Figure 1).

These demographic models were compared, and demographic

parameters were inferred using a coalescent simulation-based

method as implemented in fastsimcoal2.6 (Excoffier et al., 2021).

The initial ranges for the parameter estimation were listed in

Supplementary Table S2. The log-likelihood for a set of

demographic parameters was estimated using 100,000 coalescent

simulations, with 80 conditional maximum algorithm cycles in each

run and global maximum likelihood estimates obtained from 100

independent runs. The maximum likelihood value of the 100

independent runs for each model was used to compare between

models using the Akaike information criterion (AIC) and Akaike’s

weight of evidence tests. The model with the highest Akaike’s

weight value was considered as the optimal model. The parameter

confidence intervals (CIs) for the optimal model were obtained

from 100 parametric bootstrap samples, independently run 100

times in each bootstrap. When converting estimates to years, it was

assumed that the mutation rate and the average generation interval

time in K. obovata were 7.86 × 10−8 per site per generation and 20

years per generation (average time from seed germination to seed

production), respectively (He et al., 2022).
2.6 Detection of positive selection

Sliding window analysis was employed to detect outlier genomic

regions with strong population differentiation using pairwise
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fixation index (FST) and the cross-population composite likelihood

ratio (XP-CLR) test (Chen et al., 2010) with a 20-kb window size

and 5-kb step size. Pairwise FST estimates were calculated using

VCFtools v0.1.15. The XP-CLR test was performed using the xpclr

python module (https://github.com/hardingnj/xpclr) with default

parameters. Outlier windows with both FST and normalized XP-

CLR values at least 1.96 standard deviations (SD) above the mean

(one-tailed p-value = 0.025) were identified as the highly

differentiated regions (HDRs). Sliding window analysis of Fay and

Wu’sH-statistic (Fay &Wu, 2000) in HDRs was conducted for each

population separately, in comparison with the whole genome, using

ANGSD v0.921 (Korneliussen et al., 2014) with a 20-kb window size

and 5-kb step size.

To detect positively selected genes, the McDonald-Kreitman

(MK) test (McDonald & Kreitman, 1991) was conducted using

whole-genome resequencing data for all K. obovata individuals

obtained in this study and the reference genome of K. candel (He

et al., 2022) as an outgroup. BlastN (Altschul et al., 1990) was used

to identify homologous genes between the two Kandelia species

using an e-value threshold of < 1e-10, resulting in the identification

of 16,536 one-to-one orthologous genes. The number of non-

synonymous (Dn) and synonymous (Ds) substitutions were

compared to the number of non-synonymous (Pn) and

synonymous (Ps) polymorphisms within K. obovata for coding

sequences of each Kandelia homologous gene using K. candel as

an outgroup. Genes with p-value lower than 0.05 in the one side

Fisher’s exact test with Benjamini-Hochberg multiple test

(Benjamini & Hochberg, 1995) correction were classified as

positively selected genes.
2.7 Genotype-environment associations

Redundancy analysis (RDA) was used to identify associations

between SNP variations across diverse populations and

environmental parameters (Forester et al., 2018). Climate data

including the mean annual temperature, mean annual minimum

temperature, and mean annual precipitation for the three

sampl ing locat ions were obta ined from the Centra l

Meteorological Observatory (http://www.nmc.cn/). The RDA

was conducted using the RDA function from the vegan package

(Oksanen et al., 2007) with the input file of genotype matrix

comprising all SNPs as transformed by PLINK v1.90. Genotypes at

each SNP site was encoded as follows: 0 for homozygotes identical

to the reference, 1 for heterozygotes, and 2 for homozygotes

differing from the reference. The proportion of variance

explained by the environmental variables was evaluated using

the RsquareAdj function. The significance of the linear

re la t ionship between each constra ined axis and the

environmental variables was then assessed using the anova.cca

function. In this study, two constrained axes (RDA1 and RDA2)

were found to be significant. Outlier SNPs for each significant

constrained axis were identified using a cutoff of 1.96 SD greater or

less than mean (two-tailed p-value = 0.05) and were annotated

with known genes based on the K. obovata genome.
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2.8 K. obovata gene functional annotation
and GO enrichment analysis

To annotate the K. obovata genes, BlastP (Altschul et al., 1990)

was used to identify homologous genes between the K. obovata and

Arabidopsis thaliana using an e-value threshold of < 1e-10. Gene

Ontology (GO) functions of each K. obovata gene were annotated

using eggNOG-mapper (Cantalapiedra et al., 2021). To evaluate

potential over-representation of functional gene classes, we

conducted GO enrichment analysis using the R package

ClusterProfiler (Yu et al., 2012) by applying the annotation

mentioned above. The statistical significance of over-represented

GO terms within the input gene sets was assessed through Fisher’s

exact tests, with a significance threshold set at False Discovery Rate

(FDR) < 0.2.
3 Results

3.1 Genomic data and genetic diversity

A total of 0.82 Tb of data with an average sequencing depth of

approximately 40× per individual were obtained for the 46 K.

obovata individuals from the three populations, representing the

natural distribution of K. obovata from north to south in China

(Table 1; Figure 1A). After quality control and filtering, the clean

reads were mapped to the reference genome of K. obovata,

achieving an average mapping rate of 93.33%. The average depth

of uniquely mapped reads per site was 40.23 (Supplementary Table

S1). In total, we obtained 189,909 high-confidence single nucleotide

polymorphism (SNP) sites, corresponding to an average density of

1.07 SNPs per kilobase in the K. obovata genome. Out of these

SNPs, 25,988 (13.7%) were in protein-coding regions, including
TABLE 1 Sampling information and genetic measures of three K.
obovata populations.

