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Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic

pathway, play important roles in plant defense and exhibit free radical scavenging

properties in mammals. Recent advancements in understanding the synthesis,

transport, and regulation of isoflavonoids have identified their biosynthetic

pathways as promising targets for metabolic engineering, offering potential

benefits such as enhanced plant resistance, improved biomass, and restoration of

soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid

biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters

influencing their subcellular localization, molecular mechanisms regulating the

metabolic pathway (including transcriptional and post-transcriptional regulation, as

well as epigenetic modifications). Metabolic engineering strategies aimed at

boosting isoflavonoid content in both leguminous and non-leguminous plants.

Additionally, we discuss emerging technologies and resources for precise

isoflavonoid regulation. This comprehensive review primarily focuses on model

plants and crops, offering insights for more effective and sustainable metabolic

engineering approaches to enhance nutritional quality and stress tolerance.
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Introduction

Isoflavonoids, a major subclass of flavonoids, play pivotal roles in plant growth,

development, and stress defense, with recognized implications for human health (Dixon,

1999; Veitch, 2013; Wang et al., 2022). In plant-microbe interactions, isoflavonoids

function as signal molecules perceived by microorganisms (Biala-Leonhard et al., 2021).
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They act as phytoalexins, inhibiting the growth and reproduction of

bacteria and fungi, fortifying plant defense against pathogens.

Simultaneously, isoflavonoids attract rhizobia to legume root

nodules, establishing symbiotic relationships that enhance plant

growth, reduce nitrogen fertilizer use, and improve soil fertility

(Abd-Alla et al., 2023). Furthermore, the synthesis and

accumulation of isoflavonoids in plants are induced by various

biotic and abiotic stresses, enhancing overall adaptability (Dixon

and Paiva, 1995). Due to their structural and functional

resemblance to endogenous estrogen, isoflavonoids and their

derivatives are recognized as phytoestrogens, finding applications

in functional foods, nutraceuticals, and medicine for disease

prevention and treatment (Dixon, 2004; Griffiths et al., 2014; Yu

et al., 2021).

With a profound understanding of the significance of

isoflavonoid compounds, current research has increasingly

emphasized the biosynthesis, transport, and regulation processes

in plants. This emphasis has significantly propelled advancements

in metabolic engineering and de novo synthesis studies. While

isoflavonoids are predominantly found in leguminous plants,

their scarcity in other plants has led researchers to explore

metabolic engineering and synthetic biology as promising

strategies. These approaches address the challenges posed by the

low abundance and difficulty in obtaining large quantities through

conventional crop-based manufacturing or chemical synthesis.

Prior reviews have provided detailed reviews of the synthesis,

regulation, and metabolic engineering of isoflavones (Yu and

McGonigle, 2005; Sohn et al., 2021). However, as time progresses,

the functions of an increasing number of genes are being reported,

and the application of newer technologies are spurring additional

breakthroughs in the study of isoflavonoid synthesis and metabolic
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engineering. This review will focus on a wider variety of

isoflavonoid compounds.
The chemical structures and functions
of various isoflavonoids

Isoflavonoids, along with flavonoids, lignins, coumarins, and

stilbenes, all belong to the class of phenylpropanoid compounds,

which are crucial for plant adaptation to terrestrial environments,

enabling plants to withstand gravity and offering protection

against UV radiation, desiccation, pathogens, and herbivores

(Muro-Villanueva et al., 2019; Yadav et al., 2020; Dong and

Lin, 2021). Isoflavonoids, also known as 3-phenylchromanes,

feature a C6-C3-C6 backbone with the phenyl B-ring attached

to position 3 of the heterocyclic pyran ring (the C ring).

Based on structural characteristics, they are classified into

isoflavones, isoflavans, pterocarpans, rotenoids, coumestans, and

derivatives formed through methylation, glycosylation, and

acylation (Figure 1).

Isoflavones, as shown in Figure 2, such as genistein, daidzein,

biochanin A, formononetin, daidzin, ononin, etc., are found in

various plants, with particularly high amounts in legumes like

soybeans, chickpeas (Cicer arietinum), fava beans (Vicia faba L.),

alfalfa (Medicago sativa), and medicinal plants like red clover

(Trifolium pratense), Glycyrrhiza uralensis, and Astragalus

membranaceus (Paiva et al., 1991; Kaufman et al., 1997; Tsao

et al., 2006; Gao et al., 2015; Zhang et al., 2018). Almost all

isoflavones exhibit antibacterial effects, aiding plants in resisting

pathogens. Among them, genistein and daidzein serve as broad-

spectrum antimicrobial agents, inhibiting the growth and
FIGURE 1

Structures and classification of isoflavonoids. This basic C6-C3-C6 structure consists of a benzene ring (A-ring), a pyran ring (C-ring), and a phenyl
group (B-ring).
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reproduction of bacteria and fungi, thereby enhancing plant defense

against pathogens (Dixon and Ferreira, 2002; Araya-Cloutier

et al., 2017).

Pterocarpans, as shown in Figure 2, alongside isoflavones, are

prevalent isoflavonoids found in various plants, including

bitucarpin (A, B) and erybraedin C from Bituminaria morisiana

and Bituminaria. bituminosa, medicarpin from Medicago

truncatula and alfalfa, glycinol, and glyceollin from soybean,

among others (Higgins, 1972; Paiva et al., 1991; Dixon, 1999;

Pistelli et al., 2003; Naoumkina et al., 2007; Yoneyama et al.,
Frontiers in Plant Science 03
2016; Sukumaran et al., 2018). In M. truncatula, medicarpin acts

as an inducible “phytoalexin,” accumulating during defense

responses (Naoumkina et al., 2007; Farag et al., 2008). In soybean,

glycinol is formed through the cyclization of daidzein and serves as

a precursor to glyceollin. Glyceollin is synthesized via the

prenylation of glycinol in response to pathogen infection,

enhancing resistance against soybean pathogens like Phytophthora

sojae, Diaporthe phaseolorum var. meridionales, Macrophomina

phaseolina, and Sclerotinia sclerotiorum (Akashi et al., 2009; Lygin

et al., 2010; Yoneyama et al., 2016; Sukumaran et al., 2018). In B.
FIGURE 2

Biosynthetic pathways of isoflavonoids. PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate CoA ligase; CHS,
chalcone synthase; CHI, chalcone isomerase; IFS, isoflavone synthase; HI4′OMT, 2-hydroxyisoflavanone 4′-O-methyltransferase; HID/IFD, 2-
hydroxyisoflavanone dehydratase; IOMT, isoflavonoid O-methyltransferase; UGT, glycosyltransferases; IMaT, isoflavone glucoside
malonyltransferase; I2′H, isoflavone 2′-hydroxylase; IFR, isoflavone reductase; VR, vestitone reductase; PTS, pterocarpan synthase; PTR, Pterocarpan
reductase; I3S, isoflav-3-ene synthase ; P6aH, pterocarpan 6a-hydroxylase; G2DT, glycinol 2-dimethylallyl transferase; G4DT, glycinol 4-dimethylallyl
transferase; GS, glyceollin synthase.
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bituminosa, the accumulation of pterocarpans (bitucarpin A and

erybraedin C) significantly increases with treatment using

arbuscular mycorrhizal fungi, offering a viable method for

medicinal pterocarpan production (Pistelli et al., 2003, 2017).

