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Introduction: Endophytic fungi can promote secondary metabolite accumulation

in medicinal plants. Previously, we observed that the culture filtrate of Fusarium

solani CL105 promoted flavonoid production in Scutellaria baicalensis calli.

However, the active ingredients and mechanisms associated with this secondary

metabolite accumulation remain unclear.

Methods: This study evaluates the effects of different elicitors from the culture

filtrate of F. solani CL105 namely, exopolysaccharide (EPS), exoprotein (EP), and

other parts (OP), on the flavonoid production in S. baicalensis calli by HPLC.

Subsequently, the underlying mechanism of EPS induced flavonoid production in

S. baicalensis calli was revealed by transcriptomics and RT-PCR.

Results and discussion: The results indicated a significant increase in flavonoid

production in S. baicalensis calli following treatment with EPS. Baicalin (1.40 fold),

wogonoside (1.91 fold), andwogonin (2.76 fold) weremost significantly up-regulated

comparedwith the control. Transcriptome analysis further revealed up-regulation of

key enzyme genes (CHS, CHI, FNS, and F6H) involved in flavonoid synthesis after 5

days of EPS treatment. Moreover, the expression of GA2ox and CYP707A—genes

involved in gibberellin acid (GA) and abscisic acid biosynthesis (ABA), respectively—

were significantly up-regulated. The expression levels of certain transcription factors,

including MYB3, MYB8, and MYB13, were also significantly higher than in controls.

Our results indicated that EPS was a main active elicitor involved in promoting

flavonoid production in S. baicalensis calli. We postulated that EPS might stimulate

the expression of MYB3, MYB8, MYB13, GA2ox, and CYP707A, leading to markedly

upregulated CHS, CHI, FNS, and F6H expression levels, ultimately promoting

flavonoid synthesis. This study provides a novel avenue for large-scale in vitro

production of flavonoids in S. baicalensis.
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1 Introduction

Scutellaria baicalensis Georgi, a perennial herb belonging to the

family Labiatae, is a well-known traditional Chinese medicinal herb

grown in northern China. Flavonoids and their glycosides are the

major compounds in S. baicalensis and are classified into two types,

namely free flavonoids and flavonoid glycosides, of which baicalein

and wogonin are the most abundant flavonoids, while baicalin and

wogonoside are the most abundant flavonoid glycosides (Zhao

et al., 2019a). These flavonoids have pharmacological effects,

including antioxidative, anti-inflammatory, antitumor, antiviral,

antimicrobial, hepatoprotective, and neuroprotective properties

(Wang et al., 2018). Baicalin, in particular, has demonstrated

potential in the treatment of COVID-19 (Miguel et al., 2023).

Furthermore, baicalin is clinically used as a post-marketing drug

to treat acute and chronic hepatitis. However, the wild resources of

S. baicalensis are continuing to gradually decrease, and the plant

quality is limited by growth years (Yuan et al., 2010; Bai et al., 2020).

Thus, tissue culturing provides a potential strategy to overcome

these issues regarding S. baicalensis availability.

In S. baicalensis, flavonoids are synthesized via two pathways.

The initial compound, phenylalanine, is produced through the

shikimate pathway, which generates cinnamic acid via

phenylalanine ammonialyase (PAL). In the aerial parts of S.

baicalensis, cinnamic acid is converted to scutellarein by a series

of enzymes, including cinnamate 4-hydroxylase (C4H), 4-

coumarate CoA ligase (4CL), chalcone synthase (CHS), chalcone

isomerase (CHI), flavone synthase (FNS), and flavone 6-

hydroxylase (F6H). Alternatively, in the roots, baicalein, wogonin,

and their glycosides are synthesized. This pathway involves the

conversion of cinnamic acid to cinnamoyl-CoA in the presence of

cinnamate-CoA ligase (CLL-7). Cinnamoyl-CoA is then converted

to pinocembrin by CHS and CHI. Next, pinocembrin is converted

by FNS to chrysin, which is converted to baicalein via F6H or to

wogonin by the combined action of flavone 8-hydroxylase (F8H)

and O-methyltransferase (OMT). Baicalein and wogonin then

comb ine wi th suga r mo l e cu l e s v i a flavono id 7 -O-

glucuronosyltransferase (UBGAT) to generate baicalin and

wogonoside (Zhao et al., 2016, 2018; Zhao et al., 2019b).

