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Tomato R-gene-mediated
resistance against Fusarium wilt
originates in roots and extends
to shoots via xylem to limit
pathogen colonization
Margarita Šimkovicová1, Gertjan Kramer2, Martijn Rep1

and Frank L. W. Takken1*

1Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of
Amsterdam, Amsterdam, Netherlands, 2Laboratory for Mass Spectrometry of Biomolecules, Faculty of
Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
Vascular wilt disease, caused by the soil-borne fungus Fusarium oxysporum (Fo),

poses a threat to many crop species. Four different tomato resistance (R) genes

(I-1, I-2, I-3, and I-7) have been identified to confer protection against Fo f.sp.

lycopersici (Fol). These I genes are root-expressed and mount an immune

response upon perception of the invading fungus. Despite immune activation,

Fol is still able to colonize the xylem vessels of resistant tomato lines. Yet, the

fungus remains localized in the vessels and does not colonize adjacent tissues or

cause disease. The molecular mechanism constraining Fol in the vascular system

of the stem remains unclear. We here demonstrate that an I-2-resistant

rootstock protects a susceptible scion from Fusarium wilt, notwithstanding

fungal colonization of the susceptible scion. Proteomic analyses revealed the

presence of fungal effectors in the xylem sap of infected plants, showing that the

lack of fungal pathogenicity is not due to its inability to express its virulence

genes. To identify mobile root-derived proteins, potentially involved in

controlling fungal proliferation, comparative xylem sap proteomics was

performed. We identified distinct pathogenesis-related (PR) protein profiles in

xylem sap from Fol-inoculated I-1, I-2, I-3, and I-7 resistant lines. Despite

structural diversity, all four immune receptors trigger the accumulation of a

common set of four PR proteins: PR-5x, PR-P2, and two glucan endo-1,3-b-D-
glucosidases. This research provides insights into Fusarium resistance

mechanisms and identifies a core set of proteins whose abundance correlates

with defense against Fusarium wilt.
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Introduction

Vascular wilt diseases, caused by bacteria, fungi, or oomycetes,

impact a wide array of economically important crops globally

(Oliver et al., 2009; Planas-Marquès et al., 2020; Chitwood-Brown

et al., 2021). Fusarium wilt is caused by Fusarium oxysporum, a soil-

borne fungal pathogen that penetrates root tissue and colonizes

xylem vessels, resulting in leaf epinasty, wilting, and eventually

plant collapse (Gordon, 2017). Presently, the most effective

approach to control Fusarium wilt in crops involves utilizing

Resistance (R) genes. R-proteins, upon detection of a

corresponding avirulence (Avr) effector, initiate an immune

response termed effector-triggered immunity (ETI) that prevents

disease development (Takken and Joosten, 2000).

The interaction between tomato (Solanum lycopersicum) and

Fusarium oxysporum f.sp. lycopersici (Fol) serves as a well-

established pathosystem to investigate the molecular basis of

disease and resistance to vascular pathogens (Gordon, 2017).

Within this system, four distinct R-genes have been identified and

cloned that confer Fol resistance. Three of them are employed in

commercially cultivated tomato varieties; I-1, I-2, and I-3 (Takken

and Rep, 2010; Chitwood-Brown et al., 2021). These genes, known

as “Immunity” or I genes, encode structurally diverse immune

receptors recognizing matching Avr proteins from the fungus. I-3

(an S-locus receptor-like kinase), I-1, and I-7 (Leucine-rich repeat

(LRR) - receptor-like proteins) are membrane-localized receptors

recognizing the presence of Avrs in the extracellular space

(Catanzariti et al., 2015, 2017; Gonzalez-Cendales et al., 2016). In

contrast, the I-2, (Nucleotide-binding – LRR protein) receptor

functions intracellularly (Simons et al., 1998; Houterman et al.,

2009) recognizing Avr2 in the nucleus (Ma et al., 2013).

Interestingly, the expression patterns of these genes differ; besides

expression in tissues not infested by Fol, I-2 and I-7 are expressed in

both the roots and stems, whereas I-1 and I-3 are only expressed in

roots (Kajala et al., 2021). Tomato plants carrying I-1 exhibit

resistance to Fol race 1, I-2 to race 2, and either I-3 or I-7 to race

3. I-1, I-2, and I-3 recognize the corresponding Avr1, Avr2, and

Avr3 proteins, respectively (Rep et al., 2004; Houterman et al., 2008,

2009). The Avr recognized by I-7 remains unknown (Gonzalez-

Cendales et al., 2016). The commonality between the structurally

diverse and differentially expressed I receptors is that they all confer

resistance to the same fungus, but it is as yet unknown whether the

mechanisms restricting the pathogen differ.

ETI typically fully blocks the spread of a pathogen in a host, as

exemplified by e.g. tomato Cf-9 containing the fungus at the

infection site in the leaf (De Wit et al., 1985). Vascular pathogens,

however, are rarely fully restricted by R genes and colonize the

vasculature of resistant plants to various extents. Besides Fol,

Verticillium dahliae, Ralstonia solanacearum, and Xanthomonas

oryzae pv. oryzae have been shown to proliferate within the

vasculature of resistant hosts (Yoshimura et al., 1998; van der

Does et al., 2019; Planas-Marquès et al., 2020; Liu et al., 2023).

The degree of Fol colonization in a resistant line depends on the R-

gene present, indicating quantitative distinctions in the immune

responses. Differences among resistant lines are specifically

noticeable in the extent of plant stem colonization, rather than in
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the colonization pattern of the root epidermis or cortex (van der

Does et al., 2019). Whereas colonization of the stem vasculature

occurs in I-2 tomato plants, the fungus is contained in the xylem

vessels and does not escape from the vasculature to colonize

adjacent tissues (Mes et al., 2000).

I-1 rootstocks protect the scion of a grafted susceptible variety

against Fusarium wilt, implying that Fusarium resistance is root-

based (Heinze and Andrus, 1945). There are contrasting views on

how resistant plants constrain Fol pathogenicity. Some studies

suggest the presence of antifungal compounds in the xylem sap,

while others argue for the existence of a physical barrier in the root

tissues (Gottlieb, 1943; Snyder et al., 1946). The root-based physical

barrier hypothesis was challenged by showing that the introduction

of Fusarium conidia in stem cuttings of resistant tomato plants did

not result in disease symptoms (Scheffer and Walker, 1954).