Coumestrol, the principal coumestan compound, is derived

from the conversion of unstable precursors isoflav-3-enes

(Figure 2). It functions as both a phytoalexin and phytoestrogen,

contributing to the well-being of both plants and humans (Martin

and Dewick, 1980; Boue et al., 2000; Yuk et al., 2011; Ha et al., 2019;

Uchida et al., 2020; Mun et al., 2021). For instance, the

accumulation of coumestrol and the expression of genes involved

in soybean coumestrol biosynthesis increase during leaf

development, senescence, pathogen infection, nodulation, various

stress treatments, and hormone treatments such as salicylic acid

(SA), methyl jasmonate (MeJA), and ethylene (ET). This suggests

that coumestans, including coumestrol, play crucial roles in plant

development and stress defense (Boue et al., 2000; Lee et al., 2012;

Tripathi et al., 2016; Ha et al., 2019; Mun et al., 2021; Ohta et al.,

2021; Lee et al., 2022). Other coumestan compounds, like

wedelolactone and psoralidin, exhibit similar functions. However,

the key enzymes and regulators involved in their biosynthesis still

require further exploration (Perez Rojo et al., 2023; Wang

et al., 2023b).

Isoflavans, a specific subclass of isoflavonoids, are 5-

deoxyisoflavonoids first discovered in legumes (Figure 2). This

category includes glabridin from licorice (Glycyrrhiza glabra),

vestitol, and sativan from Lotus japonicus, alfalfa, and others

(Dewick and Martin, 1979; Hayashi et al., 1996; Shimada et al.,

2000; Akashi et al., 2006; Veitch, 2009, 2013). The synthesis of

vestitol in Lotus sp. is notably induced by ultraviolet (UV) radiation

and the attachment of the root parasitic plant Striga hermonthica.

Pterocarpan reductase (PTR) catalyzes this process, utilizing

medicarpin as a substrate (Akashi et al., 2006; Ueda and

Sugimoto, 2010; Kaducova et al., 2019; Kaducová et al., 2022).

Subsequent ly , vest i to l undergoes methylat ion by O-

methyltransferase to produce sativan, another phytoalexin that

accumulates significantly upon fungal pathogen infection in

alfalfa and Lotus sp (Ingham and Harborne, 1976; Dewick and

Martin, 1979; Saunders and O’neill, 2004; Trush et al., 2023).

Glabridin, a prenylated isoflavan found in licorice plants, exhibits

notable fungicidal activity against various phytopathogenic fungi

such as Fusarium graminearum, Sclerotinia sclerotiorum, and

Corynospora cassiicola (Simmler et al., 2013; Yang et al., 2021; Li

et al., 2021a).

Rotenone and its derivative deguelin, the most common

rotenoid compounds in Derris sp., are extensively employed as

insecticides due to their capability to inhibit electron transport in

the respiratory chain (Anzeveno, 1979; Hail and Lotan, 2004;

Preston et al., 2017; Russell et al., 2020);. Additionally, rotenone

exhibits anticancer activity in vitro but its application is limited due

to neurotoxicity associated with its ability to cross the blood-brain

barrier (Cannon et al., 2009; Deng et al., 2010). However,

hydroxylated rotenoids are more hydrophilic and less likely to

readily cross the blood-brain barrier, potentially acting as cell-

selective killers to inhibit the proliferation of cancer cells (Naguib

et al., 2018; Zhang et al., 2022a).
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Indeed, the diversity and complexity of isoflavonoid

compounds are largely due to chemical modifications such as

methylation, glycosylation, and acylation. Differences in

modification sites, types, and numbers of modifying groups can

lead to changes in the physicochemical properties and biological

activities of these derivatives. Therefore, studying the structure-

function relationships of isoflavonoid derivatives and the related

enzymes will contribute significantly to the efficient targeted

synthesis of complex isoflavonoids in synthetic biology.
Biosynthesis of isoflavonoids in plants

The biosynthesis of isoflavonoids begins with L‐phenylalanine

and forms compounds with a classical C6-C3 core, which is called

phenylpropanoid because of containing a benzene ring (phenyl)

and a propionic acid side chain. The chemical intermediate p-

coumaroyl-CoA catalyzed by 4-coumarate: CoA ligase (4CL) is a

highly activated molecule, which acts as a key hub to determine the

metabolic flow in response to developmental or environmental

signals (Figure 2). One is to form molecules with a C6-C3 core

structures, such as lignin monomers (including paracoumaryl

alcohol, coniferyl alcohol, and sinapyl alcohol), and the other is to

combine with Malonyl-CoA to form molecules with a C6-C3-C6

core, such as flavonoids (2-phenylchromen-4-one and

derivatives) and isoflavonoids (3-phenylchromen-4-one and

derivatives) (Figure 2).

Isoflavonoids can be divided into “phytoanticipins,” which are

pre-existing compounds, including genistein, daidzein,

formononetin, lupin, etc., or inducible “phytoalexins,” which are

produced upon infection by pathogens or insects, such as

medicarpin, pisatin, sativan, vestitol, glyceollin, and coumestrol

(Dixon and Ferreira, 2002). While predominantly found in

leguminous plants, isoflavonoids have been identified in various

plant species beyond the legume family, including iridaceous,

compositous, moraceous plants, barley (Hordeum vulgare), and

others (Reynaud et al., 2005; Mackova et al., 2006; Darbour et al.,

2007; Abderamane et al., 2011; Picmanov et al., 2012; Polturak et al.,

2023). A recent study in wheat unveiled a pathogen-induced

biosynthetic gene cluster with seven enzymes, including chalcone

synthase (CHS1), non-induced chalcone isomerase (CHI), two

cytochrome P450s, and three O-methyltransferases (OMTs),

resulting in the production of a wheat-specific isoflavonoid

named triticein (Polturak et al., 2023). This breakthrough

provides new opportunities for isoflavonoid synthesis in non-

legume crop plants.