Terms
Populations

Fuding (F) Shenzhen (S) Wenchang (W)

Location
(longitude,
latitude)

120.33°E,
27.29°N

114.52°E,
22.65°N

110.83°E,
19.60°N

Population size 14 17 15

Annual average
temperature (°C)

19.5 23.5 24.9

Annual average
minimum
temperature (°C)

5.8 12.4 15.6

Annual average
precipitation
(mm)

1,743.3 1,889.3 1,913.0

Number of SNPs 115,239 160,726 140,250

Nucleotide
diversity (qp)

2.32 × 10-4 3.27 × 10-4 2.87 × 10-4
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exons and introns, 27,551 (14.5%) were found in putative regulatory

regions, including promoters (2kb upstream of TSS) and UTRs, and

the majority (56.7%) were intergenic (Supplementary Figure 2).

When comparing between populations, the number of high-

confidence SNP sites was highest for the Shenzhen population

(160,726), followed by the Wenchang (140,250) and Fuding

(115,239) population. The number of private or population-

specific SNPs were 8,736, 32,042, and 11,683 for the Fuding,

Shenzhen and Wenchang populations, respectively (Figure 1B).

The site frequency spectrum of individual K. obovata populations

revealed that the Fuding populations had the highest proportion

(16.7%) of fixed SNPs followed by the Shenzhen population (5.5%),

while only 75 SNPs (0.6%) were fixed in the Wenchang population

(Figure 1C). However, the Wenchang population had a higher

percentage (9.4%) of rare SNPs (frequency < 0.05), than the Fuding

(5.8%) and Shenzhen population (4.4%, Figure 1C). Meanwhile, all

three populations possessed considerable medium-frequency SNPs,
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indicating a high level of heterozygosity within individuals of K.

obovata (Figure 1C).

We divided the K. obovata genome into 20-kb non-overlapping

bins and used Tajima’s p (qp) as a measurement of nucleotide diversity

at the individual SNP level. The average nucleotide diversity per site

was calculated for each bin and compared between populations of K.

obovata. Nucleotide diversity was unevenly distributed across the K.

obovata genome, with the most pronounced diversity observed in

chromosomes 11, 13, 14 and 15 (Figure 1D). Consistent with

the observed number of high-quality SNPs, the Shenzhen population

exhibited the highest nucleotide diversity averaged across the

genome (mean ± SD, qp = 3.27 × 10-4 ± 9.63 × 10-4), followed

by the Wenchang population (qp = 2.87 × 10-4 ± 8.64 × 10-4), while

the Fuding population showed the lowest nucleotide diversity

(qp = 2.32 × 10-4 ± 8.87 × 10-4) (Figure 1E). The differences in

nucleotide diversity between pairwise populations were all significant

(Mann-Whitney U test, all p-value < 0.05; Figure 1E).
A B

D

E

C

FIGURE 1

Sampling locations and genetic diversity of three populations of Kandelia obovata in China. (A) Map depicting the sampling locations of the Fuding (n = 14),
Shenzhen (n = 17), and Wenchang (n = 15) populations in China. (B) Venn diagrams show the numbers of shared and private SNPs detected in the three
K obovata populations. (C) Site frequency spectra based on 189,909 SNPs in each population. (D) Genome-wide analysis of nucleotide diversity (qp) in each
K obovata populations. qp was calculated in nonoverlapping 20-kb bins and displayed in logarithmic scale across the K obovata genome. (E) Boxplot
displaying the distribution of qp in three K obovata populations. Asterisks indicate the significance level of Mann-Whitney U test: ***p-value < 0.001.
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3.2 Genetic differentiation and
population structure

To assessed population differentiation, the fixation index FST
(Weir and Cockerham, 1984) and the average nucleotide diversity

DXY (Nei & Miller, 1990) were calculated for each SNP and averaged

within each bin for pairwise populations of K. obovata (Figure 2). FST
values revealed substantial population differentiation, particularly

evident when comparing the Fuding population with the others:

Fuding vs. Shenzhen (FST = 0.30 ± 0.19) and Fuding vs. Wenchang

(FST = 0.30 ± 0.16), in contrast to Shenzhen vs. Wenchang (FST = 0.24

± 0.13) (Table 1 and Figure 2A). DXY values were similar among pairs

of populations (DXY = 0.30 ± 0.15 to 0.33 ± 0.11), all supporting a

high level of population differentiation in K. obovata (Figure 2B). The

principal component analysis (PCA) revealed a clear clustering

pattern, indicating that individuals within a population tend to

group together and are distinctly separated from individuals in

other populations (Figure 2C). Similarly, the structure analysis
Frontiers in Plant Science 06
indicated that the pattern of ancestry was best represented by K =