The formation and accumulation of plant secondary

metabolites are regulated by a complex interplay of plant

hormones and transcription factors (TFs). Plant hormones, such

as gibberellic acid (GA) and abscisic acid (ABA), reportedly

promote flavonoid production in S. baicalensis (Yuan et al., 2013;

He et al., 2023). Meanwhile, TFs, such as the NAC and MYB

families, are key regulators of flavonoid synthesis (Yuan et al., 2013,

2015; Qian et al., 2020; Fang et al., 2023, 2023; He et al., 2023). The

crosstalk between plant hormones and TFs adds another layer of

regulation to secondary metabolite formation and accumulation

(Bang et al., 2008; Yuan et al., 2013; Zhou et al., 2022).

RNA-seq is a robust quantitative tool for investigating gene

regulation and function. In plants, this method can be applied to

analyze cell and tissue transcriptional profiles and identify the key

genes associated with secondary metabolite biosynthesis and their

complex networks involving various hormones and TFs. In fact,

Cao et al. (2022) adopted transcriptomics to demonstrate that the
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endophytic fungus KL27 enhances taxol accumulation in Taxus

chinensis by regulating specific hormones and TFs to promote the

expression of key genes in taxol biosynthesis. Similarly, through

transcriptomic analysis, Guo et al. (2018) identified the key plant

hormones and TFs involved in light-regulated anthocyanin

biosynthesis in cherries.

Endophytic fungi are microorganisms that reside in the internal

tissues of living plants and do not cause any immediate or overt

adverse effects (Hardoim et al., 2015). Endophytic fungi have

various functions in host plants, including promoting host growth

and secondary metabolite accumulation (Jia et al., 2016). Previous

studies have found that several material bases, such as

polysaccharide, oligosaccharide, protein, and polypeptide (Li

et al., 2013; Yu et al., 2016; Zhang et al., 2019; Wu et al., 2019a),

from fungal mycelial extracts or culture filtrates, can promote host

growth and secondary metabolite accumulation. Xu et al. (2023)

used the endophytic fungus Colletotrichum sp. AP12 to increase the

expression of key genes in the andrographolide biosynthesis

pathway, promoting its synthesis and accumulation in

Andrographis paniculata. Additionally, Ming et al. (2013) found

that the endophytic fungus Trichoderma atroviride promotes the

expression of genes related to the tanshinone biosynthesis pathway,

leading to its synthesis in Salvia miltiorrhiza. However, the precise

mechanisms through which endophytic fungi facilitate flavonoid

synthesis in S. baicalensis remain unclear.

We previously found that treating S. baicalensis calli with the

culture filtrate of Fusarium solani CL105 enhanced cell growth and

flavonoid production (Zhang et al., 2023). Accordingly, the current

study analyzes the effects of three elicitors from the F. solani CL105

culture filtrate, namely exopolysaccharide (EPS), exoprotein (EP),

and other parts (OP), on the growth and flavonoid production of S.

baicalensis calli. We then employ transcriptome analysis and

quantitative real-time reverse transcription polymerase chain

reaction (qRT-PCR) to explore how the active elicitor regulates

flavonoid production in S. baicalensis calli. This study provides new

insights into the mechanism by which endophytic fungi enhance

flavonoid accumulation in S. baicalensis. Additionally, it presents

new ideas for large-scale flavonoid production using

biotechnological methods.
2 Materials and methods

2.1 Calli induction

S. baicalensis seeds, which were identified as S. baicalensis

Georgi by Professor Yuguang Zheng of Hebei University of

Chinese Medicine, were purchased from Anguo Herbal Market,

Hebei Province, China. The seeds were surface sterilized according

to the methods described in our previous study (Zhang et al., 2023),

inoculated on a MS medium (Hopebio, Qingdao, China)

(Murashige and Skoog, 1962), and cultured at 25 ± 1°C for 14

days to obtain sterile seedlings. Calli induction in S. baicalensis was

performed as previously described, with some modifications (Wan

et al., 2012). Briefly, stem explants (grown in vitro) were cut

aseptically into approximately 10 mm segments and placed on
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MS medium supplemented with 2 .0 mg/L 6-BA (6-

Benzylaminopurine) (Xiya Reagent, Linyi, China) and 1.0 mg/L

NAA (-naphthalene acetic acid) (Solarbio, Beijing, China), which

could promote the induction and proliferation of calli (Xu et al.,

2022). After 2 weeks, S. baicalensis calli were subcultured in the

same culture medium at 25 ± 1°C.
2.2 Preparation of elicitors

The endophytic fungus F. solani CL105 was grown in 100 mL

Potato Dextrose Broth (PDB) medium in a 250 mL Erlenmeyer

flask. The fungal culture was incubated at 25 °C with shaking at 180

rpm for 7 days. After fermentation, the fermented broth was

filtered, the filtrate was collected and concentrated to a third of

the original volume, then mixed with four volumes of 95% ethanol

and incubated at 4°C for 48 h, then filtered to obtain the

supernatants and precipitates. The precipitate from the ethanol

dispersion was collected as EPS, and crude protein was collected

from the supernatant using the Sevage method (supernatant:liquid:

chloroform:n-Butyl alcohol = 25:4:1, v:v:v), as EP; the crude protein

elicitor was removed from the supernatant, as was OP. All the

elicitors were dried using a vacuum freeze dryer (TF-FD-1,

Shanghai Tianfeng Industrial Co., Ltd., Shanghai, China) and

stored at 4°C.
2.3 Elicitor treatment

We have previously shown that 5% (v/v) culture filtrate elicitors

of F. solani CL105 could induce flavonoid production in S.

