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Cotton, a vital textile raw material, is intricately linked to people’s livelihoods.

Throughout the cotton cultivation process, various diseases threaten cotton

crops, significantly impacting both cotton quality and yield. Deep learning has

emerged as a crucial tool for detecting these diseases. However, deep learning

models with high accuracy often comewith redundant parameters, making them

challenging to deploy on resource-constrained devices. Existing detection

models struggle to strike the right balance between accuracy and speed,

limiting their utility in this context. This study introduces the CDDLite-YOLO

model, an innovation based on the YOLOv8 model, designed for detecting

cotton diseases in natural field conditions. The C2f-Faster module replaces the

Bottleneck structure in the C2f module within the backbone network, using

partial convolution. The neck network adopts Slim-neck structure by replacing

the C2f module with the GSConv and VoVGSCSP modules, based on GSConv. In

the head, we introduce the MPDIoU loss function, addressing limitations in

existing loss functions. Additionally, we designed the PCDetect detection head,

integrating the PCD module and replacing some CBS modules with PCDetect.

Our experimental results demonstrate the effectiveness of the CDDLite-YOLO

model, achieving a remarkable mean average precision (mAP) of 90.6%. With a

mere 1.8M parameters, 3.6G FLOPS, and a rapid detection speed of 222.22 FPS, it

outperforms other models, showcasing its superiority. It successfully strikes a

harmonious balance between detection speed, accuracy, and model size,

positioning it as a promising candidate for deployment on an embedded GPU

chip without sacrificing performance. Our model serves as a pivotal technical

advancement, facilitating timely cotton disease detection and providing valuable

insights for the design of detection models for agricultural inspection robots and

other resource-constrained agricultural devices.
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1 Introduction

Cotton, a member of the Malvaceae family (Chohan et al.,

2020), holds the top position among natural fibers, thanks to its

simplicity of cultivation and its wide range of uses in clothing and

home textiles. It satisfies nearly 35% of the global annual fiber

demand (Huang et al., 2021). Beyond the textile industry, cotton

plays a crucial role in the production of animal feed and edible oil

(Townsend, 2020; Zaidi et al., 2020). In 75 countries, cotton crop

production supports the livelihoods of over 250 million people

(Wang et al., 2020).

Throughout the cotton growth cycle, diseases can significantly

hinder both yield and quality, posing a substantial threat to the

economic viability of farmers (Chi et al., 2021). According to

statistics, estimates of the total cotton disease losses ranged from

6% to 12% of the yield lost due to disease (Lawrence et al., 2022).

Among cotton diseases, verticillium wilt (Cai et al., 2009), fusarium

wilt (Wang et al., 2009), and anthracnose (Nawaz et al., 2018) are

particularly significant (Toscano-Miranda et al., 2022). They are

often referred to as the ‘cancer’ of cotton crops due to their ability to

substantially reduce cotton production.

The battle against cotton diseases endures, with ongoing efforts

to avert crop losses by early and effective disease detection, followed

by timely intervention (Mohanty et al., 2016; Guo et al., 2022).

While manual disease detection is the prevailing approach, it is

hampered by reliability issues and is impractical for large-scale

monitoring due to time and cost constraints (Peyal et al., 2022). The

quest for automated cotton disease detection methods is becoming

increasingly urgent, particularly given the rapid growth of the

cotton industry (Pan et al., 2023b).

Over the past two decades, image-processing techniques for

identifying plant diseases have yielded promising results (Thakur

et al., 2022). With recent advancements in machine learning, these

techniques offer the potential to reduce labor costs, minimize time

wastage, and enhance plant quality (Wani et al., 2022). However,

traditional machine learning algorithms predominantly rely on

manually crafted, low-level visual features based on engineering

experience. This limitation often leads to subpar performance when

dealing with complex scenes (Wang et al., 2022b). Consequently,

further research is required to develop more efficient and automated

methods (Zhang et al., 2023e).