As shown in Figure 2, the isoflavonoid biosynthetic pathway

initiates with isoflavone synthase (IFS), catalyzing the migration of

the B-ring from the 2- to the 3-position of the C ring, yielding 2-

hydroxyisoflavanone (Jung et al., 2000; Subramanian et al., 2006).

Subsequent dehydration by 2‐hydroxyisoflavanone dehydratase

(HID/IFD) results in isoflavones like genistein and daidzein

(Hakamatsuka et al., 1998; Akashi et al., 2005; Shimamura et al.,

2007). In soybeans (Glycine max), another HID/IFD converts 4′-
methoxylated 2-hydroxyisoflavanones into formononetin or

biochanin A (Akashi et al., 2005). Diverse isoflavonoid
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compounds result from multiple O-methyltransferases (OMTs)

methylating at the C3′-,4′, 3-, or 7-hydroxyl group. Various

derivatives, such as 3’-methoxy-puerarin, 4′-O-methylated

isoflavonoid formononetin, and 7-O-methylated isoflavone

isoformononetin, are formed (He and Dixon, 2000; Liu and

Dixon, 2001; Zubieta et al., 2001; Akashi et al., 2003; Liu et al.,

2006; Li et al., 2016a). Subsequently, methylated formononetin

transforms into medicarpin through isoflavone reductase (IFR),

vestitone reductase (VR), and pterocarpan synthase (PTS) (Paiva

et al., 1991; Oommen et al., 1994; Dixon et al., 1995; Guo and Paiva,

1995 ; Nakamura et a l . , 1999 ; Uchida et a l . , 2017) .

Glycosyltransferases (UGTs) further contribute to derivatives

synthesis, e.g., 7-O-glucosyltransferase converting daidzein to

daidzin and 8-C-glucosyltransferase forming puerarin from

daidzein (He and Dixon, 2000; Noguchi et al., 2007; Li et al.,

2014; Funaki et al., 2015; Wang et al., 2017). Acyltransferases add

acyl groups (prenyl or acetyl) to produce prenylated or acetylated

isoflavonoids, enhancing antimicrobial activities (Dixon, 1999;

Mukne et al., 2011; Shen et al., 2012; Ahmad et al., 2017; Araya-

Cloutier et al., 2017; Mouffouk et al., 2017; Araya-Cloutier et al.,

2018; Kalli et al., 2021).

A large number of isoflavonoid compounds are produced in

plants during specific developmental stages or in response to

environmental signals, which are accompanied by re-distribution

of substrates and induced phytoalexin synthesis (Piślewska et al.,

2002; Gutierrez-Gonzalez et al., 2009, 2010). In many times, the

encoding genes of these enzymes only function after being induced

by speific factors (Shimada et al., 2007; Shelton et al., 2012).

Therefore, key enzymes in the isoflavonoid biosynthetic pathway,

especially those involved in the modification of isoflavonoids such

as glycosyltransferases and methyltransferases for the modification
Frontiers in Plant Science 05
of -OH groups at C-7, C-5, or C-4’, glycosidases for hydrolysis

glycosylated isoflavonoids, and acyltransferase for malonylation or

acetylation of isoflavonoids are still not fully characterized, and

their functions require further elucidation (Figures 2, 3). To

comprehensively explore these biosynthetic pathways and

regulatory mechanisms, germplasm resources of legumes can be

collected or established, and integrated approaches such as genome

resequencing techniques, transcriptomics, and metabolomics can be

applied to identify the genes responsible for synthesizing

key enzymes.
Transport of isoflavonoids in legumes

Extensive studies have indicated that glycosylation and

acylation modifications of isoflavonoids not only enhance

transporter affinity and efficiency, but also improve water

solubility and stability, facilitating storage in vacuoles or

extracellular secretion (Dixon, 1999; Zhao et al., 2011; Le Roy

et al., 2016; Ahmad et al., 2017; Ku et al., 2020; Ahmad et al.,

2021). Additionally, isoflavonoids can act as signaling molecules by

translocating to the nucleus and influencing the expression of

downstream genes (Naoumkina et al., 2007; Naoumkina and

Dixon, 2008; Yu et al., 2008; Zhao and Dixon, 2010). As shown

in Figure 3, various transport mechanisms, including vesicle

trafficking, ATP-binding cassette (ABC) transporters, multidrug

and toxic compound extrusion (MATE) transporters, and

glutathione S-transferase (GST), located in the vacuolar

membrane or plasma membrane, have been reported to play roles

in the transport and distribution of isoflavonoids (Li et al., 1997;

Naoumkina et al., 2007; Naoumkina and Dixon, 2008; Zhao and
FIGURE 3

Transport and accumulation of isoflavonoids in legumes. GS-X pump, glutathione conjugates pump; PDRs, pleiotropic drug resistance transporters
belonging to the ABCG subfamily; GSTs, glutathione S-transferases; ER, endoplasmic reticulum. The figure was created with Medpeer (https://image.
medpeer.cn/).
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Dixon, 2010; Zhao et al., 2011; Banasiak et al., 2013; Zhao, 2015;

Biala-Leonhard et al., 2021).

In leguminous plants, isoflavonoids released by the roots serve

as signaling molecules, influencing rhizobia to promote symbiosis.

Identified transporters play crucial roles in the release of

isoflavonoids from roots. For instance, in Lupinus albus,

phosphorus deficiency induces the expression of LaMATE,

LaMATE2, and LaMATE3, as well as the release of genistein from

roots. The individual silencing of these genes reduces genistein

release. Among them, LaMATE2 has been confirmed to transport

genistein using yeast microsomal membrane vesicles, while the

isoflavone transport functions of LaMATE and LaMATE3 require

further exploration (Figure 3). Additionally, LaMATE2 is induced

by nitrogen deficiency, and its silencing also reduces the number of

nodules, indicating that LaMATE2 facilitates the export of

isoflavonoids into the rhizosphere, fostering nodule formation

(Biala-Leonhard et al., 2021; Zhou et al., 2021). In M. truncatula,

a plasma membrane-localized ABC transporter MtABCG10, which

belongs to the G subfamily, is involved in medicarpin precursor

transport, modulates the distribution of 4-coumarate and

liquiritigenin during nodule formation and plant defense against

fungal pathogens (Jasinski et al., 2009; Banasiak et al., 2013; Biala

et al., 2017). LjABCG1, which is homologous to the MtABCG10 in

L. japonicus, is associated with pathogenesis rather than symbiosis,

but the substrate remains unclear and requires further investigation

(Sugiyama et al., 2015). In soybean, 13 pleiotropic drug resistance

genes (PDRs) encoding ABCG transporters were found to be

expressed in roots. One of them was confirmed to participate in

membrane transport of genistein, daidzein, and other isoflavonoid

aglycones, initiating legume-rhizobium symbiosis formation

(Sugiyama et al., 2007, 2008). Additionally, the b-glucosidase
GmICHG in soybean cell walls hydrolyzes genistin, contributing

to isoflavone secretion in roots (Suzuki et al., 2006).