Subsequently, in vitro assays demonstrated direct antifungal

activity of xylem sap collected from Fol race 1 inoculated resistant

tomato plants, lending support to the former hypothesis

(Stromberg, 1977).

Based on the expression pattern of the I-genes in root tissues

and the grafting experiments, resistance to Fol appears to be

primarily root-based (Heinze and Andrus, 1945; Kajala et al.,

2021). Yet, it is unclear what mechanism restricts the fungus in

the xylem vessel of the stem and prevents colonization of

vasculature adjacent tissues. I-2 and I-7 are expressed in stem

tissue and might be controlling the fungus in this tissue, however,

no detectable expression of I-1 and I-3 has been observed in stem

tissue of tomato (Kajala et al., 2021). To test whether resistance-

controlling compounds are transferred from roots to the shoots,

grafting experiments were performed in this study. Susceptible

scions were grafted on an I-2 rootstock and colonization of the

shoot was determined. To identify host proteins whose abundance

correlates with resistance, and to investigate whether the four I

genes (I-1, I-2, I-3, and I-7) induce accumulation of the same or

different proteins, proteomic analysis of xylem sap was performed.

To capture early immune responses, xylem sap was collected at one-

week post inoculation (wpi). This is an earlier timepoint than that

used in our previous studies in which a single xylem-specific

Pathogenesis-Related protein 5 (PR-5x) was found to highly

accumulate in the xylem sap of I-2 resistant tomato following

inoculation with Fol. No fungal effector proteins were detected in

the sap (de Lamo et al., 2018). To examine whether the host

immune responses compromise the ability of the fungus to

produce and secrete effector proteins, the Fol effectorome in the

xylem sap of the resistant lines was analyzed.
Materials and methods

Plant and fungal material

Six different tomato (Solanum lycopersicum) genotypes were used

in this study. Four of them are wild-type cultivars: C32 (susceptible),

KG52201 (susceptible), 90E402F (I-1), and E779 (I-3) (Kroon and

Elgersma, 1993; Simons et al., 1998; Mes et al., 1999; Scott and Jones,

2004), three are transgenic lines; KG324 and KG325 are I-2-containing
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derivatives of cv. KG52201, and MM+I-7 is a derivative of cv.

Moneymaker (Simons et al., 1998; Gonzalez-Cendales et al., 2016).

All plants were cultivated in a controlled greenhouse environment,

maintained at a temperature of 25°C, 65% relative humidity, and a 16-

hour photoperiod. The fungal isolates Fol004 (race 1), Fol007 (race 2),

and Fol029 (race 3) were used (Rep et al., 2005).
Tomato seedling grafting

Sixteen-day-old tomato seedlings were grafted at the hypocotyl

using Grafting Cassettes™ (GRA&GREEN Inc, Japan; https://

www.gragreen.com/en). The seedlings remained in the grafting

cassettes for three weeks inside a propagator to sustain high

humidity permitting the formation of graft junctions. The roots

of the grafted plants were covered with soil to stimulate root growth.

During the first week, the propagators were covered with paper

tissue to minimize evaporation. In the third week, propagator

humidity was gradually reduced from 90% to 65% to match

greenhouse conditions (Aalders et al., 2024).
Fusarium inoculation assay

Fungal isolates were inoculated from glycerol stocks and

cultivated on Czapek’s Dox Agar (CDA) plates at 25°C for a

minimum of seven days. From the plate, a single plug was

transferred to a 250ml flask containing 100 ml of minimal nitrate

medium (100mMKNO3, 3% sucrose, and 0,17% Yeast Nitrogen Base

without amino acids or ammonia) and incubated for five days at 25°

C, 150 rpm. Fungal spores were filtered through sterile miracloth (22-

25mm pore size), pelleted for 10 min at 2000 rpm, and washed with

sterile Milli-Q (MQ). Before inoculation tomato roots were washed

with water. The concentration of the spore suspension, the extent of

root trimming, and inoculation time depended on the age of the plant

and the type of experiment. For the fungal recovery assay, the roots of

ten-day-old seedlings were trimmed to ~1 cm length and inoculated

with 107 spores/ml suspension for two minutes. Untrimmed tomato

roots of three-week-old grafted tomato plants were inoculated for five

minutes with a 0.5x107 spores/ml suspension. For xylem sap

proteomics, the main root and lateral roots of four-week-old

tomato plants were trimmed to ~1 cm and inoculated for five

minutes with 0.5x107 spores/ml suspension.

Three weeks post-inoculation (wpi) of grafted tomato plants,

disease index (DI), and fresh weight (FW) were determined. Disease

index was scored on a scale of 0-5 (0, no brown vascular bundles; 1,

only browning of vascular bundles at the crown level; 2, less than

half of the bundles are brown at cotyledon level; 3, at least half of the

bundles are brown; 4, 3/4 of the bundles are brown; 5, dead plants)

(de Lamo et al., 2018).
Fungal recovery assay

For the fungal recovery assay from grafted plants, stems were

cut at the crown level and above the first true leaf node at three wpi.
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The cut stems were surface-sterilized with 70% ethanol for four

minutes and rinsed with sterile MQ (de Lamo et al., 2020). From the

sterilized stems, slices (~0,5 cm thick) were collected from the first

true leaf node, cotyledon, and right below and above the grafting

point. For the fungal recovery assay from MM+I-7 plants, the stems

of 19-day-old tomato MM+I-7 seedlings were submerged in ethanol

for 5 seconds, rinsed with sterile MQ, and cut into ~8 mm long

fragments (van der Does et al., 2019). Both stem slices and stem

fragments were placed on potato dextrose agar plates supplemented

with penicillin (100mg/ml) and streptomycin (200mg/ml) and

incubated for three to five days at 25°C. For quantifying

colonization of stem slices, the following numbering was used; 1=

fungal outgrowth from a stem slice right below the grafting point,

2 = right above the grafting point, 3= fungal outgrowth at the level

of the cotyledon, and 4= first true leaf node. The surface area of

fungal outgrowth from stem slices was quantified using Fiji (https://

imagej.net/Fiji) plugin tool.
Xylem sap collection and sample
preparation for LC-MS

Xylem sap was collected one-week post inoculation of four-

week-old tomato plants. Plants were generously watered eighteen

and three hours before xylem sap collection. The plants were cut

just below the second true leaf node, positioned horizontally, and

attached to a polystyrene tube placed on ice. The stump exuded

xylem sap for four to six hours. Five repetitions of Fol-inoculation

and xylem sap collection were performed during subsequent weeks.