3, which is supported by the lowest minimum K-value error rate

(cross-validation error = 0.41) (Figure 2D). The three clusters that

resulted from K = 3 clearly separated individuals according to their

population origination. When K = 2, individuals from Fuding

population formed a cohesive cluster, while individuals from

Shenzhen and Wenchang clustered together. Subsequent analyses

at K values of 4 and 5 revealed highly variable levels of admixture

within the Shenzhen and Wenchang populations. However, there is

no significant admixture within the genetic cluster in Fuding

population, indicating a relatively more isolated genetic profile for

this population.
3.3 Inference of demographic history

The optimal demographic model (model 15; log-likelihood =

-1089415.63, AIC = 2178865.27, DAIC = 0), as shown in Figure 3
A B

D

C

FIGURE 2

Population differentiation and genetic structure of Kandelia obovata. (A) Boxplot displaying the genome-wide distributions of fixed index (FST) in
three pairwise populations: F-W (Fuding vs. Wenchang population), F-S (Wenchang vs. Shenzhen population), and S-W, (Wenchang vs. Shenzheng
population). (B) Boxplot displaying genome-wide distributions of genetic divergence (DXY) in the same three pairwise populations. Asterisks indicate
the significance level of Mann-Whitney U test: ***, p-value < 0.001; “n.s.”, non-significant. (C) Principal components analysis (PCA) based on
189,909 SNPs showing genetic separation among the 46 K. obovata samples. Principal components 1 (28.1%) and principal components 2 (23.3%)
are shown. (D) Phylogenetic tree of individuals and population genetic structure. Each individual is represented by a vertical bar, which is partitioned
into K (K = 2, 3, 4, and 5) colored segments reflecting the individual's probability of membership to each genetic cluster.
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and Supplementary Table 3, supports a composite history inclusive

of divergence, bottleneck, expansion, and migration of K. obovata.

With a generation time of 20 years and mutation rate of 7.86 × 10−8

per site per generation (He et al., 2022), the optimal demographic

model suggests that the three K. obovata populations diverged from

their ancestral population with an effective population size (Ne) of

57,833 (95% CI: [33,569, 120,531]) approximately 93,080 years ago

(95% CI: [43,800, 24,175,600]). This coincides the late onset of the

last glacial period, marked by highly unstable sea levels.

Subsequently, the Fuding population underwent a gradual

population expansion with a growth rate of 1.05e-4 (95% CI:

[1.58e-7, 4.41e-4]), increasing from an Ne of 4,319 (95% CI: [265,

19,075]) to 6,142 (95% CI: [874, 40,402]). In contrast, the ancestral

Shenzhen population, with an Ne of 17,072 (95% CI: [265, 19,075]),

experienced a ten-thousand-year bottleneck around 45,000 years

ago (95% CI: [15,320, 269,360]), coinciding with the start of the last
Frontiers in Plant Science 07
glacial maximum. The Wenchang population maintained a

consistently small value of Ne of 778 (95% CI: [564, 5,884]) over

the last hundred thousand years with minimal fluctuation.

Migration rates per generation between populations varied

substantially, with gene flow mainly occurring from Fuding to

Wenchang (mFW) at a rate of 6.35e-4 (95% CI: [3.88e-5, 1.03e-3]

and from Shenzhen toWenchang (mSW = 2.62e-4, 95% CI: [3.41e-5,

7.70e-4]) or Fuding (mSF = 1.48e-4, 95% CI: [1.63e-5, 2.47e-4]),

while the others were relatively small (Figure 3).

Notably, both the Shenzhen and Fuding populations have

experienced changes in population size according to the best

model. Despite high genetic diversity, a model that assumed a

bottleneck occurred in the Shenzhen population (model 6; log-

likelihood = -1091480.43, AIC = 2182978.86, DAIC = 4113.594) was

more likely than one assuming a bottleneck in the Fuding

population (model 7; log-likelihood = -1091661.914, AIC =
FIGURE 3

Demographic model depicting the population history of Kandelia obovata in China. Populations are represented by rectangles in distinct colors:
ancestral population (ANC) in brown, Wenchang population (W) in purple, Shenzhen population (S) in orange, and Fuding population (F) in green.
Changes in the width of each rectangle reflects changes in population size. Solid arrows denote gene flow between pairwise populations, with arrow
direction indicating the direction of gene flow. The dashed arrow signifies population expansion in the Fuding population. Point estimates of
demographic parameters, including effective population size (Ne), population size growth rate (g), time (T), and migration rate (m), along with their
95% confidence intervals (CI), are presented below the demographic model. The parameters were estimated using a neutral mutation rate per site
per generation (µ) of 7.86 × 10−8 and a generation time of 20 years for K. obovata. The line chart on the left illustrates the relative sea levels during
the last glacial period, depicting the last interglacial period (LIG), the last glacial period (LGP), and the last glacial maximum (LGM).
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2183341.828, DAIC = 4476.562) (Supplementary Figure 1 and

Supplementary Table 3). In contrast, although the Fuding

population is marginal, a model that assumed expansion in the

Fuding population (model 10; log-likelihood = -1091358.265, AIC =

2182730.53, DAIC = 3865.26) was more likely than in the other two

populations (Supplementary Figure 1 and Supplementary Table 3).
3.4 Detection of positive selection

Sliding widow analysis of population differentiation used a cutoff of

at least 1.96 SD above the mean (p < 0.025) to detect highly

differentiated outliers for both FST and XP-CLR values. For the FST
values, 1452, 1457, and 1494 outliers were detected for three pairwise

comparisons: Fuding andWenchang (F-W), Fuding and Shenzhen (F-

S), and Shenzhen and Wenchang (S-W), respectively (Figures 4A–C).