Transporters also play a crucial role in directing isoflavonoids

into the vacuole for storage. In soybean, GmMATE1, GmMATE2,

and GmMATE4, localized in the vacuolar membrane, are implicated

in transporting isoflavones for accumulation through yeast uptake

assay. In addition, it has also been confirmed that the total isoflavone

content in seeds is significantly increased due to the overexpression of

GmMATE1 in transgenic soybean, while it is significantly decreased

due to GmMATE1 mutation (Ng et al., 2021; Ku et al., 2022). The

utilization of maize GST-mediated conjugation with GSH

(medicarpin-GS) significantly enhances the uptake of isoflavonoids

by vacuoles (Li et al., 1997). When plants are exposed to stress-

induced signals, they utilize store isoflavonoids to synthesize

phytoalexin to enhance their resistance. For example, wound signal

MeJA induces a decrease in the content of isoflavone glycosides, while

it can also induce the accumulation of medicarpin in alfalfa, which is

accompanied by the up-regulation the expression of multiple ABC

transporter genes and b-glucosidase genes, suggesting that ABC

transporters may be involved in transport of isoflavone glycosides

from the vacuole to the cytoplasm for the synthesis of medicarpin,

thereby increasing plant resistance to wounding (Naoumkina et al.,

2007). However, the specific ABC transporters involved in this

process remain unclear and require further exploration.
Frontiers in Plant Science 06
As shown in Figure 3, the transporters that have been reported

so far are mainly involved in the transport of isoflavones such as

genistein, while there is scarce research on proteins that transport

other types of isoflavonoids. Among them, although MtABCs may

be involved in the transport of medicarpin, it is still unclear which

ABC protein is responsible. There are also some transporter

proteins whose encoding gene expression levels can affect the

change in isoflavone content, but whether they have a direct

transport function needs further confirmation. Overall, a more in-

depth understanding of the transporters involved in their

conveyance, accumulation, and extracellular secretion is essential

for unraveling their physiological and pathological actions in plants.
Regulation of
isoflavonoid biosynthesis

The biosynthesis of isoflavonoids in plants is intricately

regulated by diverse environmental factors (such as UV radiation,

fungal infection, nitrogen, and phosphorus deficiencies), through

transcriptional regulation, post-translational modifications, and

epigenetic changes (Dastmalchi et al., 2017; Su et al., 2021; Wang

et al., 2023a).

Numerous studies have demonstrated the accumulation of

isoflavonoid in plants is also induced by hormonal signals (Ng

et al., 2015; Boivin et al., 2016; Yuk et al., 2016; Jeong et al., 2018;

Kurepa et al., 2023). The dynamic presence or absence of

isoflavonoids significantly influences plant resistance to fungi and

environmental stresses, shaping plant growth and development

through intricate modulation of auxin transport in vivo (Mathesius,

2001; Wasson et al., 2006; Gao et al., 2021; Zhang et al., 2022b). For

instance, in alfalfa, exposure to a fungal elicitor promptly triggers the

accumulation of the phytoalexin medicarpin, subsequently

undergoing glycosylation and malonylation to form isoflavonoid

conjugates (Kessmann et al., 1990). In M. truncatula, fungal

infection triggers de novo medicarpin biosynthesis, while wound

signals induce the downstream genes converting formononetin and

isoflavone glycosides into medicarpin (Naoumkina et al., 2007; Farag

et al., 2008). RNA interference-induced silencing of chalcone

synthase gene (CHS) in M. truncatula amplifies auxin transport,

leading to an impaired ability to form nodules and a deficiency in

(iso)flavonoids, particularly formononetin, daidzein and medicarpin

(Wasson et al., 2006). When using these compounds and their

glycoside forms to treat the wild-type roots, only the free

formononetin significantly inhibited auxin transport. However,

compared to the wild type, CHS silencing increased auxin transport

in roots, indicating that isoflavonoid acts as an auxin transport

inhibitor in M. truncatula (Laffont et al., 2010). Additionally,

transcriptome analysis of M. truncatula root hairs during rhizobial

infection reveals the induction of genes associated with auxin

signaling, strigolactone (SL), gibberellic acid (GA), brassinosteroid

(BR), and medicarpin biosynthesis, accompanied by the repression of

genes involved in lignin biosynthesis. This emphasizes the pivotal

roles of (iso) flavonoids and plant hormones, particularly auxin, in

the context of rhizobial infection (Breakspear et al., 2014).
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An optimal auxin gradient is required for the formation and

development of legume nodule primordia (Benkova et al., 2003;

Kohlen et al., 2018). In soybean, the involvement of the PIN-

FORMED auxin transporter GmPIN1 in nodulation has been

elucidated. This process is mediated by two nodulation regulators,

(iso)flavonoids (genistein and 7,4′-dihydroxyflavone), which

expand GmPIN1 distribution, and cytokinin, which rearranges

the cellular polarity of GmPIN1. This orchestration establishes an

appropriate auxin gradient, fostering soybean nodulation (Gao

et al., 2021). Furthermore, GmPIN1 is involved in the polar

transport of auxin from the leaf to the petiole base, resulting in

an asymmetric distribution of auxin in the upper and lower petiole

cells. This asymmetry significantly impacts cell expansion and the

leaf petiole angle. Light-induced (iso)flavonoids accumulate more in

the upper petiole cells, inhibiting GmPIN1 expression and

disrupting its distribution, leading to reduced auxin in the upper

petiole cells. Conversely, lower petiole cells, with lower (iso)

flavonoid levels, accumulate more auxin, promoting cell

expansion (Zhang et al., 2022b). In addition, cytokinin signaling

induces the expression of (iso)flavonoid synthesis genes, influencing

the accumulation of (iso)flavonoids and auxin transport, thereby

impacting nodule formation (Goyal and Ramawat, 2008; Ng

et al., 2015).
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As previously discussed, (iso)flavonoid accumulation is induced

in response to light or UV radiation, a process mediated by proteins

engaged in light signal transduction pathways. As shown in

Figure 4, these include UV-A and blue-light photoreceptors

cryptochromes (CRYs) and phototropins (PHOTs), along with

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1, an E3

ubiquitin ligase), ELONGATED HYPOCOTYL 5 (HY5, a basic

leucine-zipper transcription factor), and B-BOX CONTAINING

PROTEINs (BBXs) (Xu, 2020; Liu et al., 2023). A recent study

confirmed that the photoreceptors–COP1–HY5-BBX4 regulatory

module could regulate the isoflavonoid biosynthesis in soybean

(Song et al., 2023). GmSTF1 and GmSTF2 (HY5 orthologs) serve as

positive regulators of isoflavonoid synthesis, activating the

expression of GmPAL2.1, GmPAL2.3, and GmUGT2 while

repressing GmBBX4 expression. GmBBX4, in turn, inhibits the

transcriptional activation activity of GmSTF1/2 through direct

interaction. Photoreceptors CRYs and PHOTs play positive

regulatory roles in light-signal-mediated isoflavonoid biosynthesis.