Xylem sap from four to six plants per repetition was pooled and

centrifuged at 800 x g for 10 minutes to eliminate potential spores

and soil particles. Next, 12 ml of the pooled xylem sap was

concentrated using Amicon Ultra-15 Centrifugal Filter Units

(Millipore) at 2500 x g for 20-25 minutes. The concentrated

samples were transferred to low-binding tubes (Protein LoBind

microcentrifuge tubes, Eppendorf). Protein quantification was

performed using a BCA kit (BCA1-1KT Sigma Aldrich). Samples

were treated with TCEP and CAA at final concentrations of 10 mM

and 30 mM, respectively, and incubated at 70°C for 30 minutes for a

1 step reduction and alkylation of disulfide bridges. Subsequently,

samples were prepared for mass spectrometry analysis using the

single-pot, solid-phase-enhanced sample preparation (SP3) protocol

(Hughes et al., 2014), with modifications to optimize protein

recovery for xylem sap proteins. In short, no detergents were

added to the samples to enable optimal precipitation of the

soluble xylem sap proteins, and the precipitation time was

extended to 30 minutes at room temperature. Following two

washes with 70% ethanol and a single wash using acetonitrile,

beads were air-dried and resuspended in 100 mM ammonium

bicarbonate (Sigma) after which trypsin was added at a protease-

to-protein ratio of 1:50 (w/w) at 37°C. Following overnight

digestion formic acid was added to achieve a final concentration

of 1%, resulting in an approximate pH of 2. The samples were then

placed on a magnetic separator device and the peptides were

recovered for LC-MS analysis.
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LC-MS and label-free quantification of
the proteome

Resulting samples were separated by reversed phase

chromatography using an Ultimate 3000 RSLCnano UHPLC

system (Thermo Scientific, Germeringen, Germany). Peptide

separation was performed on a 75 mm × 250 mm analytical

column (C18, 1.6 mm particle size, Aurora, Ionopticks, Australia),

which was maintained at a temperature of 50°C and operated at a

flow rate of 400 nL/min with 3% solvent B for 3 minutes (solvent A:

0.1% formic acid in water, solvent B: 0.1% formic acid in

acetonitrile, ULCMS-grade, Biosolve). Following this, a multi-

stage gradient was applied, with 17% solvent B at 21 minutes,

25% solvent B at 29 minutes, 34% solvent B at 32 minutes, 99%

solvent B at 33 minutes, kept at 99% solvent B till 40 minutes. The

system was returned to initial conditions at 40.1 minutes and was

held until 58 minutes for equilibration. The eluted peptides were

electrosprayed by a captive spray source via the column-associated

emitter and were analyzed by a TIMS-TOF Pro mass spectrometer

(Bruker, Bremen, Germany). The instrument was operated in

PASEF mode for standard proteomics acquisition, with

quadrupole isolation widths set at 2 Th at 700 m/z and 3 Th at

800 m/z, and collision energy values varying between 20 and 59 eV

across the TIMS scan range. Precursor ions possessing an m/z range

from 100 to 1700 and a TIMS range from 0.6 to 1.6 Vs/cm^2 were

chosen for fragmentation. PASEF MS/MS scans were initiated ten

times with a total cycle time of 1.16 seconds, a target intensity of

2e4, an intensity threshold of 2.5e3, and a charge state range of 0-5.

Active exclusion was enabled for a period of 0.4 minutes, with

precursors being reevaluated if the ratio of the current intensity to

the previous intensity exceeded 4.

LC-MS data were processed using MaxQuant software (version

1.6.10.43) using standard settings, i.e. trypsin/p as the enzyme

allowing for 2 missed cleavages with carbamidomethylation at

cysteine as a fixed modification and oxidation at methionine as a

variable modification searching the proteome databases of Solanum

lycopersicum (UP000004994) and Fol race 2 (UP000009097) from

Uniprot (03-2022). Several discrepancies exist in the current tomato

Ensembl genome, wherein a multi-exon gene has been erroneously

assigned for the single-exon PR5x gene (gene ID: Solyc08g080620;

protein ID: Q8LPU1) and NP24 (gene ID: Solyc08g080640; protein

ID: P12670). Additionally, the N-terminal sequence of P23 (gene

ID: Solyc08g080650; protein ID: Q01591) is lacking nine amino

acids. In the interim, we manually included Q8LPU1, modified

Q01591, and deleted the incorrect A0A3Q7HTH3 and

A0A3Q7HVV0 entry. The fungal databases were improved by

adding non-annotated sequences of Fol Avr proteins.

Bioinformatics analyses of MaxQuant output were performed

with Perseus 2.03. Principle component analyses labeled one

mock- and one Fol-inoculated I-1 plant repetition as outliers,

which were excluded from further investigations. Before statistical

analysis contaminants, reversed hits, and proteins identified in only

one of the five repetitions were excluded. Subsequently LFQ values

were log2 transformed and missing values were imputed using the

lowest value in the dataset (-9.32). Differential accumulation of

proteins between Fol- and mock-inoculated plants was determined
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via a Student’s T-test (p-value) without restricting the p-value

correction using FDR or Benjamini Hochberg analysis.
Results

An I-2 resistant rootstock prevents Fol
disease development in a susceptible
scion, notwithstanding the presence of the
fungus in the scion

Fol induces wilt disease in susceptible tomato plants by

extensively colonizing xylem vessels and subsequently spreading

to the adjacent tissues in the root and stem (Gordon, 2017). In an

incompatible interaction, Fol also colonizes above-ground tissue but

remains confined within the vessels, without causing visible disease

symptoms (Mes et al., 2000). To investigate the potential of a

resistant rootstock in preventing Fol-induced disease and

colonization of susceptible foliage, Fol disease assays were

conducted using chimeric plants composed of Fol007 (race 2)-

susceptible (Sus) (KG52201) and I-2 resistant (Res) tissue (KG325).