Deep learning algorithms exhibit the capability to

autonomously extract and learn complex high-level features

through deeply structured convolutional neural networks. Due to

its rapid evolution, deep learning models have been constructed for

the detection of plant diseases (Pan et al., 2023a). These models not

only excel in disease classification but also accurately determine

disease locations on plant leaves within images (Liu and Wang,

2021). Much like other research domains such as medical science,

mechanical automation, and logistics, the integration of robotics

and deep learning into agriculture has sparked a revolution in the

way plants are cultivated and safeguarded (Balaska et al., 2023). This

transformative approach allows for the intelligent application of

chemical sprays, including fungicides, herbicides, and pesticides,

following successful robotic disease detection. This intelligent

strategy offers the promise of establishing a cost-effective crop
Frontiers in Plant Science 02
protection system (Saleem et al., 2021). This innovative approach

has been applied to a wide range of crops, including cucumber (Li

et al., 2023b), maize (Leng et al., 2023), potato (Johnson et al., 2021;

Dai et al., 2022), rice (Jia et al., 2023), soybeans (Zhang et al., 2021),

strawberry (Zhao et al., 2022), tomato (Tang et al., 2023b), and

wheat (Zhang et al., 2023a), on a global scale for disease detection

using deep learning techniques.

In recent years, researchers have harnessed deep learning

techniques for the detection of cotton diseases. Several noteworthy

studies have been conducted: Susa et al (Susa et al., 2022). applied the

YOLOv3 algorithm to detect and classify cotton plants and leaves,

achieving a remarkable mean Average Precision (mAP) score of

95.09%. Zhang et al (Zhang et al., 2023b). optimized the YOLOv5

algorithm to address the issue of subpar small target detection in the

context of cotton wilt disease. They introduced a small target detection

layer and incorporated an attention mechanism, resulting in an

impressive mAP score of 91.13%. PRIYA et al (Priya et al., 2021).

utilized Faster R-CNN with Region Proposal Network (RPN) to detect

and classify images containing both healthy and diseased cotton plant

leaves. Their approach demonstrated an average accuracy of 96% in

disease identification. R. Devi Priya et al (Devi Priya et al., 2022).

proposed the Augmented Faster R-CNN (AFR-CNN) algorithm by

amalgamating Faster R-CNN, an efficient deep learning algorithm,

with effective data augmentation techniques such as rotation, blur

transformation, flipping, and GAN. The model achieved a noteworthy

mAP score of 90.2%. Zhang et al (Zhang et al., 2022). introduced a real-

time, high-performance detection model based on an improved

YOLOX. Their model incorporated features like Efficient Channel

Attention (ECA), a hard-Swish activation function, and Focal Loss into

YOLOX, resulting in an mAP of 94.60% for cotton disease and pest

detection, with a precision rate of 94.04%. Zhang et al (Zhang et al.,

2023c). proposed an enhanced attention mechanism YOLOv7

algorithm (CBAM-YOLOv7) for the image detection of diseases and

pests like cotton wilt disease. Their model achieved an impressive mean

Average Precision (mAP) score of 90.2%.

The endeavors of the researchers mentioned above have

undeniably advanced the field of cotton disease detection,

providing valuable insights into areas such as dataset

augmentation and the optimization of detection algorithms.

Nonetheless, the deployment of mobile robots and various edge

AI devices often necessitates a trade-off between computational

power, power consumption, battery size, and the time between

charges. These devices typically operate with significantly less

computational power compared to the robust GPU-based systems

commonly employed for training and assessing deep neural

networks (Yao et al., 2022). Moreover, it has become evident that

certain deep learning models with high detection accuracy tend to

possess redundant model parameters. This redundancy poses

challenges when it comes to deploying these models on mobile

agricultural inspection robots. Existing detection models struggle to

strike a balance between detection accuracy and speed, hindering

their application in this context. Furthermore, it’s worth

acknowledging that, in some of these studies, cotton disease

detection was conducted within controlled environments, and this

gap in achieving reliable detection in natural agricultural settings

remains (Tang et al., 2023a). This limitation has, to a certain extent,
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constrained the development of agricultural inspection robots

(Wang et al., 2022a; Ye et al., 2023).