Conversely, COP1, acting as their genetically downstream

component, negatively regulates isoflavonoid synthesis by

promoting the degradation of GmSTF1/2. Furthermore, GmSTF3/

4 are involved in UV-mediated isoflavonoid synthesis, responding

to UV-B light through the UV-B photoreceptor (UVR8) in shoots.
FIGURE 4

The transcriptional regulation pattern of isoflavonoid biosynthesis in soybean. Blue light activates the GmCRVs receptors, which interacts with
GmCOP1, releasing GmSTF1/2 from the STF-COP1 complex. This activation leads to the expression of GmPAL2 and GmUGT2 by GmSTF1/2,
promoting the accumulation of isoflavonoids. Additionally, at the transcriptional level, GmSTF1/2 can inhibit the expression of GmBBX4. At the
protein level, GmBBX4 interacts with GmSTFs and suppresses their ability to activate target genes related to isoflavonoid synthesis, creating a
negative feedback loop. UV activation of the URV receptor allows it to interact with COP1, releasing STF3/4 from the STF-COP1 complex. STF3/4
then activates GmMYB12L, which in turn activates the expression of GmCHS8, promoting the synthesis of flavonoids. Moreover, STF3/4 can move
from the shoot to the soybean root, activating the expression of GmMYB12B2 and GmCHS9, promoting the synthesis of (iso)flavonoid. The figure
was created with Medpeer (https://image.medpeer.cn/).
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This signal is then transmitted to the roots, activating the expression

of GmMYB12B2 and GmCHS9, subsequently increasing the

isoflavone content (Chen et al., 2024). Investigating the impact of

light on isoflavone accumulation provides both a theoretical basis

and technical support for intercropping. For instance, in maize-

soybean intercropping, shading effects from maize growth, limiting

photosynthesis, were found to decrease mildew incidence on

soybean pods, attributed to the accumulation of isoflavones in

soybean under shading conditions, particularly during the

vegetative stage (Li et al., 2021b).

Key enzymes in isoflavonoid biosynthesis, such as CHS, CHI,

and IFS, are regulated by specific transcription factors (TFs).

Notably, MYB TFs have emerged as direct regulators of

isoflavonoid biosynthesis genes. As shown in Table 1, GmMYB29,

GmMYB58, GmMYB205, GmMYBJ3, GmMYB12, GmMYB133,

and GmMYB502 act as activators to increase the expression of

CHS and IFS genes, thereby promoting the accumulation of

isoflavonoids in soybean, while GmMYB39 and GmMYB100 are

repressors. It is worth mentioning that GmMYB176, an R1 MYB

TF, plays a dual role in isoflavonoid biosynthesis. And it decreases

the isoflavonoids accumulation by down-regulating the expression

of GmIFS, and increases the flavanone liquiritigenin content by

activating the expression of GmCHS8, respectively. In the presence

of GmbZIP5, however, GmMYB176 acts as a positive regulator to

enhance the accumulation of some other isoflavonoids, such as
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glyceollin, isowighteone and a unique O-methylhydroxy isoflavone

(Anguraj Vadivel et al., 2019, 2021). Besides, the intracellular

localization of GmMYB176 or GmMYB133 can be modulated

through interactions with 14–3-3 proteins, such as GmSGF14.

This interaction subsequently hinders their regulatory role in

isoflavonoid biosynthesis (Li and Dhaubhadel, 2012; Li et al.,

2012; Bian et al., 2018). In other plant species, various MYB TFs

have been documented, including positive regulators LjMYB14 and

LjMYB36 in L. japonicus, CaMYB39 in chickpea, and a negative

regulator MtPAR in M. truncatula (Table 1). MtPAR serves as a

switch for proanthocyanidin synthesis, capable of directly inhibiting

the expression of IFS2. Conversely, it activates the expression of

anthocyanidin reductase (ANR) encoding gene in the presence of

MtTT8 and MtWD40–1, leading to a reduction in isoflavone and

anthocyanidin levels, thereby channeling metabolic flux towards

proanthocyanidin biosynthesis (Verdier et al., 2012; Li et al.,

2016b, c).

Additional regulators, including NAC and C2H2-type zinc-

finger TFs, are also implicated in isoflavonoid biosynthesis. For

instance, the expression of GmNAC42–1 responds to both abiotic

and biotic elicitors, stimulating the synthesis of pterocarpan

glyceollin by activating IFS2 and G4DT (encoding glycinol 4-

dimethylallyl transferase) in soybean (Jahan et al., 2019). Notably,

GmNAC42–1 is under positive regulation by GmMYB29A2, which

itself acts as a positive regulator in the glyceollin biosynthetic
TABLE 1 Regulators involved in isoflavonoid biosynthesis.

Regulators Regulatory effect
Target genes/proteins References

Category Name

R2R3 MYB TF

GmMYB29 Activator GmIFS2 and GmCHS8 (Chu et al., 2017)

GmMYB29A2 Activator IFS2 and G4DT (Jahan et al., 2020)

GmMYB58
and GmMYB205

Activator GmCHS, GmIFS2, and GmHID (Han et al., 2017)

GmMYBJ3 Activator GmCHS8 and GmCHI1A (Zhao et al., 2017)

GmMYB1 Activator GmCHS8 and GmIFS2 (Bian et al., 2018)

GmMYB502 Activator GmCHS8, GmIFS1, and GmIFS2 (Sarkar et al., 2019)

GmMYB12 Activator GmCHS8 and GmCHS9 (Chen et al., 2024)

GmMYB39 Repressor GmCHS8 (Liu et al., 2013)

GmMYB100 Repressor GmCHS7 and GmCHI (Yan et al., 2015)

MtPAR Inhibitor IFS2 and ANR (Li et al., 2016c)

LjMYB14 Activator It is likely to be IFS and IFR. (Shelton et al., 2012)

LjMYB36 Activator Unconfirmed
(Monje-Rueda
et al., 2023)

AtMYB12 Activator GmIFS1 (Pandey et al., 2014)

CaMYB39 Activator CHS, CHI, F3H, F3’ H, and FLS. (Saxena et al., 2023)

R1 MYB TF GmMYB176 Dual functions
Activate GmCHS8 but down-regulate GmIFS, while
interact with GmbZIP5 to enhance the level
of isoflavonoids

(Yi et al., 2010;
Anguraj Vadivel et al.,
2019, 2021)

(Continued)
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pathway (Jahan et al., 2020). Another player, GmZFP7, a C2H2

zinc-finger TF, has been reported to modulate isoflavone

accumulation by activating GmIFS2 and Flavanone 3 b-
hydroxylase 1 (GmF3H1) in soybean (Feng et al., 2023).