It was hypothesized that resistance is xylem-based, allowing a

resistant rootstock to confer resistance to a susceptible scion,

despite the presence of the fungus in a susceptible scion. Four

grafting combinations were employed (rootstock | scion): Sus | Sus,

Res | Res, Res | Sus, and Sus | Res. Plants were grafted at the

hypocotyl and three weeks after mock- or Fol007-inoculation, fresh

weight and disease index at the cotyledon level were assessed. All

mock-inoculated graft combinations per repetition exhibited

similar fresh weights showing that the tissues are compatible

(Figure 1A). As expected, Fol007-inoculated Sus | Sus grafts

displayed a significant decrease in fresh weight in all three

repetitions, with most of the chimeric plants showing severe

vascular browning (DI=4) (Figures 1A, B). Similar results were

obtained for Sus | Res grafts in the first and second repetition,

showing that a susceptible rootstock results in severe disease

symptom development in the resistant scion. In the third

repetition, Fol-inoculated Sus | Res grafts did not display a

significant decrease in fresh weight but showed clear vascular

browning (DI=3) at the cotyledon level (resistant tissue).

Conversely, the fresh weight of both Fol007-inoculated Res | Res

and Res | Sus grafts resembled those of mock-inoculated grafts. The

disease indexes of Res | Res and Res | Sus results were very similar to

each other, with the majority exerting none or minor vascular

browning (DI=0-2). Merged disease index scores show significant

differences between Sus | Sus and Res | Res or Res | Sus, while no

significance was found between Sus | Sus and Sus | Res. These

observations demonstrate that a resistant rootstock prevents disease

development in a susceptible scion.

The absence of disease development in Res | Sus plants can be

caused by; 1) Fol007 proliferation being contained in the resistant

rootstock, preventing colonization of the susceptible scion, or 2)

Fol007 colonizes susceptible scions, but a mobile compound or

signal from the resistant rootstock suppresses its ability to cause

disease. To distinguish between these options the presence of Fol007

in the scion was examined. Stem pieces were excised at various plant
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levels (below and above the grafting point, at the cotyledon, and first

true leaf node) and cultured on agar plates to monitor fungal

outgrowth (Figure 2). Fol presence was confirmed above the

grafting point in all grafting combinations in two out of three

repetitions (Figure 2B). The amount of Fol outgrowth from stem

slices collected below and above the grafting point was quantified

from two independent repetitions (Figures 2C, D). A significantly

lower amount of fungal growth was observed from stem slices

collected from below the grafting point of Res | Sus stems compared

to Sus | Sus, whereas Sus | Res showed a similar trend as Sus | Sus

(Figure 2D). For stem slices collected from Res | Res, there appears

to be less fungal outgrowth in comparison to Sus | Sus, although this

difference is not statistically significant. There were no differences

observed in the fungal outgrowth from stem slices collected above

the grafting point. The pathogen reached the first true leaf node of

all Sus | Sus and Sus | Res grafts in every repetition (Figure 2B). The

stem colonization of Res | Res and Res | Sus grafts were very similar

to each other, with 30-40%, 70-80%, and 75% being colonized till

the first true leaf node in the first, second, and third repetition,

respectively. Combining fungal stem colonization data from three

repetitions revealed significant differences between Sus | Sus and

Res | Res or Res | Sus, while no significant difference between Sus |
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Sus and Res | Sus. These data show that I-2 rootstocks do not

prevent the colonization of susceptible scions by Fol but do reduce

the colonization and prevent disease development. As the fungus is

contained in the vessels of the susceptible scion we hypothesized

that resistant roots signal immune responses to the shoot that may

involve translocation of specific antifungal compounds via the

xylem to restrict Fol proliferation and pathogenicity.
Diverse levels of Fol secretory proteins in
xylem sap of I-1, I-2, I-3, and I-7
resistant lines

Avirulent Fol strains colonize the stems of resistant plants, and in

I-2 plants Fol has been shown to colonize the xylem vessels (Mes et al.,

2000; van der Does et al., 2019). To test whether the absence of disease

symptom development is due to a lack of effector secretion by the

fungus, the xylem sap collected from I-1, I-2, I-3, and I-7 lines infected

with avirulent Fol was examined for the presence of Fol proteins

(Supplementary Table 1). For xylem sap collection, four-week-old

tomato plants were mock- and Fol-inoculated with the corresponding

avirulent Fol race. Concentrated xylem sap samples were subjected to

LC-MS analysis to quantify and identify fungal proteins. Secreted Into

Xylem (SIX) proteins were found in all samples and were most

abundant in the xylem sap collected from I-1, I-2, and I-7 lines. SIX1,

also known as Avr3 (A0A0C4DI36) was identified as a Differentially

Accumulating Protein (DAP) in I-1, I-2, and I-7 when compared to

mock-inoculated plants (Figure 3). SIX3, or Avr2 (A0A0C4DI32), and

SIX6 (A0A0C4DHX7) were identified as DAPs in I-2 and I-7 plants.

SIX1 and SIX3 were also detected in I-3 xylem sap samples but only in

one out of the five repetitions. These findings corroborate the presence

of the fungus in the vasculature of resistant plants and show that it

secretes effector proteins, albeit at varying abundances.