Consequently, this study centered on cotton disease as the focal

point of research and proposed CDDLite-YOLO detection

algorithm to detect cotton disease quickly and accurately under

natural field conditions. The model introduced in this paper is built

upon the most recent advancements in object detection algorithms

with the specific features of cotton diseases. It successfully strikes a

harmonious balance between detection speed, accuracy, and model

size, making it a promising candidate for deployment on an

embedded GPU chip without compromising performance.

The significant contributions of this paper can be summarized

as follows:
Fron
(1) We collected a dataset of cotton disease images from

natural environments for training, validation, and testing

of the model.

(2) To enhance detection accuracy while minimizing

parameter calculations, we designed the C2f-Faster

module as a replacement for the C2f module in the

backbone network and introduced a novel Slim-neck

structure by substituting the C2f module with the

GSConv module and the VoVGSCSP module in the

neck network.

(3) We introduced MPDIoU, an IoU loss measure, to address

limitations for cotton disease detection that existing loss

functions when predicted and ground truth bounding

boxes have the same aspect ratio but varying width and

height values.

(4) We designed the PCDetect detection head to reduce model

parameters and computations while maintaining

exceptional detection performance.

(5) Through experiments, we validated the CDDLite-YOLO

model. Compared to other models, CDDLite-YOLO

achieves higher mAP and detection speed, with lower

FLOPs and a smaller model size.
The subsequent sections of this study are structured as follows:

Section II explores critical aspects, including image acquisition,

preprocessing, and model structure enhancements. Section III

presents the experimental results alongside a detailed analysis, while

Section IV offers a comprehensive discussion of this study. Section V

encapsulates our efforts with a summary of the conclusions reached.
2 Materials and methods

2.1 Materials

2.1.1 Image data acquisition
The image dataset was collected from two specific locations: the

cotton fields at the Langfang Research Base of the Chinese Academy

of Agricultural Sciences, Hebei Province, China (N: 39°27′55.59″, E:
116°45′28.54″), and the Potianyang Base in Yazhou District, Sanya

City, Hainan Province, China (N: 18°23′49.71″, E: 109°10′39.84″).
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This data collection took place from September 2020 to December

2022.The focus of our image collection comprised three primary

types of cotton diseases: verticillium wilt, fusarium wilt, and

anthracnose. To ensure the quality and accuracy of the dataset, all

images underwent a meticulous identification and confirmation

process carried out by two expert cotton pathologists.

Images were captured during different weather conditions,

including clear and overcast skies, at various times of the day,

covering the morning, noon, and evening. Image capture was

carried out using a Canon EOS 850D digital camera (Canon Inc.,

Tokyo, Japan) and a Huawei P40 Pro smartphone (Huawei

Technologies Co., Ltd., Shenzhen, China). The images were

captured from a distance of 20–50 cm from the cotton leaves,

using automatic exposure mode. They have a resolution of 4608 ×

3456 pixels and were saved in JPG format.

To ensure the diversity and richness of our image dataset, a

randomized approach was employed during the collection process.

This involved capturing images from various angles, under different

lighting conditions, and against diverse backgrounds. To accurately

reflect natural field conditions, images were taken during different

weather conditions, including sunny, cloudy, and overcast weather,

across different times of the day, encompassing various growth

stages of the cotton crop. The images also include the presence of

soil, as well as potential field clutter such as weeds, plastic film, and

dried leaves.