For XP-CLR values, 125, 264, and 430 outliers were detected for the

same pairwise comparisons (Figures 4A–C). The regions where both

methods detected outliers were considered as the highly differentiated

regions (HDRs) or the candidate regions for selection. Sliding window

analysis of Fay and Wu’s H-statistic (Fay & Wu, 2000), designed to

detect high-frequency hitchhiking alleles associated with selective

sweeps, revealed significantly lower H values in HDRs than in the

whole genome for each of the three populations (Mann-Witney U test,

all p-value < 0.001; Supplementary Figure 3), suggesting selective

sweeps occurred in HDRs of each population. Negative H values

were observed in HDRs of the Fuding (mean ± SD, H-statisic= -2.43

± 3.22) and Shenzhen populations (H-statistic = -2.43 ± 2.12), but not

in the Wenchang population (H-statistic= 0.13 ± 1.03; Supplementary

Figure 3), indicating that selective signatures of HDRs are stronger in

the two northern populations compared to the Wenchang population.

A total of 4, 27, and 95 HDRs were identified for the F-W, F-S,

and S-W comparisons, respectively, comprising 4, 8, and 67 genes

and a total of 2,868 SNPs (Figure 4D; Supplementary Table 4).

Among them, 77 genes were identified in a single population pair,

while one gene, Plant U-box 45 (PUB45; Maker00002595), was shared

by the F-W and S-W comparisons. Notably, no genes were shared by

all three comparisons, resulting in a total of 78 genes in HDRs

(Figure 4D). Furthermore, Gene Ontology (GO) analysis revealed

that the identified genes are enriched in functional categories of

supramolecular fiber organization (GO: 0097435) and those related

to response to stimuli, including cellular response to extracellular

stimulus (GO: 0031668), cellular response to external stimulus (GO:

0071496), response to extracellular stimulus (GO: 0009991), and

cellular response to stress (GO: 0033554). Additionally, other

enriched functional categories are involved in cell cycles and the

regulation of developmental process (Figure 4E).

Using K. candel as an outgroup, we also detected genes under

positive selection by the McDonald-Kreitman (MK) test

(McDonald & Kreitman, 1991). Applying the G test of

independence described in the original MK test, we identified 27

genes with a positive selection signature at a cutoff of an adjusted p-

value < 0.05 (Supplementary Table S5). Only two genes, AP2-like

ethylene-responsive transcription factor 1 (AIL1; Maker00004062)

participating in the ethylene-activated signaling pathway (Kim

et al., 2006) and callose synthase 5 (CALS5; Maker00007136)
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involved in the regulation of pollen tube growth (Dong et al.,

2005) were also found in the list of HDRs-related selected genes

(Figure 4F). The 27 candidate genes were enriched in housekeeping

functional categories including macromolecule modification (GO:

0043412), regulation of cellular process (GO: 0050794), protein

modification process (GO: 0036211), and regulation of nitrogen

compound metabolic process (GO: 0034641) with a significance

threshold of p-value < 0.05 (Figure 4G). However, none of these

overrepresentations retained significant after FDR correction, likely

due to the limited size of gene list.
3.5 Genotype-environment associations

The three populations, located at different latitudes, differ in their

local environments. Redundancy analysis (RDA) detected significant

associations between SNPs and two environmental variables (F-

statistics, both p-value < 0.001), the mean annual temperature

(MAT) and the mean annual minimum temperature (MAMT), but

not between SNPs and the mean annual precipitation (MAP,

Supplementary Figure 4A). This suggests that temperature is the

primary environmental variable shaping population differentiation.

Two constrained axes (RDA1 and RDA2) explained about 29% of the

total variation. Using a cutoff of 1.96 SD greater or less than mean

(two-tailed p-value = 0.05), a total of 16,256 environment-associated

SNPs were identified as candidate SNPs involved in local adaptation

(Figure 5; Supplementary Figure 4B). The temperature-related SNPs

exhibited distinct patterns of allele frequency spectrum compared to

genome-wide SNPs in all three populations (Kolmogorov-Smirnov

test, p-value < 2.2 × 10-16 for all comparisons), characterized by an

elevated proportion of fixed SNPs in the Fuding and Shenzhen

populations (Figure 5C). Among the 16,256 temperature-associated

SNPs, 1,118 were located in the HDRs, indicating a significant

enrichment of temperature-associated SNPs in HDRs compared to

the whole genome (c2 test, p-value < 2.2 × 10-16; Figure 5D). These

temperature-related SNPs are within 1,074 genes which were

enriched in a range of functional categories involved in sexual

reproduction, DNA repair, cell death, cell cycle and immune

response (Supplementary Table S6).

A total of 39 genes containing temperature-associated SNPs

within their exons and located within HDRs were finally identified

(Figure 5E). These genes, consisting of 2, 6, and 32 for the F-W, F-S,

and S-W comparisons, respectively, were considered as high-

confidence candidates underlying local adaptation to temperature

in K. obovata (Table 2). In the F-W comparison, two genes were

identified, namely Plant U-box 45 (PUB45; Maker00002595) and a

gene (Maker00006413) containing eight temperature-associated

SNPs but no homolog in Arabidopsis (Table 2). Plant U-box 45,

known for its function in protein ubiquitination and cold response

(He et al., 2023), was also identified as a high-confidence candidate

in the S-W comparison. Notably, the high-confidence candidates in

the F-S comparison with known functions included CRY2

interacting splicing factor 1 (CIS1; Maker00002948) involved in

the regulation of flowering (Zhao et al., 2022), tRNA pseudouridine

synthase A 5 (TRUA5, Maker00014866) involved in RNA

modification, Pol-like 5 (PLL5; Maker00017856) participating in
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leaf development (Song & Clark, 2005), a 2-oxoglutarate (2OG) and