baicalensis calli (Zhang et al., 2023). The EPS, EP, and OP were

respectively dissolved in 25 mL MS medium to prepare a series of

concentrations based on their yields (760 mg/L, 192 mg/L and 1040

mg/L) in culture filtrate and the active concentrate (5%, v/v) of

culture filtrate (EPS: 20, 40, 80 and 160 mg/L; EP: 5, 10 and 15 mg/L;

OP: 20, 50 and 80 mg/L). MS medium without an elicitor was used

as a control. The media was sterilized at 121°C for 30 min.

Approximately 1.50 g of S. baicalensis calli were subcultured into

media and incubated at 25 ± 1°C. The experiments were repeated

thrice for each elicitor concentration. S. baicalensis calli were

harvested on 0, 5, 10, and 15 days following EPS, EP, and OP

treatment, and the fresh weight of S. baicalensis calli was measured.

One part of S. baicalensis was frozen in liquid nitrogen and sent to

Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd. (Shanghai,

China) for RNA sequencing. While the other part was dried at 50°C

in a dry heat oven until a constant weight, and the dry weight (DW)

was measured.
2.4 Quantification of flavonoids with HPLC

For high-performance liquid chromatography (HPLC) analysis,

0.01 g samples of S. baicalensis calli powder were extracted with

methanol under ultrasound for 30 min. The extracts were

centrifuged at 12,000 rpm for 10 min and the supernatants were
Frontiers in Plant Science 03
filtered through a 0.22 mm organic membrane. Analyses were

performed using a Shimadzu LC2030 instrument (SHIMADZU,

Kyoto, Japan). A DiKMA Diamonsil C18 (4.6×250 mm, 5.0 µm)

column was applied for all analyses. Baicalin, baicalein, wogonoside,

and wogonin, were detected and quantified by comparison with

authentic standards (Biopurify Company, Chengdu, China). The

mobile phases comprised A (water containing 0.1% formic acid)

and B (acetonitrile). The gradient elution program was as follows:

25% B for 0–10 min, 25–45% B for 10–30 min, and 45–55% B for

30–55 min; the detection wavelength was 254 nm. The sample

injection volume was 10 mL and the column temperature was

maintained at 25°C. The method was validated in terms of

linearity, precision, repeatability, stability, and recovery

(Supplementary Tables 1, 2).
2.5 Transcriptome determination
and analysis

2.5.1 Sample preparation, RNA extraction, library
preparation, and transcriptome sequencing

Total RNA was extracted from the S. baicalensis calli using

TRIzol® Reagent following the manufacturer’s instructions. RNA

quality was determined using a 5300 Bioanalyzer (Agilent, Santa

Clara, CA, USA) and quantified using an ND-2000 (NanoDrop

Technologies, Wilmington, USA). Only high-quality RNAsample

(OD260/280 = 1.8–2.2, OD260/230≥2.0, RIN≥6.5, 28S:18S≥1.0, >1

mg) was used to construct sequencing library. mRNA was enriched

using oligo (dT) magnetic beads and was randomly fragmented

using a fragmentation buffer. Under the action of reverse

transcriptase, random hexamers were added to synthesize first-

stranded cDNA using mRNA as a template. Thereafter, under DNA

polymerase I, second-strand cDNA was synthesized. A poly (A) tail

was added and connected to the sequence adaptors after end repair.

The 300-bp cDNA target fragments were selected from the libraries

on 2% low range ultra agarose gel. cDNA libraries were enriched by

PCR amplification and then quantified using Qubit (v.4.0). A

NovaSeq 6000 sequencer (2 × 150 bp read length) was used to

sequence the paired-end RNA-seq (Wu et al., 2019b).

2.5.2 De novo transcriptome assembly and gene
functional annotation

Raw reads were filtered for quality using FASTQ (v.0.19.5), and

the resulting clean reads were de novo-assembled using Trinity

(v.2.8.5). To increase assembly quality, all assembled sequences

were filtered using CD-Hit and translated.