2.1.2 Images processing and dataset production
To enhance data collection efficiency, we concurrently captured

images and recorded videos. Later, we employed video frame

extraction to augment the image count. The recorded videos

ranged from 15 to 30 seconds, and frames were extracted at a rate

of 15 frames per second, resulting in a range of 225 to 450 frames,

and the image resolution is 4608 × 3456, which is saved in JPG

format. These frames were then carefully curated for selection. In

order to prevent redundancy within the dataset, we adhered to three

guiding principles for image selection: (1) ensuring each diseased

leaf was represented only once, (2) avoiding multiple images from

the one or neighboring cotton plants, and (3) prioritizing images

with different angles, various lighting conditions, and diverse

backgrounds. Consequently, we curated a dataset for cotton

disease detection under natural conditions, comprising 591

images of cotton with verticillium wilt, 435 images of cotton with

fusarium wilt, and 504 images of cotton with anthracnose, totaling

1,530 images. For specific details regarding the types of cotton

diseases, the number of images in each category, and key disease

features within the dataset, please refer to Table 1.

We employed the Make Sense tool (https://makesense.ai) for

labeling the types of diseased leaves and their respective positions in

the images. The labeling area was defined as the smallest rectangle

encompassing the diseased leaf, minimizing background inclusion.

The dataset was partitioned into three subsets in an 8:1:1 ratio, with

1224 images allocated to the training set, and 153 images each for

both the validation and test sets. Additionally, mosaic augmentation

was incorporated into the training process. Mosaic augmentation

randomly selects four images, extracting segments of content and

their corresponding detection box information. These segments are
frontiersin.org

https://makesense.ai
https://doi.org/10.3389/fpls.2024.1383863
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2024.1383863
then fused into a single image for network input. This method

substantially enhances training data diversity, mitigating the risk of

overfitting by introducing greater variability into the learning process.
2.2 Methods

2.2.1 Overall model
Object detection algorithms can be categorized into one-stage

and two-stage algorithms. The two-stage algorithm relies on region

proposals, represented by Faster R-CNN, which is known for its

slower processing speed, which makes it unsuitable for real-time

detection and deployed on an embedded GPU chip. On the other

hand, the one-stage model is based on regression, which includes

the YOLO series. offers a significant advantage in speed compared

to the two-stage model, making it better suited for real-time

detection requirements. Hence, this study opts for the YOLO

model as the baseline model. This model is an enhancement of

the YOLOv8 model specifically tailored for the task of detecting

cotton diseases in natural environments and designed for

deployment on agricultural inspection robots and other devices

with limited memory and computational resources. The

architecture of CDDLite-YOLO is visualized in Figure 1.

The model comprises four key components: Input, Backbone,

Neck, and Head. The enhancements are summarized as follows:
Fron
(1) We designed the Faster Block structure using partial

convolution to replace the Bottleneck structure in the C2f
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module within the backbone network, resulting in the

upgraded C2f module termed C2f-Faster.

(2) In the neck network, we introduce an innovative Slim-neck

structure by replacing the C2f module with the GSConv

module. Additionally, the C2f modules are enhanced by

integrating the VoVGSCSP module. This module is an

iterative fusion of the GS bottleneck, built upon GSConv.

(3) We introduced MPDIoU, an IoU loss function based on

minimum points distance, to address limitations in existing

loss functions in YOLOv8, particularly when dealing with

predicted and ground truth bounding boxes of the same

aspect ratio but varying width and height values.

(4) We designed the PCDetect detection head, incorporating

the PCD module into the detection head and replacing

specific CBS modules with PCDetect.
By integrating these advancements, CDDLite-YOLO effectively

balances detection speed, accuracy, and model size. It significantly

reduces the model’s size, accelerates detection speed, and achieves

higher detection accuracy, providing a harmonious synergy of

performance improvements.

2.2.2 YOLOv8
YOLOv8, the latest addition to the YOLO series, was introduced by

Ultralytics in January 2023. It maintains the established YOLO series

structure while undergoing significant optimization, resulting in

notable improvements in both speed and accuracy (Kang and

Kim, 2023).
TABLE 1 The types, figures, image samples, and key features of each cotton disease in the dataset.