Fe(II)-dependent oxygenase superfamily protein (Maker00003467),

and a UDP-N-acetylglucosamine (UAA) transporter family gene

(Maker00018193). Meanwhile, for the S-W comparison, candidate

genes were found to be responsive to cold and other stresses, such as
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growth-regulating factor 5 (GRF5; Maker00004032; Lantzouni et al.,

2020), ATP-binding cassette G40 (ABCG40; Maker00008456; Baron

et al., 2012) and Integrin-linked kinase 1 (ILK1; Maker00007966;

Brauer et al., 2016), or participate in various development processes,

such as cryptochrome 1 (CRY1; Maker00010750) involved in
A
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C

FIGURE 4

Genome wide signatures of selection and selected genes. Sliding window analysis of fixation index (FST) and cross-population composite likelihood ratio
(XP-CLR) with 20-kb window size and 5-kp step size across the K obovata genome for pairwise populations: (A) Fuding and Wenchang population (F-
W), (B) Fuding and Shenzhen population (F-S), and (C) Shenzhen and Wenchang population (S-W). Outlier values (defined as at least 1.96 SD above the
mean) are indicated in gold. Venn diagrams show the number of outliers identified by each method. Windows exhibiting both FST and XP-CLR outliers
were identified as highly differentiated regions (HDRs) and indicated in red. (D) Venn diagrams showing the numbers of genes residing in HDRs that were
identified in the three comparison pairs. All 78 genes identified as HDR-related selected genes are listed in Supplementary Table S4. (E) Bar plot
displaying the enriched Gene Ontology (GO) terms of biological process of HDR-related selected genes. (F) Venn diagrams showing the overlaps
between the 78 HDR-related selected genes and the 27 selected genes identified by the McDonald-Kreitman test (MK test). Genes detected by MK test
are listed in Supplementary Table S5. (G) Bar plot displaying the enriched GO terms of biological process of 27 selected genes identified by the MK test.
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flowering (Gao et al., 2023), cotton Golgi-related 2 (CGR2;

Maker00005232) involved in leaf morphogenesis (Kim et al.,

2015) and lonesome highway (LHW; Maker00018105) involved in

root development (Ohashi-Ito & Bergmann, 2007) (Table 2).
4 Discussion

K. obovata offers valuable opportunities for investigating the

genetic basis of local adaptation in species that have undergone

ecological speciation with complex demographic histories. Here, by

examining how genome-wide patterns of population structure

relate to genotype-environment associations, in conjunction with

inferring demographic history and detecting selection signatures,

we empirically contribute to the broader understanding of how
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genetic variation leads to climate adaptation. Despite complex

demographic history, our results demonstrate that natural

selection drives local adaptation in K. obovata due to differential

selective pressures related to temperature.
4.1 Complex demography and restricted
gene flow

The complex demographic history of the K. obovata

populations has a significant impact on their genetic diversity and

population structure. The Fuding population, occurring in the

northmost in China, exhibits the lowest genetic diversity and is

more isolated from the other two populations. This is consistent

with the expectation for marginal populations, which often show
A

B
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C

FIGURE 5

Genome–environment associations detected by redundancy analysis (RDA). SNP loadings on (A) the first RDA axis (RDA1) and (B) the second RDA
axis (RDA2). The gold dots represent SNPs with significant associations along the RDA axes (defined as 1.96 standard deviations below or above the
mean), and these SNPs are identified as temperature-related SNPs. The red dots represent SNPs located in highly differentiated regions (HDRs).
(C) Site frequency spectra based on 16,256 temperature-related SNPs in each population. (D) Venn diagrams showing the overlaps between
HDR-related SNPs and temperature-related SNPs. (E) Venn diagrams showing the overlaps between HDR-related selected genes and temperature-
related genes. A total of 39 shared genes were identified as high-confidence candidate genes responsible for local temperature adaptation and are
listed in Table 2.
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TABLE 2 High-confidence candidate genes underlying local adaptation in K. obovata.

K.
obovata
gene

Populations Number of
temperature-
related SNPs

Orthologs
in Arabidopsis

Gene
symbol

Description Main GO terms of
biological process

Maker00002595 F-W, S-W 2 AT1G27910 PUB45 Plant U-box 45 protein ubiquitination

Maker00006413 F-W 8 Carbonic anhydrase 2 carbon utilization

Maker00002948 F-S 1 AT3G52120 CIS1 CRY2 interacting splicing
factor 1

RNA processing

Maker00003467 F-S 1 AT5G48020 2-oxoglutarate (2OG) and Fe(II)-
dependent oxygenase
superfamily protein