All de novo-assembled unigenes were annotated using the

following databases: NCBI non-redundant protein sequences (NR,

http://www.ncbi.nlm.nih.gov); Protein family (Pfam, http://

xfam.org/); Swiss-Prot (http://www.expasy.ch/sprot); Kyoto

Encyclopedia of Genes and Genomes (KEGG, http://

www.genome.jp) databases using Diamond to identify the

proteins that had the highest sequence similarity with the given

transcripts to retrieve their function annotations and a typical cut-

off E-values less than 1.0×10–5 was set. The BLAST2GO program

was used to obtain GO (http://www.geneontology.org) annotations
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of uniquely assembled transcripts to describe biological processes,

molecular functions, and cellular components. Metabolic pathway

analysis was performed using KEGG.

2.5.3 Differentially expressed genes
(DEGs) analysis

Gene expression levels were estimated using the RSEM (Li and

Dewey, 2011) for each sample. Clean data were mapped onto

assembled transcriptomes. The read count of each gene was

obtained from the mapping results. Differential expression

analysis of the two samples was performed using the DEseq2

package. Genes with P value < 0.05 and |log2 (fold change)| > 1

found by DEseq2 were assigned as differentially expressed.
2.6 Quantitative real-time PCR (qRT-
PCR) validation

To validate the RNAseq gene expression, total RNA was isolated

from S. baicalensis calli and analyzed using quantitative real-time

polymerase chain reaction (qRT-PCR). Four genes, namely CHS,

CHI, FNS, and F6H, associated with flavonoid biosynthesis were

selected from the RNA-Seq data for qRT-PCR analysis. The

constitutively expressed 18S rRNA gene was used as the

housekeeping gene (Zhou et al., 2014). All specific primer pairs

used in this study are listed in Supplementary Table 3. The 25 mL
reaction mixture consisted of 1 mL Strand cDNA, 10µL qRT-PCR

taq master mix (YEASEN, Shanghai, China), 0.7 µL forward primer

(10 µM), 0.7 µL reverse primer (10 µM), and 7.6 µL highly pure

water. The reaction was performed using an Thermofisher

QuantStudio 1(Thermofisher, Waltham, MA, USA). The

experiment was conducted in triplicates. The expression level of

each target gene was determined using the 2-DDCt method,

normalized based on the CT value of the housekeeping gene.
2.7 Statistical analysis

The fresh and dry weight, flavonoids contents, and relative-

expression level of S. baicalensis calli were expressed as mean ± SD

from three separate observations. Data were analyzed using one-

way analysis of variance (ANOVA) and least significant difference

(LSD) using SPSS19.0 software. p value < 0.05 was considered

statistically significant.
3 Results

3.1 Effects of elicitors on S. baicalensis
calli growth

As shown in Figure 1A, with 40 or 160 mg/L EPS treatments for

5 days, the fresh weight of S. baicalensis calli was significantly

increased by ~1.18- and 1.17-fold compared with the control.
Frontiers in Plant Science 04
Meanwhile, after treatment with 20, 40, 80, or 160 mg/L EPS for

5 days, the dry weight was significantly increased by ~1.20- to 1.39-

fold compared with the control. After 10 days of culture, the fresh

weight of S. baicalensis calli was significantly increased following

treatment with 80 or 160 mg/L EPS by ~1.19- and 1.15-fold,

respectively. However, reductions were observed in the fresh and

dry weights at 15 days after culture. In particular, the dry weight of

S. baicalensis calli was significantly reduced with 160 mg/L EPS

treatment (~13% decrease) compared with the control.

The fresh weight of S. baicalensis calli continuously increased

following EP treatment from 5 to 15 days, while the dry weight was

significantly increased only after 5 days of treatment with 5 mg/L EP

(1.12-fold; Figure 1B). In contrast, the fresh and dry weights were

significantly decreased following treatment with 10 mg/L (18% and

13%) or 15 mg/L (19% and 15%) EP for 5 days compared with the

control. After 10 days of culture with 10 mg/L EP, the fresh weight

of S. baicalensis calli significantly increased by ~1.30-fold compared

with the control. After 15 days of treatment with 10 mg/L or 15 mg/

L EP, the fresh weight significantly increased by ~1.15- and 1.22-

fold, respectively, compared with the control.