The difference in the SIX protein amounts in the sap likely

reflects the amount of fungal biomass and/or the extent of stem

colonization. Previous studies already reported different degrees of

stem colonization of I-1, I-2, and I-3 plants by avirulent Fol strains

(van der Does et al., 2019). However, it remains unknown whether

in I-7 lines Fol race 3 (Fol029) can reach and colonize the stem, and

if so, to what degree. To address this, ten-day-old resistant (MM+I-

7) and susceptible (C32) tomato seedlings were mock- and Fol029-

inoculated. At nine days post inoculation (dpi), stem fragments

were harvested and fungal presence was assessed. I-7 plants were

colonized by Fol up to 63% of their height, while susceptible plants

were colonized almost fully (96%) (Supplementary Figure 1). These

findings confirm the presence of Fol in the xylem system, secreting

SIX proteins, albeit with varying abundance across resistance lines.
I-1, I-2, I-3, and I-7 R-protein activation
results in the accumulation of a set of
unique and shared proteins in the
xylem sap

To identify proteins associated with Fol resistance, quantitative

proteome analysis was conducted on the xylem sap of the resistant

lines following mock- or Fol-inoculation. The availability of four
A

B

FIGURE 1

Resistant (I-2) tomato rootstocks protect susceptible scions from
Fusarium wilt disease. Fol007 (race 2) resistant (Res) and susceptible
(Sus) plants were grafted in four different combinations (rootstock |
scion). Approximately five-week-old chimeric plants were either
mock- or Fol007-inoculated. Disease scoring of the grafted
genotypes occurred three wpi. (A) Tukey boxplot shows plant fresh
weight above the cotyledon level of three independent repetitions.
Each data point is represented by a filled black circle (Mock) or an
open black circle (Fol). Significant differences between mock- and
Fol-inoculated plants were determined using Student’s unpaired t-
test (*p ≤ 0.05; **p ≤ 0.01) ns = non-significant. (B) The dot plot
shows the disease index of grafted genotypes. The scores from
three repetitions were merged and tested using a Mann-Whitney U
statistical test (*p ≤ 0.05; ****p ≤<0.0001).
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structurally distinct R-receptors (I-1, I-2, I-3, or I-7) within a single

pathosystem provides the opportunity to identify unique and

shared proteins that differentially accumulate upon Fol

inoculation. LC-MS analysis of concentrated xylem sap revealed

on average 860 plant proteins per sample (Supplementary Table 1).

A minority of the identified proteins were classified as DAPs, as

depicted in the volcano plots: 4.7% in I-1, 3.3% in I-2, 2.8% in I-3,

and 7% in I-7 (Figures 4A-D).

To identify shared and unique responses induced by the

different R-proteins to Fol, the upregulated proteins in the DAP

list were compared using an UpSet plot (Figure 5A). These

comparative analyses revealed a unique and shared set of

upregulated DAPs among I-1, I-2, I-3, and I-7. All four Fol-

inoculated I-gene lines exhibited differential accumulation of four

proteins: PR-5x (Q8LPU1), PR-P2 (P32045), and two glucan endo-

1,3-b-D-glucosidases (A0A3Q7IKF2, A0A3Q7FVX4) (Figure 5B).

The p-value and protein abundance ratio of these four DAPs vary
Frontiers in Plant Science 06
between the resistant lines (Figures 4A-D). Apart from this

common set of pathogenesis-related proteins, subsets were

observed that were shared between two or three resistant lines.

For example, Fol-inoculated I-1 and I-7 lines show differential

accumulation of an endochitinase (A0A3Q7IHS3), PR-P23

(Q01591) and an aspartic protease (A0A3Q7HJX2); I-2 and I-3

both accumulate a serine carboxypeptidase-like protein

(A0A3Q7FBF5) and a chitinase (A0A3Q7H377); I-2 and I-7 share

an uncharacter ized prote in (A0A3Q7H8L4) and two

endochitinases (A0A3Q7GMW3, A0A3Q7FJ40); I-3 and I-7 an

endochitinase (Q05539) and a subtilisin-like protease, P69B

(A0A3Q7HVI4); I-1, I-2, and I-7 a PR-6 (P04284) and a leucine-

rich repeat-like protein (A0A3Q7ET47); and I-1, I-3 and I-7 an

uncharacterized protein (A0A3Q7FD15). In addition, DAPS

unique to a single resistant line were identified (Table 1). For

instance; I-1 plants showed differential accumulation of two

chitin-degrading enzymes, a peroxidase, and a xylose synthase; I-2
A B

C D

FIGURE 2

I-2 resistant (Res) tomato rootstocks reduce colonization of Fol in susceptible (Sus) scions. (A) Stem sections from below the graft (BG), above the
graft (AG), cotyledon (CL), and 1st true leaf node (1TLN) were monitored for the presence of Fol007 (race 2). The absence of Fol from each stem
level was described as “no colonization” (NC). (B) The dot plot shows fungal stem colonization scores of different grafting combinations
(rootstockscion). The scores from three repetitions were merged and tested using a Mann-Whitney U statistical test (*p ≤ 0.05). (C) Representative
scan of plates from the 2nd repetition showing Fol outgrowth from BG and AG stem slices. Each plate includes five stem slices from individual plants.
(D) The column chart shows the surface area (cm^2) of Fol outgrowth from BG and AG stem slices from two repetitions. Open black circles (2nd

repetition) and filled black circles (3rd repetition) represent the average of four to eight stem slices per grafting combination. The scores from two
repetitions were merged and tested using an ordinary one-way ANOVA (**p ≤ 0.01). ns = non-significant.
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a glycoprotein, a redox protein, and a rapid alkalization factor; I-3 a

pathogenesis-related 5 protein, a sugar-degrading enzyme, and a

protease; I-7 two pathogenesis-related protein 1 isoforms, tobacco

stress-induced protein 1, four complex carbohydrate degrading

enzymes, and three proteases. The comparative analysis suggests
Frontiers in Plant Science 07
that in addition to distinct immune responses against Fol, I-1, I-2, I-