Type of Disease Figures Image Key Features

Verticillium wilt 591
Pale yellow patches develop between leaf margins and veins,

gradually expanding and causing the loss of green color in the leaves.

Fusarium wilt 435
Lower leaves exhibit yellowing and wilting. The stem displays brown

discoloration and often splits open, revealing red-brown vascular tissue.

Anthracnose 504
Small, circular lesions appear on leaves, stems, and bolls. These lesions start as

water-soaked areas and become sunken with dark centers over time.

Total 1530
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YOLOv8 consists of three core components: Backbone, Neck,

and Head. The Backbone in YOLOv8 closely mirrors YOLOv5’s

architecture, with notable refinements to the CSPLayer, now

referred to as the C2f module. This C2f module seamlessly

integrates high-level features with contextual information,

resulting in improved detection accuracy. The Neck of YOLOv8

combines an FPN (Feature Pyramid Network) and PAN (Path

Aggregation Network) to facilitate feature fusion among the three

effective feature layers obtained in the Backbone. In the Head of

YOLOv8, a shift occurs from an anchor-based to an anchor-free

approach (Terven and Cordova-Esparza, 2023). This transition

abandons IOU matching and single-scale assignment, opting

instead for a task-aligned assigner to match positive and

negative samples.

YOLOv8n, the smallest model in the YOLOv8 series, is

distinguished by its compact model parameters and minimal

hardware requirements. When trained on the cotton diseases

dataset, YOLOv8n surpasses the performance of YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x, yielding notably superior

results. Although its mAP value is slightly lower compared to the

other four models, YOLOv8n shines with significantly reduced

computational costs and fewer parameters. This renders it an

optimal choice for deployment on resource-constrained devices.

In this article, we present the CDDLite-YOLO model, built

upon YOLOv8n. Our objective is to cater to real-time and resource-

constrained device development requirements while upholding

detection accuracy in natural field environments.
Frontiers in Plant Science 05
2.2.3 C2f-faster
In object detection models, the main objective is to extract

spatial information from images, which demands a substantial

number of convolutional operations. In contrast to YOLOv5’s C3

module, YOLOv8’s new C2f module incorporates additional

Bottleneck structures and cross-layer connections, enhancing

gradient flow. However, this also brings about excessive

convolution operations and heightened computational load,

presenting deployment challenges on resource-limited

embedded devices.

To meet the requirements of embedded devices for cotton

disease detection, reduce computational complexity, and

minimize parameter size, thus achieving a lightweight network

model, enhancing the convolution operator within the C2f

module stands out as a highly effective and worthwhile approach.

The feature maps exhibit significant similarities across various

channels. FasterNet (Chen et al., 2023) introduced the concept of

partial convolution, where it applies a regular Conv operation to

only a subset of the input channels for spatial feature extraction,

leaving the rest unchanged. This approach reduces computational

redundancy and memory usage simultaneously, resulting in

efficient performance on a wide range of devices. The C2f-faster

module is inspired by the lightweight design principles of FasterNet.

It utilizes the Faster Block to replace the Bottleneck within the C2f

module, as illustrated in the Figure 2.

The Faster Block encompasses three types of blocks: PConv,

CBS, and 1×1 Conv. PConv stands for Partial Convolution, and
FIGURE 1

Overall model architecture diagram.
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utilizes only 1/4 of the input channels for convolution, leaving the

remaining 3/4 channels untouched. The outputs of the convolved 1/

4 channels are then merged with the untouched 3/4 channels. For

contiguous or regular memory access, the first or last consecutive cp

channels as the representatives of the whole feature maps for

computation. Without loss of generality, we assume the input and

output feature maps have the same number of channels, which aims

to reduce redundant calculations while preserving the original

channel information. Despite 3/4 of the channels not being

involved in convolution, they are not discarded. Instead, valuable

information can be extracted from these channels in subsequent

1×1 convolutions. This approach enhances the efficiency of spatial

feature extraction by reducing redundant computation and memory

access concurrently. Additionally, CBS is composed of Conv, batch

normalization, and a SILU activation function. To ensure that the

processed feature maps maintain their original dimensions and size,

the 1×1 Conv layer is utilized to restore the output of the

preceding layer.