Treatment with OP at 20, 50, or 80 mg/L did not significantly

impact on the growth of S. baicalensis calli after 5, 10 or 15

days (Figure 1C).
3.2 Effects of elicitors on S. baicalensis calli
flavonoid production

The contents of baicalin, wogonoside, and wogonin in S.

baicalensis calli were significantly increased following EPS

treatment for 5–15 days (Figure 2). After 5 days of culture with

20, 40, 80, or 160 mg/L EPS, baicalin and wogonin levels were

significantly increased by ~1.17–2.76-fold. Meanwhile, the

wogonoside content was significantly increased following

treatment with 40, 80, or 160 mg/L EPS by ~1.51–1.91-fold

compared with the control. After culturing for 10 days with any

concentration of EPS, the contents of baicalin, wogonoside, and

wogonin were significantly increased by ~1.10 to 2.03-fold

compared with the control. Similarly, after 15 days, the baicalin

content was significantly increased by ~1.19–1.22-fold following

treatment with all EPS concentrations. However, after 15 days, the

wogonoside content was only significantly increased following

treatment with 20, 40, or 80 mg/L EPS (1.23–1.28-fold) and the

wogonin content was significantly increased following 80 mg/L

(2.11-fold) or 160 mg/L (1.64-fold) EPS treatment.

EP had a weak effect on flavonoids. After culturing for 5 days with

5 mg/L EP, the baicalin content was significantly increased by ~1.06-

fold compared with the control (Supplementary Figure 1). At the late

stage of induction, OP significantly promoted flavonoid synthesis.

After culturing for 15 days with 50 or 80 mg/L OP, the wogonoside

contents were significantly increased by ~1.45- and 1.31-fold,

respectively, while those of baicalein and wogonin were significantly

increased following 80 mg/L OP treatment by ~2.48-fold and 1.61-fold,

respectively, compared with the control (Supplementary Figure 2).
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3.3 Transcriptomic analysis and
differentially expressed genes

Since EPS is the main active elicitor, we performed

transcriptome sequencing on EPS-treated S. baicalensis calli. In

total, 212.11 Gb of clean data were generated from the samples. All

clean reads were subjected to de novo assembly using Trinity,

producing 94,597 transcripts and 94,597 unigenes. Sequencing

data quality evaluations are listed in Supplementary Table 4. The

unigenes were functionally annotated based on the seven largest

public databases. A total of 38,106 unigenes (40.28% of the total
Frontiers in Plant Science 05
unigenes) were annotated; 19,209 unigenes (50.41% of the total

annotated unigenes) were matched in the Gene Ontology (GO)

database, and 9,942 (26.09%), 19,740 (51.80%), 22,154 (58.14%),

17,482 (45.88%), and 22,667 (45.27%) unigenes exhibited

significant similarity to sequences in the GO, KEGG, eggNOG,

NCBI non-redundant protein sequences (NR), Swiss-Prot, and

Pfam databases, respectively.

All unigenes were searched against the GO database to classify

their functions based on the NR annotation. The 19,209 unigenes

assigned to one or more GO terms were classified into three main

GO categories and 53 groups (Supplementary Figure 3). Within the
B

C

A

FIGURE 1

Effect of EPS (A), EP (B) and OP (C) on growth in S. baicalensis calli. Data are presented as means ± SD, n = 3. *P<0.05, **P<0.01, ***P<0.001;
#P<0.05, ##P<0.01, ###P<0.001.
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“biological process” domain, the most evident matches were

“cellular process” (8,198), “metabolic process” (7,239), and

“biological regulation” (3,074). In the “cellular component”

domain, “cell part” (9,774), “membrane part” (7,431), and

“organelle” (5,641) predominated. For the “molecular function”

domain, the genes were primarily enriched in “binding” (10,479)

and “catalytic activity” (10,123).

For further analysis, the unigenes were mapped onto the KEGG

database to categorize gene function and identify biochemical

pathways. A total of 9,942 unigenes were annotated and assigned

to five main KEGGmetabolic pathways, 18 sub-branches, and 5,814

KEGG pathways. The most common sub-branch was “translation”

(954), followed by “carbohydrate metabolism” (862) and “folding,

sorting, and degradation” (590) (Supplementary Figure 4).

An additional 147 unigenes matched “phenylpropanoid

biosynthesis” (ko00940) and 54 unigenes matched “flavonoid

biosynthesis” (ko00941).

A gene was designated as differentially expressed based on the

following cutoff criteria: |Log2FC| ≥ 1 and P < 0.05. A total of 1,024,

1,715, 565, and 883 DEGs were identified in the EPS-treated for 0 d

vs. control, EPS-treated for 5 days vs. control, EPS-treated for 10

days vs. control, and EPS-treated for 15 days vs. control

comparisons, respectively. Of these DEGs, 150, 704, 181, and 310

were up-regulated, whereas 874, 1,011, 384, and 573 were down-

regulated at 0, 5, 10, and 15 days, respectively (Figure 3).
Frontiers in Plant Science 06
A volcano plot was constructed to illustrate the distribution of

the DEGs among the four comparison groups. The number of

DEGs in the 5-day group was higher than in the 10- or 15-day

groups. Moreover, the expression levels of a few genes in the 5-day

group were significantly up-regulated with a higher degree of
FIGURE 2

Effects of EPS on the accumulation of flavonoids in S. baicalensis calli on days 5, 10, and 15, respectively. The treatments were control, 20, 40, 80,
and 160 mg/L. Data are presented as means ± SD, n = 3. *P<0.05, **P<0.01, ***P<0.001.
FIGURE 3