3, and I-7 lines accumulate a common set of four PR proteins as

DAPs in the xylem sap of inoculated plants.
Discussion

In this study, we demonstrate the effectiveness of an I-2-

resistant rootstock to protect a susceptible scion from developing

Fusarium wilt symptoms, notwithstanding that Fol colonizes the

scion tissues and secretes effector proteins. The containment of Fol

in the susceptible tissue suggests a potential role of xylem sap in

Fusarium resistance, by transporting virulence-suppressing

components from the root into the shoot. Comparative

proteomics analyses revealed distinct PR protein profiles in xylem

sap obtained from Fol-inoculated resistant lines (I-1, I-2, I-3, and I-

7). Notably, despite their structural diversity, all four immune

receptors triggered the differential accumulation of a common set

of just four PR proteins (PR-5x, PR-P2,1, and two glucan endo-1,3-

b-D-glucosidases). These proteins are, therefore, prime candidates

for being involved in restricting fungal proliferation in the foliage,

thereby preventing disease development. Interestingly, the extent of

fungal colonization in the resistant plants, as monitored by both the

height of host colonization, the amount of fungal outgrowth, and

the accumulation of SIX1, SIX3, and SIX6 proteins, differed

depending on the R-gene present. I-3 lines displayed the strongest
A B

C D

FIGURE 4

I-1, I-2, I-3, and I-7 R-gene mediated resistance effects on tomato xylem sap proteome. Volcano plots represent -log10 p-values and log2
protein abundance ratios by comparing mock- and Fol- inoculated resistant lines (four or five repetitions). (A) Volcano plots compare mock- and
Fol004- inoculated I-1 resistant line, (B) mock- and Fol007- inoculated I-2 resistant lines, (C) mock- and Fol029- inoculated I-3 resistant lines,
and (D) mock- and Fol029- inoculated I-7 resistant lines. Grey dots represent non-differentially accumulating proteins (DAP), blue dots are
downregulated DAPs (-log10 p-value > 1.3, log2 protein abundance ratio < -1), and orange dots are upregulated DAPs (-log10 p-value > 1.3, log2
protein abundance ratio >1). Four upregulated DAPs have been identified in all resistant lines and are highlighted in each volcano plot: PR-5x,
PR-P2, and two glucan endo-1,3-b-D-glucosidase (endo.3BDG-a/b).
FIGURE 3

Fungal SIX proteins are present in xylem sap of resistant I-1, I-2, I-3,
and I-7 lines inoculated with Fol. Log2 fold change values indicate
relative abundance differences of fungal secretory proteins SIX1
(Avr3), SIX3 (Avr2), and SIX6 between Fol- and mock-inoculated
resistant lines (four or five repetitions). Grey bars represent
differentially accumulating SIX proteins based on a Student’s T-test.
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reduction of fungal colonization, I-1 exerted somewhat weaker

responses, while I-2 and I-7 showed the poorest containment,

corresponding to the highest SIX protein abundance.

Our analyses revealed differential accumulations of PR-5x in all

resistant lines (I-1, I-2, I-3, and I-7) at one wpi. PR-5x was identified

previously in the xylem sap of susceptible plants inoculated with a

virulent Fol race 1 at one, two, and three wpi (Rep et al., 2002).

Furthermore, PR-5x was identified as the sole DAP in the xylem sap

of resistant I-2-lines at two wpi, showing a 158-fold increase in

accumulation. Inoculation of susceptible plants resulted in a 17-fold

increase in PR-5x abundance (de Lamo et al., 2018). Apart from its

putative involvement in resistance to F. oxysporum, PR-5x was also

identified as a DAP in xylem sap from tomato plants resistant to the

bacterial vascular pathogen R. solanacearum (Planas-Marquès,

2020). Additionally, two other PR-5 isoforms were identified in

our study: PR-P23 (Q01591) in I-1 and I-7 lines and another PR-5

isoform (A0A3Q7F6T3) in I-3 plants. Two PR-5 isoforms identified

in the apoplast were reported to exhibit direct antifungal activity by

disrupting the lipid bilayer of the pathogen (Vigers et al., 1992).
A

B

FIGURE 5

I-1, I-2, I-3, and I-7 induce the accumulation of unique and shared
DAPs. (A) UpSet plot compares proteins differentially upregulated
during R-gene-mediated resistances. The horizontal bar graph
indicates the total number of DAPs per resistant line. The
intersection bar graph displays the number of DAPs that are unique
(black dot) or shared (colored dot) between resistant lines. (B) The
tile plot shows the presence-absence of DAPs that are present in at
least two R-gene lines. The tile plot color corresponds to the Upset
plot dots.
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TABLE 1 Each I-mediated resistance (I-1, I-2, I-3, and I-7) induces
accumulation of a unique set DAPs.

R-gene line Protein ID Description

I-1

A0A3Q7E9J6
UDP-D-xylose
synthase 2

A0A3Q7IIQ3 Endochitinase 3-like

A0A3Q7IN81 Enolase

Q05538
Basic 30
kDa endochitinase

A0A3Q7H0G7
Dirigent protein 25
isoform X2

A0A3Q7F8E3 Peroxidase 63

I-2

A0A3Q7EN81
Rapid
alkalinization factor

A0A3Q7G526 Blue copper protein

A0A3Q7IS69
GDP-dissociation
inhibitor 1

A0A3Q7HEE3
Epidermis specific
secreted
glycoprotein EP1

I-3

A0A3Q7F6T3
Pathogenesis related
protein 5

A0A3Q7IIS3
Uncharacterized
protein

A0A3Q7EN73
Uncharacterized
protein

A0A3Q7GBV0 Endoglucanase 2

A0A3Q7IPI3
ATP-dependent
Clp protease

I-7

A0A3Q7FE00
Glutaminyl-
peptide
cyclotransferase

Q08697
Pathogenesis-related
protein 1 A1

A0A3Q7HXW1
Pathogenesis-related
protein 1 A2

A0A3Q7HVR3
Uncharacterized
protein

A0A3Q7HKU9
Aspartic
proteinase Asp1

A0A3Q7J2Z7 Polygalacturonase

A0A3Q7I7U0
Stem-specific
protein TSJT1

A0A3Q7HIV8
Cellulose synthase-
like protein E1

A0A3Q7GSL2
Superoxide
dismutase

A0A3Q7F3P0
Epidermis specific
secreted glycoprotein
EP1-like

(Continued)
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Overexpression of specific PR-5 members enhanced resistance to

Phytophthora infestans, Rhizoctonia solani, Fusarium graminearum,

and Alternaria alternata in potato, rice, wheat, and tobacco,

respectively (Liu et al., 1994; Chen et al., 1999; Datta et al., 1999;

Anand et al., 2003). These studies suggest a potentially direct

activity of PR-5 proteins in the xylem sap against vascular

pathogens. Whether the xylem-localized PR-5 isoforms identified

in this study have direct antifungal activity awaits additional studies.