Recent studies also reveal the involvement of microRNAs

(miRNAs) in post-transcriptional regulation of isoflavonoid

biosynthesis. In soybean, P. sojae infection induced the expression

of Gma-miRNA393 in roots. Knockdown of Gma-miRNA393

reduced isoflavonoid content and downregulated the gene

expression of GmHID1 and GmIFS1 , while increasing

susceptibility to P. sojae. This suggests that Gma-miRNA393 acts

as a positive regulator of isoflavonoid biosynthesis; however, its

downstream target genes remain unidentified (Wong et al., 2014).

Table 1 delineates additional miRNAs, including Gma-miRNA12,

Gma-miRNA24, Gma-miRNA29, Gma-miRNA26, and Gma-

miRNA28, acting as negative regulators by interfering with the

expression of their target genes. These target genes encode key

enzymes or transcription factors crucial in isoflavonoid biosynthesis

(Gupta et al., 2017; Gupta et al., 2019b).

Moreover, epigenetic regulation, including DNA methylation

and histone modifications, has been implicated in the control of

isoflavonoid accumulation (Baulcombe and Dean, 2014; Chang

et al., 2020). A comprehensive comparative analysis across

various soybean genotypes exhibiting distinct isoflavone contents

revealed a positive correlation between the expression of the IFS

gene and the cytosine methylation level within its coding region
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(Gupta et al., 2019a). This finding underscores the potential positive

regulatory impact of epigenetic modifications on the intricate

process of isoflavonoid biosynthesis. In the first generation (T1)

of transgenic wheat (Triticum aestivum) overexpressing IFS,

methylation levels in the exogenous promoter region exhibited a

negative correlation with IFS expression (Elseehy, 2020), implying

that T1 plants can reconstitute gene expression by altering the

methylation status of the exogenous promoter.

Collectively, as shown in Figure 4 and Table 1, although many

genes involved in the regulation of isoflavonoid synthesis and their

target genes have been reported, some regulatory mechanisms are

still unclear. These regulatory genes often affect the synthesis of

multiple isoflavonoid compounds simultaneously. Therefore, in

future, more specific factors need to be explored, such as those

that uniquely control the synthesis of the subclass of isoflavonoids.

In addition, as mentioned earlier, environmental factors and

hormone signals play a significant role in isoflavonoid synthesis,

regulation, and transport, which is also an important direction for

future exploration.
Metabolic engineering of
isoflavonoids biosynthesis

Isoflavonoids, recognized for their benefits in plants, livestock,

and human health, have spurred research in metabolic engineering.
TABLE 1 Continued

Regulators Regulatory effect
Target genes/proteins References

Category Name

14–3-3 protein GmSGF14 A negative regulator Inhibit the function of GmMYB176.
(Li and Dhaubhadel,
2012; Li et al., 2012)

NAC GmNAC42–1 Activator IFS2 and G4DT (Jahan et al., 2019)

C2H2-type
zinc-finger

GmZFP7 Activator GmIFS2 and GmF3H1 (Feng et al., 2023)

E3
ubiquitin ligase

GmCOP1b A negative regulator Promote the degradation of GmSTF1/2.

(Song et al., 2023;
Chen et al., 2024)

HY5
GmSTF1/2 Activator GmPAL2.1, GmPAL2.3, GmUGT2 and GmBBX4

GmSTF3/4 Activator GmMYB12L, GmMYB12B2, and GmCHS9

B-
BOX PROTEIN

GmBBX4 A negative regulator
Inhibit the transcriptional activation activity of
GmSTF1 and GmSTF2.

MicroRNA

Gma-miRNA393 A positive regulator Unconfirmed (Wong et al., 2014)

Gma-miRNA5030 A negative regulator It is likely to be GmMYB176. (Gupta et al., 2019b)

Gma-miRNA
12/24/29

A negative regulator
Correspond to Glyma.08G181000,
Glyma.10G224000, and Glyma.02G279600,
encoding different UGTs

(Gupta et al., 2017)

Gma-miRNA26 A negative regulator
It is likely to be Glyma.10G197900, encoding a 4-
coumarate-CoA ligase (Gupta et al., 2019a;

Elseehy, 2020)
Gma-miRNA28 A negative regulator

It is likely to be Glyma.09G127200, encoding an
isoflavone 7-OMT.

DNA
methyltransferase

Unconfirmed Cytosine methylation IFS genes
(Gupta et al., 2019a;
Elseehy, 2020)
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As shown in Table 2, strategies like antisense RNA, RNA

interference, CRISPR/Cas9-mediated gene editing, co-expression,

and heterologous expression have been employed for isoflavonoid

engineering in legumes, non-legume plants, and microorganisms

(Dixon and Steele, 1999; Zhang et al., 2020; Liu et al., 2021).