Maker00014866 F-S 1 AT5G35400 TRUA5 Enzyme for the pseudouridine
(Y) to uridine (U) conversion

tRNA
pseudouridine synthesis

Maker00017856 F-S 1 AT1G07630 PLL5 Pol-like 5, protein phosphatase
2C like gene

protein dephosphorylation

Maker00017915 F-S 1

Maker00018193 F-S 16 AT5G59740 UDP-N-acetylglucosamine
(UAA) transporter family

transmembrane transport

Maker00000528 S-W 2 AT3G02750 Protein phosphatase 2C
family protein

peptidyl-
threonine
dephosphorylation

Maker00000994 S-W 1 Iron ascorbate-dependent
oxidoreductase family

Maker00001853 S-W 1 AT4G14300 RBGD4 RNA-binding glycine-rich
protein D4

regulation of response to
salt stress

Maker00004032 S-W 1 AT3G13960 GRF5 Growth-regulating factor 5 response to cold

Maker00004062 S-W 6 AT1G72570 AIL1 AP2-like ethylene-responsive
transcription factor

ethylene-activated
signaling pathway

Maker00004523 S-W 1 AT3G25905 CLE27 CLAVATA3/ESR-Related 27 cell-cell signaling involved
in cell fate commitment

Maker00004536 S-W 1

Maker00004832 S-W 8 AT4G02210 Myb/SANT-like DNA-binding
domain protein

Maker00005232 S-W 10 AT3G49720 CGR2 Cotton Golgi-related 2 leaf morphogenesis

Maker00005452 S-W 1 AT1G50060 CAP superfamily protein biological process

Maker00005494 S-W 1 AT4G33630 EX1 Executer 1 response to singlet oxygen

Maker00006074 S-W 1 AT5G64380 Inositol monophosphatase
family protein

fructose metabolic process

Maker00006210 S-W 1 AT1G08980 AMI1 Amidase 1 auxin biosynthetic process

Maker00006424 S-W 1 AT2G03480 QUL2 Quasimodo2 like 2

Maker00006950 S-W 15 AT3G27350 Transcriptional regulator ATRX-
like protein

Maker00007136 S-W 3 AT2G13680 CALS5 Callose synthase 5 regulation of pollen
tube growth

Maker00007772 S-W 1 AT1G65540 LETM2 Leucine zipper-EF-hand-
containing transmembrane
protein 2

Maker00007966 S-W 11 AT2G43850 ILK1 Integrin-linked kinase 1 response to osmotic stress

Maker00008456 S-W 16 AT1G15520 ABCG40 ATP-binding cassette G40 response to abscisic acid

(Continued)
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lower genetic diversity and increased genetic differentiation from

more central populations (Eckert et al., 2008). However, the

inference of the demographic model revealed that the Fuding

population has experienced a mild population expansion, while

the central population in Shenzhen underwent a population

bottleneck around the start of the last glacial maximum

(Figure 3). These divergent patterns of population size change

may align with the cold-tolerant nature of K. obovata, with the

northern population being better adapted to cold weather than the

southern population (Lu et al., 2022). Additionally, these two

populations exhibit distinct patterns in the site frequency

spectrum compared to the Wenchang population, with the

former two showing a high number of fixed SNPs while the

Wenchang population has almost none (Figure 1C). These results

suggest that genetic drift associated with frequent population size

change in the Fuding and Shenzhen populations may have caused

rapid fixation of alleles in these regions, while the southern

population in Wenchang may represent the ancestor state of this

species, considering that K. obovata is diverged from the cold

intolerant Kandelia candel (Sheue et al., 2003). Nevertheless, it is

unclear how the Wenchang population could maintain a constant

population size, especially given that global cooling during the last

glacial maximum is known to be a major cause of extinction for

tropical woody species such as mangroves (Song et al., 2021).

It is widely acknowledged that mangroves exhibit long-distance

gene flow due to the dispersal of floating propagules (Van der

Stocken et al., 2022). Previous studies on K. candel have indicated

substantial regional gene flow over considerable distances (Chiang
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et al., 2001; Geng et al., 2008). In this study, the estimated gene flow

from Fuding to Wenchang (NmFW = 3.90) is much greater than that

from Wenchang to Fuding (NmWF = 0.05), despite the broad

confidence intervals (Figure 3). This finding is consistent with the

direction of current flow in the South China Sea during early winter

(Shaw & Chao, 1994), coinciding with the maturation and shedding

of the hypocotyl in K. obovata in the northern regions (Khoon et al.,

2004). Thus, the asymmetric migration between the Fuding and

Wenchang populations provides additional evidence for the

influence of ocean currents on gene flow in mangroves. However,

we observed strong population structure among the three K.

obovata populations in China (Figure 2D), indicating local gene

flow may be insufficient to counteract genetic differentiation caused

by either genetic drift or natural selection. Notably, the best-fitting

demographic model (Figure 3) reveals substantial gene flow

occurring only from the Fuding and Shenzhen populations to the

Wenchang population (NmFW = 3.90 and NmSW = 1.13), while all

other Nmestimates, ranging from 0.02 to 0.64, are relatively small.

Contrastingly, a recent study on grey mangrove (Avicennia marina)

populations across the Red Sea, the Arabian Sea and the Persian/

Arabian Gulf revealed a moderate population genetic structure

correlating with geographic distance, which supports clades both

among and within the seas surrounding the Arabian Peninsula

(Friis et al., 2024).