Besides PR-5x, differential accumulation of PR-P2 and two endo-

b-glucosidases was observed in the I-1, I-2, I-3, and I-7 resistant lines.

These PR proteins were previously not detected as DAPs in the xylem

sap of Fol-inoculated resistant I-2 plants (de Lamo et al., 2018). This
Frontiers in Plant Science 09
discrepancy could be attributed to different sampling time points for

xylem sap collection (two wpi versus one wpi in this study) and/or

increased sensitivity of the protein purification method and LC-MS

machine used. In this study, ~ 700 plant proteins were identified in

mock-inoculated I-2 plants at 1wpi, while the previous study revealed ~

285 plant proteins at 2wpi using the same plant line and inoculation

procedure (de Lamo et al., 2018). PR-P2 belongs to the PR-4 protein

subgroup II, due to the absence of a chitin-binding domain. Tomato

lines that exhibit resistance to Cladosporium fulvum show a faster

accumulation of PR-P2 as compared to susceptible lines (Linthorst

et al., 1991). A wheat PR-4 hydrolyses Fusarium culmorum RNA and

inhibits fungal growth (Guevara-Morato et al., 2010). b-glucosidases
hydrolyze glucose polymers such as cellulose (Bhat and Bhat, 1997).

Overexpression in maize has been associated with enhanced resistance

against both the oomycete pathogen P. aphanidermatum and the Asian

corn borer Ostrinia furnacalis (Liu et al., 2023). As the latter does not

have glucose polymers in its exoskeleton the action of the proteinmight

be to release DAMPs amplifying the immune response. To explore a

potential causal relationship between Fusarium resistance and PR-5x,

PR-P2, and the two-glucan endo-1,3-b-D-glucosidases future

experiments could focus on generating overexpression and knock-

out tomato lines to test these genes either individually or in

combination, and by testing purified proteins for direct

antifungal activity.

Our comparative proteomics study also unveiled diverse PR

proteins that exhibited differential accumulation in the xylem sap

of distinct resistant lines, namely PR-1, PR-2, PR-3, PR-6, and PR-7.

PR-1 (Q08697; A0A3Q7HXW1) undergoes proteolytic cleavage to

release the CAPE1 peptide that is involved in plant immune

responses (Chen et al., 2014). Overexpression of PR-1 inhibited

oomycete and rust fungus colonization in tomato and bean plants,

respectively (Rauscher et al., 1999; Li et al., 2011). Co-silencing of PR-

1 and PR-5, which were reported to interact, enhanced susceptibility

to leaf rust in wheat plants (Wang et al., 2020). PR-2, b-1,3-
glucanases (A0A3Q7GBV0), inhibit fungal growth by hydrolyzing

b-1,3-glucans, a major structural component of fungal cells (Mauch

et al., 1988; Sela-Buurlage et al., 1993; Balasubramanian et al., 2012).

Co-expression of b-1,3-glucanases and chitinases in transgenic

tomato plants resulted in enhanced Fol resistance (Jongedijk et al.,

1995). PR-3, chitinases (A0A3Q7IHS3; A0A3Q7H377;

A0A3Q7GMW3, A0A3Q7FJ40, Q05539) hydrolyze chitin, a major

fungal cell wall component, thereby also indirectly activating defense

mechanisms by releasing PAMPs (Ohnuma et al., 2012). Wheat

chitinase overexpression in tomato plants enhanced Fol resistance

(Girhepuje and Shinde, 2011). PR-7s, P69B (A0A3Q7HVI4), and

P69G (A0A3Q7HTM2) belong to the family of subtilisin-like

proteases, and these show differential accumulation in the xylem

sap of R. solanacearum resistant tomato plants (Planas-Marquès,

2020). Transient expression of P69B and P69G in N. benthamiana

plants reduced R. solanacearum proliferation (Zhang et al., 2023).

PR-6 (P04284), a proteinase inhibitor, blocks pathogen protease

activity, reducing its proliferation (Lopes et al., 2009; Rodrıǵuez-

Sifuentes et al., 2020). Each R-gene induces the accumulation of a

unique subset of these PR proteins. This difference might be

attributed to the diverse structures and cellular localization of the

R-receptors activating distinct and partially overlapping signaling
TABLE 1 Continued

R-gene line Protein ID Description

A0A3Q7JPB1
Glucan endo-1,3-
beta-glucosidase 14

A0A3Q7HS86
GSDL-like
lipase/acylhydrolase

A0A3Q7I9H4
Tobacco stress-
induced 1

A0A3Q7IGR5
Receptor-like
protein 33

A0A3Q7EEZ8
Glucan endo-1,3-
beta-glucosidase B

A0A3Q7EP77 Polygalacturonase

A0A3Q7JEN8
Dihydrolipoyl
dehydrogenase

A0A3Q7EHR7 Basic 7S globulin

A0A3Q7HJU0
Pectin
acetylesterase 8

A0A3Q7ESD4
Inactive leucine-rich
repeat receptor
kinase XIAO

A0A3Q7HTM2
Subtilisin-like
protease P69G

A0A3Q7ESI1 Phospholipase C2

A0A3Q7J0R2
Ubiquitin carboxyl-
terminal hydrolase
12-like isoform

P85997
Kunitz trypsin
inhibitor 2-like

K4C9C4
CLAVATA3/ESR
(CLE)-related
protein 9

O48625 Miraculin

A0A3Q7EU87
Trisosephosphate
isomerase
chloroplastic

A0A3Q7FPY9 Cysteine protease

A0A3Q7F218
Alpha-
glucosidase-like
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pathways. Despite these differences, the accumulation of a shared set

of PR proteins in the xylem sap, many of which also accumulate in

apoplastic spaces upon immune activation, indicates a common

defense response (Joosten and de Wit, 1989; van Loon et al., 2006).