Number of DEGs at four comparisons. The abscissa represents EPS-
treated versus untreated at different time points (0, 5, 10 and 15
days), and the ordinate represents the number of the up- and
down-regulated DEGs.
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significance compared with the 10- or 15-day groups

(Supplementary Figure 5).
3.4 DEGs involved in flavonoid biosynthesis
and qRT-PCR validation

The flavonoid biosynthesis pathway in S. baicalensis has been

previously described (Hu et al., 2022; Pei et al., 2022). To further

analyze how the identified DEGs contribute to higher flavonoid

accumulation following EPS treatment, their expression patterns in

flavonoid biosynthesis pathways were analyzed (Figure 4A). As

shown in Figure 4B, most genes involved in flavonoid biosynthesis

were up-regulated in S. baicalensis calli following treatment with

EPS after 5 days compared with the control. Particularly evident

was the expression of genes encoding CHS, CHI, FNS, and F6H.

However, ≤ 50% were up-regulated at 10 or 15 days. Hence, EPS

promoted flavonoid accumulation by up-regulating genes encoding
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enzymes in the flavonoid biosynthesis pathway. Activation of the

flavonoid biosynthesis pathway by EPS occurs in the early stages of

stimulation and decreases over time.

To assess the reliability of our transcriptomic data, four up-

regulated genes associated with the flavonoid biosynthesis pathway

in S. baicalensis calli during 5-day cultures were selected for

validation via RNA-seq. The expression profiles for the four

DEGs determined via qRT-PCR were consistent with those

obtained via transcriptomics (Figure 4C, Supplementary Table 5).

Therefore, these findings suggest that the transcriptome

information is reliable.
3.5 DEGs involved in hormone biosynthesis

Phytohormones influence the expression of key enzymes in the

flavonoid biosynthesis pathway (Yu et al., 2021). Our transcriptome

data showed that the expression of genes encoding enzymes in GA,
B

C

A

FIGURE 4

DEGs involved flavonoid biosynthesis and qRT-PCR validation. (A) Biosynthetic pathways of the flavonoids in S. baicalensis. Enzymes abbreviations
are: PAL: phenylalanine ammonialyase; C4H: cinnamate 4-hydroxylase; 4CL: 4-coumarate CoA ligase; CHS: chalcone synthase; CHI: chalcone
isomerase; FNS: flavone synthase; F6H: flavone 6-hydroxylase; CLL-7: cinnamate-CoA ligase; F8H: flavone 8-hydroxylase; OMT: O-
methyltransferase; UBGAT: flavonoid 7-O-glucuronosyltransferase. (B) Expression analysis of the flavonoid biosyntheisis-related unigenes at 5, 10
and 15days. The bar indicated the “log2 (fold change)”. (C) Effects of EPS on the expression of flavonoid biosynthesis key genes in S. baicalensis calli.
Data are presented as means ± SD, n = 3. *P<0.05, ***P<0.001.
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ABA, ethylene (ET), and brassinosteroid (BR) biosynthesis was

significantly increased. The diterpenoid biosynthesis, carotenoid

biosynthesis, cysteine and methionine metabolism, and

brassinosteroid biosynthesis pathways occur in response to GA,

ABA, ET, and BR biosynthesis. After EPS treatment for 5 days, the

genes encoding GA2ox (K04125) in GA biosynthesis, CYP707A

(K09843) in ABA biosynthesis, ERF1 (K14516) in ET biosynthesis,

and CYP85A1 (K09590) and CYP92A6 (K20623) in BR

biosynthesis were significantly differentially expressed compared

to the control. GA2ox, CYP707A, and CYP85A1 were significantly

up-regulated, while, CYP92A6 and ERF1 were down-regulated

(Supplementary Table 6).
3.6 DEGs involved in transcription
factors expression

A total of 857 unigenes were annotated to TFs, belonging to 34

families (Supplementary Table 7). The top TF families included the

MYB_superfamily (143 unigenes), AP2/ERF (93 unigenes), C2C2

(68 unigenes), bHLH (59 unigenes), WRKY (59 unigenes), NAC (56

unigenes), and GRAS (44 unigenes). Following EPS treatment for 5

days, 122 DEGs were significantly up-regulated and 106 down-

regulated. After EPS treatment for 10 days, 24 DEGs were

significantly up-regulated and 30 down-regulated. After EPS

treatment for 15 days, 60 DEGs were significantly up-regulated

and 55 down-regulated. Hence, the most TFs were significantly up-

regulated after 5 days of EPS treatment; those related to flavonoid

synthesis were primarily concentrated in the MYB superfamily

(Yuan et al., 2015; Qian et al., 2020; Fang et al., 2023); however,

they only included MYB3, MYB8, and MYB13.
4 Discussion

The stimulatory effects of EPS and EP on the growth of S.