What might have caused the limited gene flow among

geographically proximate K. obovata populations? One possible

explanation is the impact of human activities, which have led to

increased fragmentation. Human activities such as land
TABLE 2 Continued

K.
obovata
gene

Populations Number of
temperature-
related SNPs

Orthologs
in Arabidopsis

Gene
symbol

Description Main GO terms of
biological process

Maker00010492 S-W 1 AT2G44970 Alpha/beta-Hydrolases
superfamily protein

Maker00010750 S-W 10 AT4G08920 CRY1 Cryptochrome 1 response to blue light

Maker00012336 S-W 1 AT2G35630 MOR1 Microtubule organization 1 cell plate formation
involved in plant-type cell
wall biogenesis

Maker00013529 S-W 1 AT1G04140 Transducin family protein/WD-
40 repeat family protein

regulation of protein
catabolic process

Maker00015311 S-W 1 AT5G42570 B-cell receptor-associated 31-
like protein

intracellular
protein transport

Maker00015660 S-W 1 AT1G05100 MAPKKK18 Mitogen-activated protein kinase
kinase kinase 18

negative regulation of
stomatal opening

Maker00016003 S-W 2 AT5G45360 SKIP31 SKP1-interacting partner 31 protein ubiquitination

Maker00016879 S-W 1 AT4G33925 SSN2 Suppressor of sni1 2 defense response

Maker00018105 S-W 1 AT2G27230 LHW Lonesome highway root development

Maker00018163 S-W 5 AT5G22100 RNA cyclase family protein ribosome biogenesis

Maker00018375 S-W 1 AT4G23740 Leucine-rich repeat protein
kinase family protein

Maker00018456 S-W 1 AT4G23730 Galactose mutarotase-like
superfamily protein

carbohydrate
metabolic process
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development, urbanization, and habitat destruction can create

barriers to gene flow, resulting in population isolation and

reduced genetic exchange between populations (Guo et al., 2016).

Moreover, the small effective population size for all populations in

this study may have also played a role in limiting gene flow. With a

small effective population size, genetic drift has a more pronounced

effect, leading to increased genetic differentiation between

populations (Song et al., 2006). This effect may be particularly

significant for the Shenzhen and Fuding populations, which have

experienced population bottleneck and expansion, respectively.
4.2 Local adaptation and genotype-
environment associations

Local adaptation involves significant changes in allele

frequency. Therefore, conducting a genome scan to identify

outlier values of the allelic differentiation is the preferred method

for detecting loci associated with local adaptation. It has been

recognized that high neutral differentiation among populations

can make it more difficult to detect high outlier loci (Pérez-

Figueroa et al., 2010). This is evident in the case for K. obovata,

where the average FST values are approximately 0.3 across the

genome (Figure 2B). Utilizing the 1.96 SD cutoff of the empirical

distribution, we discovered that the number of FST outliers was

largely comparable for all three pairwise population comparisons,

whereas the number of XP-CLR outliers varied substantially among

comparisons (Figure 5A-C). Given that FST is the quotient of two

variances, the large expected variability in FST among neutral loci,

influenced by complex demography, population structure, and

migration, may impact the power to discern high outlier FST
values, potentially resulting in a high rate of false positive or false

negative (Le Corre & Kremer, 2012). In contrast, the XP-CLR

method, which is independent of window size and robust to

uncertainty regarding demography history, identifies regions in

the genome where the change in allele frequency at the locus

occurred too quickly to be due to random drift (Chen et al.,

2010). The different results between the two methods lies in the

fact that the detection of FST outliers depends on neutral loci, while

the XP-CLR method is sensitive to recent selective sweeps. By

combining both methods, we observed an enrichment of

environment-associated SNPs in highly differentiated regions

(HDRs) that showed both outlier FST and outlier XP-CLR values,

indicating the effectiveness of our analyses in identifying loci

associated with local adaptation in the presence of high neutral

differentiation among populations.

The three K. obovata populations, located at varying latitudes,

are subject to differing intensities of selective pressure. Genotype-

environment associations in K. obovata were detected exclusively

for temperature-related variables, indicating that temperature is the

primary factor driving differential selective pressures leading to

local adaption. This supports the notion that winter temperature

shapes mangrove distributions and assemblage composition in

China (Wu et al., 2018). Local temperature has been consistently

identified as significant drivers of varying selective pressures in

many organisms, such as grey mangrove (Friis et al., 2024), lichen-
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forming fungi (Valim et al., 2023), and mountain pine (Méndez-

Cea et al., 2023). In this study, the Fuding and Shenzhen

populations showed a higher proportion of fixation in

temperature-associated SNPs (Figure 5C) compared with

genome-wide SNPs (Figure 1C), implying that natural selection

has facilitated the rapid evolution of genes related to local

adaptation. However, the evidence for local adaptation in the

Wenchang population is weak, as reflected by the allele frequency

spectra (Figure 5C) and results of Fay and Wu’s H (Supplementary

Figure 3), likely due to the minimal selective pressure for

temperature adaptation in this tropical region.

Gene flow may have also impacted local adaptation in the

Wenchang population, which receives migrates from the Fuding

and Shenzhen populations (NmFW = 3.90 and NmSW = 1.13;

Figure 3). Contrary to expectations based on local adaptation

gradients, many more HDRs were found between the Shenzhen

and Wenchang populations than between the Fuding and

Wenchang populations (Figure 4C). This inconsistency could

stem from more substantial gene flow from Fuding to Wenchang

compared to from Shenzhen to Wenchang (Figure 3). Both

theoretical and empirical studies have shown that gene flow can

either promote or counteract local adaptation depending on the

extent of standing variation and the strength of natural selection

(Tigano & Friesen, 2016). The scant number of selected candidate

genes identified between the Wenchang and Fuding populations

suggests that the weak selection in the Wenchang population is

insufficient to overcome the homogenizing effect of gene flow.