The main strategies for forage legumes breeding to increase the

nutritional value and digestibility of forage include reducing anti-

nutritional factors, such as lectins, saponins, oxalic acid, and

condensed tannins, increasing crude protein concentrations,

enhancing stress tolerance, and changing cell wall structure and

composition to improve the degradability of cell wall

polysaccharides (Kumar, 2011; Kulkarni et al., 2018; Katoch,

2022). Interestingly, most of these breeding goals can be achieved

through metabolic engineering of phenylpropanoid biosynthesis

(Dixon and Steele, 1999; Du et al., 2010). In alfalfa, overexpression

of the encoding gene of isoflavone O-methyltransferase (IOMT)

results in heightened levels of formononetin and medicarpin,

enhancing disease resistance to Phoma medicaginis in transgenic

plants (He and Dixon, 2000). Heterologous expression of MtIFS1
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can lead to the enhanced accumulation of medicarpin in transgenic

alfalfa plants upon P. medicaginis infection, indicating that this

modification is beneficial for plant response to stress (Deavours and

Dixon, 2005). Moreover, Gou et al. disrupted the limitation of

precursors by simultaneously overexpressing of GmIFS1, GmCHS7

and GmCHI1 in M. truncatula, promoted both isoflavone and

proanthocyanidin accumulation, which are beneficial for

ruminant animals (Gou et al., 2016). As shown in Table 2, the

key enzyme genes involved in isoflavonoid biosynthesis are

important target genes for metabolic engineering, Caffeoyl-CoA

O-methyltransferase (CCoAOMT) encoding a key enzyme of

lignin pathway also has an important impact on isoflavonoid

synthesis. Down-regulated of CCoAOMT via antisense RNA

technology, leading to a decrease in the content of guaiacyl (G)

lignin and an increase in syringyl to guaiacyl ratio (S/G) (Guo et al.,

2001). When wild-type and CCoAOMT downregulated plants are

infected with fungi, the expression of medicarpin biosynthesis genes

is upregulated in both, but more significantly in the CCoAOMT

downregulated plants. This leads the lignin modified alfalfa to
TABLE 2 Metabolic engineering of isoflavonoid biosynthesis in model plants and microbial hosts.

Strategy Target genes Results Species References

Overexpression GmMYB176 and GmbZIP5 Accumulation of multiple isoflavonoids Soybean
(Anguraj Vadivel
et al., 2021)

Antisense RNA CCoAOMT
Accumulation of medicarpin upon
fungi infection

Alfalfa (Gill et al., 2018)

RNA interference
GmFNSII-1 and GmFNSII-2 Accumulation of isoflavone Soybean (Jiang et al., 2010)

GmF3H and GmFNSII Accumulation of isoflavone Soybean (Jiang et al., 2014)

Heterologous
expression

GmIFS Accumulation of genistein
Arabidopsis
mutant (tt6/tt3)

(Liu et al., 2002)

Co-verexpression of CRC and F3H Accumulation of total isoflavone Soybean (Yu et al., 2003)

MtIFS1 Accumulation of isoflavonoid Alfalfa
(Deavours and
Dixon, 2005)

Fusion of GmIFS2 and alfalfa CHI Accumulation of isoflavonoid Yeast and tobacco
(Tian and
Dixon, 2006)

GmIFS Accumulation of genistein
Transgenic
tobacco with
antisense of F3H

(Liu et al., 2007)

GmIFS Accumulation of genistein derivatives Rice
(Sreevidya
et al., 2006)

GmIFS2 Accumulation of genistin Tomato (Shih et al., 2008)

GmIFS2 Accumulation of genistein derivatives Brassica napus (Li et al., 2011)

AtMYB12 and GmIFS1 Accumulation of genistein glycoconjugates Tobacco
(Pandey
et al., 2014)

GmIFS1, GmCHS7
and GmCHI1

Both isoflavone and
proanthocyanidin accumulation

M. truncatula (Gou et al., 2016)

GmCHIs and GmIFS
Transformation of chalcones
into isoflavonoids

Yeast
(Ralston
et al., 2005)

CRISPR/Cas9-mediated
gene-editing

GmF3H1, GmF3H2 and GmFNSII-1
Improvement of isoflavone content and
resistance to mosaic virus

Soybean (Zhang et al., 2020)

De novo biosynthesis
At4CL1, GmCHR5, GmCHS8, GmCHI1B2, Ge2-
HIS, GmHID and GmUGT4

De novo biosynthesis of isoflavonoids Yeast (Liu et al., 2021)
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redirect metabolic flux towards the medicarpin pathway upon

fungal infection, thereby improving the availability of cell wall

polysaccharides and resistance against fungal disease (Guo et al.,

2001; Gill et al., 2018).

In soybean, the overexpression of F3H alone does not

significantly affect the total isoflavone content. However, the

overexpression of a fusion gene of the maize C1 and R (CRC)

increases the total isoflavone content in transgenic soybean seeds by

approximately 2-fold. Co-verexpression of CRC and F3H can

enhance the total isoflavone content by about 4-fold (Yu et al.,

2003). RNA interference was used to generate silence FNSs

(encoding flavone synthases) in soybean, which reduced the

synthesis of apigenins and anthocyanins from naringenin, thus

promoting the accumulation of isoflavones (Jiang et al., 2010).

Notably, silencing alone of FNSII or F3H results in a ~1.3- or

~1.9-fold increase in isoflavone content, while double silencing of

FNSII and F3H can result in a ~2.2-fold increase in isoflavone

production compared to transgenic soybean hairy roots containing

empty vectors (Jiang et al., 2014). Co-overexpression of

GmMYB176 and GmbZIP5 results in an approximate 1.4-fold

increase in the total isoflavonoid content in hairy roots (Anguraj

Vadivel et al., 2021).

Non-legume plants and microorganisms can also synthesize

large amounts of isoflavonoids through metabolic engineering,

which involves utilizing the existing flavonoid biosynthesis

pathway to provide precursors and introducing the key enzyme

genes for isoflavonoid biosynthesis. For example, heterologous

expression GmIFS in Arabidopsis thaliana could accumulate a

small amount of genistein glycosides while introducing the

GmIFS gene into tt6/tt3 double mutant, where expression of F3H

and dihydroflavonol reductase (DFR) was abolished, resulted in a

large accumulation of genistein, which provides an important idea

for the isoflavonoid accumulation via metabolic engineering (Liu

et al., 2002). Heterologous expression of the IFS/CHI fusion gene in

tobacco results in higher levels of genistein and its glycoside

compounds compared to expressing IFS alone (Tian and Dixon,

2006). When AtMYB12 and GmIFS1 are co-overexpressed in

tobacco, the expression of key enzyme genes in the flavonoid

pathway is significantly upregulated, leading to a substantial

increase in the content of flavonoid compounds and synthesizing

approximately 0.05 mg/g of genistein in the fresh tissues (Pandey

et al., 2014). In addition, isoflavonoids could be synthesized and

accumulated in non-legume plants through the heterologous

expression of GmIFSs in rice, tomato and Brassica napus

(Sreevidya et al., 2006; Tian and Dixon, 2006; Liu et al., 2007;

Shih et al., 2008; Li et al., 2011; Pandey et al., 2014). These results

indicate that heterologous expression of key enzyme genes can

achieve the synthesis of isoflavones in non-leguminous plants.

However, to achieve high content, a strategy of co-expressing

multiple structural genes or a combination of transcription

factors with structural genes can be employed. Additionally, the

activity of key isoflavone biosynthetic enzymes may vary in different

non-leguminous plants, which may potentially affect the yields. For

example, CHIs are divided into two groups (type I and type II).