baicalensis calli were observed. The fresh and dry weights of S.

baicalensis calli were significantly increased following EPS

treatment, consistent with previous findings (Li et al., 2013;

Zhong et al., 2016). Moreover, the fresh and dry weights of S.

baicalensis calli were promoted within the early and middle stages

of treatment, i.e., 5–10 days, consistent with the results of Zhong

et al. (2016). We observed similar results for EP treatment, whereas

Xu et al. (2009) reported that the EP from Phytophthora boehmeriae

culture filtrate had no effect on host growth. We speculate that the

EP from endophytic fungi has different physiological effects due to

differences in structures.

In our study, EPS and OP elicited stimulatory effects on S.

baicalensis calli flavonoid production. Different concentrations

promoted baicalin, baicalein, and wogonin biosynthesis across all

time points. This strong effect elicited by EPS is consistent with

previous findings (Li et al., 2013; Zhong et al., 2016; Chen et al.,

2022). The maximum stimulatory effects on flavonoid production
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in S. baicalensis calli were observed after 5 days of EPS treatment.

Zhong et al. (2016) showed that the highest rutin and quercetin

contents in tartary buckwheat sprout cultures were obtained 9 days

following EPS treatment, whereas the rutin and quercetin contents

showed a decreasing trend at 10 days. We speculate that EPS elicits

chemical defense responses in S. baicalensis calli and rapidly

stimulates flavonoid production following exposure. With

prolonged exposure, flavonoids may break down into compounds

that are harmless to the host. In addition, the high concentration of

OP showed mild promotional effects on baicalein, wogonoside, and

wogonin production during the late stage of culture. However, the

main components of OP remain unknown. Data on the effects of

other elicitors (beyond exopolysaccharides and exoproteins) from

the culture filtrates of endophytic fungi on the synthesis of plant

secondary metabolites are lacking.

Interestingly, our results indicated that EPS exhibited a slight

growth-promoting effect and, promoted flavonoid synthesis in S.

baicalensis calli. Similar findings have been observed in previous

studies. The polysaccharide derived from Pestalotiopsis sp. DO14

not only enhanced the accumulation of flavonoids in Dendrobium

ferrugineum seedlings, but also showed a slight improvement in the

growth (1.19–1.35-fold, fresh weight) (Zhu et al., 2018). Ming et al.

(2013) found that polysaccharides from T. atroviride D16 not only

promoted the growth of S. miltiorrhiza hairy roots, but also

markedly promoted the synthesis of tanshinones (5–66-fold).

Transcriptome analysis was adopted to investigate the mechanisms

underlying the cell growth and flavonoid production in S. baicalensis

calli treated with 80 mg/L EPS and cultured for 0, 5, 10, and 15 days.

The number of DEGs initially increases and then decreases over time.

We speculate that EPS rapidly stimulates the expression of DEGs in the

early stage of treatment. With prolonged exposure, the number of

DEGs decreases due to attenuation of the stimulation. CHS, CHI, FNS,

and F6H were identified as being involved in the early stages of EPS

induction. qRT-PCR analysis confirmed that after culturing for 5 days,

the transcription levels ofCHS,CHI, FNS, and F6Hwere higher in EPS-

treated S. baicalensis calli than in the control. This suggests that the

promotion of flavonoid biosynthesis by EPS occurred primarily during

the initial stages of induction. Moreover, the increased accumulation of

baicalin, wogonoside, baicalein, and wogonin in EPS-treated S.

baicalensis calli correlated with the increased expression of the above

genes. Although no biotic elicitors of S. baicalensi have been reported,

abiotic elicitors promote flavonoid accumulation in S. baicalensis by

up-regulating key genes in the flavonoid biosynthesis pathway. Park

et al. (2011) reported that following treatment of S. baicalensis cell

suspensions with methyl jasmonate, the expression of CHI increased.

Meanwhile, Xu et al. (2010) found that the expressions of PAL1, PAL2,

PAL3, C4H, 4CL, and CHS in S. baicalensis cell suspensions were

increased following methyl jasmonate induction. Hence, we speculate

that different types of elicitors stimulate key gene expression in the

flavonoid biosynthesis pathway in S. baicalensis.