Nevertheless, we still identified a candidate gene under selection,

PUB45, in both the comparison between the Fuding and Wenchang

populations and the comparison between the Shenzhen and

Wenchang populations (Figure 4D). This gene, which belongs to

ubiquitin ligases enzymes, was reported to play a role in the cold

acclimation of K. obovata seedlings in a previous study using

transcriptome analysis (He et al., 2023). Collectively, our findings

highlight the complexities involved in identifying loci responsible

for local adaptation, especially in the presence of complex

demographic histories, population structure, and gene flow.
4.3 Similarity and discrepancy between
genes involved in local adaptation and
those responsible for inter-
species divergence

The question of whether the same genes responsible for local

adaptation within a species also contribute to differences between

species is a fundamental topic in evolutionary biology. K. obovata

and its cold-intolerant relative K. candel are separated by the South

China Sea, exhibiting genetic discontinuity and differential

adaptation (Sheue et al., 2003). Among the 78 candidate genes

within HDRs in K. obovata, only two genes, AIL1 and CALS5

overlap with those identified being under selection by the

McDonald-Kreitman (MK) test when comparing K. obovata to K.

candel (Figure 4F). This overlap may be due to both intra- and

interspecific variations being influenced by similar selective

pressures in cold environments. AIL1 has been identified as an
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ethylene response factor and a transcription factor responsive to

cold in grape (Ma et al., 2022). CALS5 plays a crucial role in

preserving the proper formation of callose walls during pollen

development and responding to biotic stress (Dong et al., 2005).

Evidence supporting the contribution of the same genetic variation

to adaptive traits within and between species has been found in

various organisms, such as antifreeze proteins in fish, indicating

that the genetic mechanisms involved may be complex due to the

polygenic nature of adaptive traits and the influence of gene-

environment interactions (Berthelot et al., 2019).

The lack of overlap for the majority of candidate genes under

selection, as identified by between-population comparisons with FST
and XP-CLR and by inter-species comparison with MK test, can be

explained by several factors. Firstly, intra-specific selection within

K. obovatamay target different genetic variations than inter-specific

selection between K. obovata and K. candel. Although temperature

adaptation is considered the primary force driving ecological

speciation in Kandelia, the two species also differ in shoot, leaf,

floral, fruit and hypocotyl characters, in addition to physiological

differentiation (Sheue et al., 2003). The 27 selected genes detected by

MK test are enriched in functional categories related to several

protein modifications (Figure 4G). This is consistent with the

notion that inter-specific selection often reflects more

fundamental differences in niche occupation and overall lifestyle

that have accrued over longer periods of evolutionary time

(Tarjuelo et al., 2017). Second, the time scale of selection differs

within and between species. Genes that were important in the initial

divergence of the cold-tolerant K. obovata and cold-intolerant K.

candle might not be the same genes that are currently under

selection within K. obovata, which could be adapting to more

recent or localized environmental changes. In line with this idea,

four out of the top five enriched functional categories of the HDR

candidate genes are associated with response to stimulus

(Figure 4E). The discrepancies in genes identified as under

selection between different methodologies may be a common

issue (Balick et al., 2022; Wang X. et al., 2022; Benjelloun

et al., 2023).

One limitation of this study is that only three K. obovata

populations in China were surveyed. Considering the strong

population structure among the surveyed populations

(Figure 2D), we might capture both adaptive and neutral changes

when identifying candidates under selection as high differential

outliers between populations. Nevertheless, the enrichment of

temperature-associated SNPs within HDRs indicates that most

candidates are likely adaptive. On the other hand, the small

number of populations surveyed may lead to an underestimation

of genes responsible for local adaptation, as different environmental

pressures might act on different gene interaction networks via gene-

environment interactions (Tiffin & Ross-Ibarra, 2014). However, as

temperature is the major factor shaping the evolutionary

trajectories of Kandelia species, our results should capture the

majority genetic variation critical for climate adaptation within

and between species. A wider geographic sampling across the
Frontiers in Plant Science 14
complete range of K. obovata and K. candel will be necessary to

conduct further research on candidate functional loci associated

with their ecological divergence.
5 Conclusion

Our investigation into the local adaptation of Kandelia obovata

populations across China provides critical insights into the genetic

dynamics and adaptive evolution of mangroves under global

climate change. Through whole-genome resequencing analysis, we

uncovered a strong population structure with complex

demographic events such as expansion, bottlenecks, and gene

flow, highlighting the intricate historical context within which

local adaptation has occurred. Notably, genetic differentiation is

high among the geographically close K. obovata populations, likely

due to limited gene flow as a result of human activities. Genome-

wide scans of population differentiation pinpointed regions under

selective sweeps, with more intense signals in northern populations.

Our findings emphasize the importance of temperature in driving

genetic adaptations, as opposed to precipitation, which showed no

discernible genotype-environment associations. The southmost

Wenchang population exhibited minimal selective sweep

signatures, reflecting the low selective pressure in this tropic

region, potentially confounded by gene flow from other

populations. We identified 39 candidate genes with high

confidence responsible for local adaptation, enriched in stimulus

response functions and largely different from those genes involved

in the speciation of K. obovata from K. candel, which are associated

with basic cellular functions. These findings set the stage for further

research to explore the molecular basis of local adaptation and

resilience of mangroves to environmental stress. Such knowledge is

vital for conservation strategies and predictive modeling of species

responses in an era of rapid climate change.
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