Type I CHIs, which are found in both legumes and non-legumes,

function to isomerize only 6 ′-hydroxychalcone to 5-
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hydroxyflavanone (naringenin). Whereas, type II CHIs belong to

a legume-specific group that are active on both 6′-deoxychalcone
and 6′-hydroxychalcone, yielding 5-deoxyflavanone (liquiritigenin)
and 5-hydroxyflavanone, respectively (Shimada et al., 2003). The

experiments in yeast or E. coli strains successfully demonstrate that

they have significant differences in enzymatic activity (Shimada

et al., 2003; Tian and Dixon, 2006).

Recently, microorganisms such as Saccharomyces cerevisiae and

Escherichia coli have been adapted and engineered for heterologous

isoflavonoid synthesis, overcoming the complexity associated with

biosynthesis and accumulation in non-endogenous plants through

advancements in synthetic biology. The de novo synthesis of parent

isoflavonoids, such as genistein and quercetin, has been achieved in

engineered yeast strains by overexpressing at least seven enzymes

(PAL/TAL, 4CL, CHS, CHI, CHR, IFS, and IFD) (Trantas et al.,

2009; Rodriguez et al., 2017). Co-cultivation of an IFS-expressing S.

cerevisiae strain with a naringenin-producing E. coli strain resulted

in the accumulation of genistein (6 mg/L) (Katsuyama et al., 2007).

Additionally, de novo biosynthesis of bioactive isoflavonoids and

the hops bioactive flavonoid xanthohumol has been achieved in

yeast (Liu et al., 2021; Yang et al., 2024). These studies demonstrate

that the optimal combination of key enzyme genes from various

plants, the copy number of these genes, the physical distance

between adjacent key enzymes, and the accommodation of

membrane proteins by the endoplasmic reticulum are factors

influencing the efficient synthesis of isoflavonoids. These are all

important considerations for future de novo synthesis of (iso)

flavonoidand other complex natural products.
New technologies and resources

The CRISPR/Cas systems, known for their high efficiency and

versatility, have found extensive applications in various plant

genome editing and metabolic engineering endeavors (Wada

et al., 2022). In Fagopyrum tataricum, the CRISPR/Cas9-mediated

knockout of FtMYB45 resulted in a reduction of flavonoids (Wen

et al., 2022). In soybean, precise editing of key enzymes involved in

isoflavonoid biosynthesis, including GmF3H1, GmF3H2, GmFNS-

1, and Gm-IFS, was achieved through CRISPR/Cas9-directed

mutagenesis (Zhang et al., 2020). This targeted mutagenesis led to

a 2-fold increase in isoflavone content in soybean leaves and

enhanced resistance to soybean mosaic virus. The study

emphasized the roles of genes in isoflavonoid biosynthesis and

phytohormones influencing growth effects (Mipeshwaree Devi

et al., 2023).

Machine learning and multiomics approaches have also been

incorporated into isoflavonoid research. Nearly thirty flavor

molecule databases and various models have been identified (Kou

et al., 2023). Over 1200 natural flavonoid compounds have been

cataloged in the customized Flavonoid Astringency Prediction

Database (FAPD, Guo et al., 2023). The establishment of this

database facilitates an understanding of the relationship between

the molecular structure of flavonoid compounds and their

astringency in foods. Key genes in crops that influence

astringency can be screened by integrating transcriptomic and
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metabolomic analyses. Subsequently, transgenic or gene editing

approaches are utilized to verify the functions of these genes,

facilitating the breeding of superior crop varieties that are both

healthy and flavorful (Qin et al., 2022; Qiu et al., 2023). Given that

the distribution of isoflavonoids and the genes involved in

biosynthesis, regulation and transport are strongly induced by

environmental factors, and exhibit tissue specificity and

developmental stage specificity in leguminous plants. The

integration of single-cell sequencing and spatial transcriptomics is

poised to provide robust support for further elucidation and

metabolic engineering of the isoflavonoid biosynthetic pathway.

For instance, the iflavonoids in the roots of leguminous plants are

closely related to the formation of root nodules. Through single-cell

sequencing technology, researchers can analyze the gene expression

patterns of specific cell types during the root nodule formation

process at the single-cell level. Combined with transcriptomic

sequencing, it is possible to further explore the gene expression

patterns related to isoflavonoid synthesis, regulation, transport,

and secretion.
Conclusion and future prospects

Isoflavonoids play a crucial role in plant adaptation to complex

environmental stimuli, with leguminous plant roots utilizing them

to regulate nodule formation and influence overall growth.

Consequently, exploring isoflavonoid metabolic engineering holds

promise for genetic improvements in both legume and non-legume

crops. However, it is important to note that changes in the

composition and content of flavonoids, isoflavonoids, and lignin,

which are interconnected through the phenylpropanoid pathway,

could potentially have adverse effects on plants, such as reduced

biomass, an imbalance between disease resistance and stress

tolerance, and altered flavor. Therefore, it is necessary to consider

the entire growth and developmental state of the plant, rather than

focusing solely on changes in isoflavonoid content. Recent

innovative approaches, exemplified by Sulis et al.’s work using a

multiscale model of lignin biosynthesis, showcase effective

multiplex CRISPR-editing strategies (Sulis et al., 2023). This

enables the reduction of lignin levels in poplar without

compromising growth, enhancing cell wall degradability,

promoting cellulose utilization for papermaking and bioenergy

production, and minimizing environmental impact. These

advances provide valuable insights for precise and efficient crop

genetic breeding.

What is the relationship between the molecular structure of

isoflavonoid compounds and their bioactivity and flavor? Which

genes determine the production of specific isoflavonoids? Which

genes influence the transformation between free isoflavonoids and

their modifications? What is the connection between the
Frontiers in Plant Science 12
accumulation or secretion of plant isoflavonoids and the

environment? Can the synthesis of isoflavonoids in non-

leguminous plants achieve symbiosis with rhizobia to enhance

nitrogen fixation? These are all subjects that require further

research and exploration. Further exploration of diverse

isoflavonoids and derivatives through metabolic engineering or

synthetic biology requires the identification of key enzyme genes

and regulators. Integration of machine learning and database

predictions may expedite the discovery of additional enzymes and

compounds. The future lies in the collaborative efforts of synthetic

biology and metabolic engineering for efficient and sustainable

isoflavonoid production. Advancements in multi-omics

technologies are anticipated to unravel key insights into

isoflavonoid biosynthesis, transport, and accumulation.
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