The role of the described PR proteins in vascular resistance could be

studied using disease assays on tomato plants in which these genes

are overexpressed or knocked-out. Possibly these assays can be

performed on hairy roots generated after transformation with

Rhizobium rhizogenes to accelerate the generation of stably

transformed roots. Besides in planta assays, direct antifungal

activity of the proteins could be assessed using purified

recombinant protein and in vitro antifungal assays.

Plants protected by I-1-, I-2-, and I-3-mediated resistance allowed

Fol to colonize stems up to 41%, 67%, and 29% of their total height,

respectively (van der Does et al., 2019). We show that I-7-mediated

resistance permits Fol to colonize up to 63% of the plant stem height,

while susceptible plants were almost completely colonized (96%).

Varying levels of several Fol SIX proteins were detected in the xylem

sap of the resistant I-1, I-2, I-3, and I-7 lines at 1wpi. It is unknown

whether there are differences in SIX secretion efficiencies among the

three Fol races (Fol004, Fol007, and Fol029) used, nonetheless, we

observe a strong correlation between the extent of fungal stem

colonization and the abundance of SIX proteins in the xylem sap.

Notably, I-3 exhibited the lowest stem colonization and the lowest

abundance of SIX proteins, while I-2 and I-7 showed the highest stem

colonization along with the highest SIX protein quantity. Possibly, the

ETI responses triggered by the distinct I genes affect effector secretion

and/or activity to different extents resulting in differences in host

colonization by the fungus. Alternatively, the differences in Fol

proliferation among the resistant lines may relate to differences in the

expression patterns of the R-genes in the root tissues (Supplementary

Figure 2). I-1 is expressed in the epidermis and lateral root cap; I-3 in

the exodermis, two cortex cell layers, and endodermis; I-7 in the xylem

and epidermis maturation zone (Kajala et al., 2021). Based on an I-2

promotor GUS reporter system high expression of I-2 was observed in

xylem parenchyma cells (Mes et al., 2000). These data suggest that R-

gene activation inmultiple outer root tissue layersmay result in reduced

Fol colonization and abundance in the vasculature of the stem. On the

contrary, when Fol is recognized in the xylem parenchyma cells, there is

an increase in Fol colonization and abundance. It is tempting to

speculate that earlier detection allows the plant to mount a faster and

more effective defense response. This early response may include the

accumulation of PR proteins in the xylem (Linthorst et al., 1991) and/or

the development of mechanical barriers. Fortification of the vasculature

occurs during Fusarium oxysporum f. sp. pisi and R. solanacearum

colonization of pea and tomato plants, respectively (Bani et al., 2018;

Kashyap et al., 2022). To investigate whether the timing of the response

is a crucial factor, xylem sap could be collected at earlier time points. A

comparison could then be made between an R-gene expressed in the

outer root tissue layer and one expressed in xylem parenchyma cells. To

establish a stronger link between expression patterns and Fol resistance,

and to rule out any influence from structural differences between

R-genes, the promoter regions of different R-genes could be swapped

and tested for Fol colonization potential.
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SUPPLEMENTARY FIGURE 1

Fol029 (race 3) can colonize I-7 tomato plants. Ten-day-old Fol029

susceptible (cv. C32) or I-7 resistant (cv. MM+I-7) tomato seedlings were
mock- or Fol- inoculated. (A) Nine dpi, the distance between the soil and the

tip of the stem was measured. The whole stem was cut into approx. 8mm
stem sections and placed on agar plates in a consecutive order. (B)
Representative scans of three days old plates display Fol outgrowth from
Frontiers in Plant Science 11
stem sections. (C) Each bar graph illustrates one repetition, which shows the
average fungal colonization height of ten susceptible or resistant plants in cm.

Each blue bar represents the average total stem height per treatment. The red

bar represents the average height until where Fol was able to colonize the
stem. Error bars indicate SD.

SUPPLEMENTARY FIGURE 2

I-1, I-2, I-3, and I-7 spatial expression patterns in tomato roots. I-1

(Solyc11g011180), I-3 (Solyc11g055640), and I-7 (Solyc08g077740)
expression patterns are based on https://bar.utoronto.ca/eplant_tomato/

and I-2 (Solyc11g071430) on GUS reporter lines. Tissue layers with
expression are colored in red (I-1, I-3, I-7) or orange (I-2).

SUPPLEMENTARY TABLE 1

Data annotation and statistical analyses of xylem sap proteomics data from
mock or Fol-inoculated I-1, I-2, I-3, and I-7 resistant lines. Every protein ID is

either labeled as “Present” (identified in 4 of 5 or for I-1 3 of 4 repetitions) or
“Marginal” (identified only in 1 of 5 or for I-1 1 of 4 repetitions). The table

includes protein IDs, relative abundance values (LFQ), fasta headers, p-values,

abundance ratio values, and peptide counts.
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and characterization of an elicitor of necrosis isolated from intercellular fluids of
compatible interactions of Cladosporium fulvum (Syn. Fulvia fulva) and tomato. Plant
Physiol. 77, 642–647. doi: 10.1104/pp.77.3.642
Girhepuje, P. V., and Shinde, G. B. (2011). Transgenic tomato plants expressing a

wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f.
sp. lycopersici. Plant Cell Tissue Organ Culture 105, 243–251. doi: 10.1007/s11240-010-
9859-5

Gonzalez-Cendales, Y., Catanzariti, A.-M., Baker, B., Mcgrath, D. J., and Jones, D. A.
(2016). Identification of I-7 expands the repertoire of genes for resistance to Fusarium
wilt in tomato to three resistance gene classes. Mol. Plant Pathol. 17, 448–463.
doi: 10.1111/mpp.12294

Gordon, T. R. (2017). Fusarium oxysporum and the fusarium wilt syndrome. Annu.
Rev. Phytopathol. 55, 23–39. doi: 10.1146/annurev-phyto-080615-095919

Gottlieb, D. (1943). The presence of a toxin in tomato wilt. Phytopathology 33, 126–
135.
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