ABA and GA can promote flavonoid synthesis in S. baicalensis

(Yuan et al., 2013; He et al., 2023). Our RNA-seq results revealed

significant up-regulation of GA2ox and CYP707A, which are involved
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in GA and ABA synthesis, respectively. Therefore, we speculate that

EPS might promote the synthesis of GA and ABA by promoting the

expression of GA2ox and CYP707A, ultimately promoting flavonoid

synthesis. Although we also found that ET and BR were differentially

expressed in this culture, it remains unclear whether they participate in

the flavonoid synthesis process in S. baicalensis.

TFs play important roles in the growth and development of plants

as they adapt to changes in the external environment (Strader et al.,

2022). TFs with regulatory roles in the flavonoid synthesis pathway are

concentrated in the NAC and MYB families (Yuan et al., 2013, 2015;

Qian et al., 2020; Fang et al., 2023, 2023; He et al., 2023). After 5 days of

EPS treatment,MYB3,MYB8,MYB13, FNS, CHS, and CHI expression

wasmarkedly up-regulated compared with the control. Hence, we posit

that EPS might promote the expression of enzyme-encoding genes

(CHS, CHI, and FNS) by up-regulating the expression of TFs (MYB3,

MYB8, and MYB13), effectively promoting flavonoid synthesis

(Figure 5). Interestingly, studies have shown that phytohormones can

also promote the expression of TFs. For example, Yuan et al. (2013)

showed that GA metabolism contributes to flavonoid biosynthesis,

with the expression of MYB8 significantly improving in S. baicalensis

within 3 h of GA treatment. Furthermore, ABA can improve the

expression of MYB3 and MYB8 in a relatively short period of time

(Bang et al., 2008; Zhou et al., 2022). Accordingly, EPS not only

stimulates the expression of ABA and GA key enzyme genes (GA2ox

andCYP707A) in S. baicalensis calli but also promotes the expression of

MYB3, MYB8, and MYB13. Based on our experimental results and

relevant literature (Bang et al., 2008; Yuan et al., 2013, 2015; Qian et al.,

2020; Zhou et al., 2022; Fang et al., 2023; He et al., 2023), EPS treatment

induces flavonoid synthesis in S. baicalensis calli by regulating the

expression of phytohormones, TFs, and enzymes. That is, EPS might

stimulate the expression of genes encoding MYB3, MYB8, MYB13,

GA2ox, and CYP707A, leading to significantly higher expression of

CHS, CHI, FNS, and F6H and ultimately promoting the synthesis

of flavonoids.

This study has certain limitations. First, although our

transcriptomic analysis provided a large amount of data, we
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Thus, further analysis is required to identify other genes associated

with the effect elicited by EPS on S. baicalensis calli. Second, we

observed that EPS also promoted S. baicalensis calli growth.

However, EPS is a crude polysaccharide and the active

components are still unknown. It is, therefore, necessary to

research the mechanisms promoting growth and the structural

characterization of EPS in future studies.
5 Conclusion

In this study, EPS from the culture filtrate of the endophytic

fungus F. solani CL105 constituted the main active elicitor involved

in the promotion of growth and flavonoid production in S.

baicalensis calli. Transcriptome and qRT-PCR analyses further

revealed that CHS, CHI, FNS, and F6H participate in regulating

the flavonoid biosynthesis pathways following EPS treatment for 5

days. Moreover, the genes encoding GA2ox and CYP707A were

significantly up-regulated and associated with GA and ABA

biosynthesis, respectively. Meanwhile, the expression levels of

TFs, including MYB3, MYB8, and MYB13, were significantly up-

regulated. We speculate that EPS stimulates the expression of genes

encoding MYB3, MYB8, MYB13, GA2ox, and CYP707A, which

leads to significantly increased CHS, CHI, FNS, and F6H expression

levels and promotion of baicalin, wogonoside, baicalein, and

wogonin accumulation in S. baicalensis calli. Our findings

revealed the mechanism by which F. solani CL105 promotes

flavonoid accumulation in S. baicalensis calli. This study

contributes to the growing body of evidence supporting the role

of endophytic fungi in regulating the accumulation of active

compounds in S. baicalensis and provides insights for the large-

scale synthesis of flavonoids through biotechnological methods.

However, the mechanisms promoting growth and the structural

characterization of EPS require further investigation.
FIGURE 5

Schematic diagram of the EPS regulation of the flavonoid biosynthesis pathway in S. baicalensis calli. The solid arrow indicates a promoting effect.
The dotted arrow indicates the biosynthetic pathways.
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