2.2.4 Slim-neck
The standard convolution (SC) module in YOLOv8 utilizes

different convolutional kernels across multiple channels

simultaneously, resulting in a higher parameter count and

increased computational requirements (FLOP). While lightweight

networks like MobileNet (Howard et al., 2017) and ShuffleNet

(Zhang et al., 2018) effectively address this issue using Depth-wise

Separable Convolutions (DSC), they suffer from reduced feature

extraction and fusion capabilities, hindering model detection

performance. Such limitations make them unsuitable for real-time

cotton disease detection.

To address these challenges, the CDDLite-YOLO model

introduces the GSConv module (Li et al., 2022), a lightweight

convolution, into the neck section, resulting in a novel Slim- neck

structure. The GSConv module utilizes the shuffle operation to

seamlessly integrate information from SC into DSC-generated data.

In contrast to DSC, GSConv excels at preserving hidden
Frontiers in Plant Science 06
connections while still keeping complexity low, achieving a

balanced trade-off between model accuracy and speed.

The GSConv module is primarily constituted by Conv,

DWConv, Concat, and Shuffle operations, visually represented in

the Figure 3. The construction unfolds as follows:
(1) The input feature map consists of C1 channels.

(2) Half of the channels undergo Standard Convolution (SC),

and the remaining half undergo Depthwise Separable

Convolution (DSC).

(3) Concatenate the resulting two output feature maps along

the channel dimension.

(4) Subject the concatenated feature map to a shuffle operation,

resulting in the final output.

(5) The final output feature map now contains C2 channels

in total.
VoVGSCSP (Xu et al., 2023) represents an iterative integration

that builds upon the GS bottleneck using the foundation of

GSConv, as depicted in Figure 3. This process involves

segmenting the input feature map’s channel count into two

portions. The initial segment undergoes Convolution (Conv) for

processing, followed by consecutive GS bottleneck modules for

feature extraction. Simultaneously, the remaining segment serves

as residuals and undergoes a single Convolution operation. The

resulting two output feature maps are then concatenated and

subjected to an additional Convolution, resulting in the final

output. The ultimate output feature map contains a total of C2

channels. This module effectively strikes a balance between model

accuracy and speed, concurrently reducing computational load and

complexity while preserving commendable accuracy.

We envisioned integrating GSConv and VoVGSCSP into the

neck network to create a lightweight model without compromising

detection performance, as illustrated in the Figure 3. This

enhancement led to a reduction in model parameter calculations,
FIGURE 2

Structural diagram of C2f-Faster.
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fostering high detection accuracy and a notable improvement in the

balance between the model’s accuracy and speed.

2.2.5 MPDIoU
Computing the loss involves comparing the network’s predicted

results with the groundtruth (Tian et al., 2022). Our model’s loss

function aligns with YOLOv8, encompassing regression and

classification components. YOLOv8 utilizes DFL and CIoU for

bounding box regression (Xiao et al., 2023).

The training dataset comprises precisely ground truth bounding

boxes that accurately delineate diseased areas. In cotton disease

detection, the diverse range of diseases, variations across growth

stages, and the influence of factors such as camera angles, lighting

conditions, and obstructions can introduce discrepancies in disease

localization.However, the aspect ratio definition in CIoU is relative

rather than absolute. In instances where predicted and ground truth

bounding boxes share the same aspect ratio but differ in width and

height, the model may generate boxes with slight deviations (Zhang

et al., 2023d). CIoU’s sensitivity to such nuances poses challenges

for precise learning and prediction, impacting convergence speed

and accuracy. To mitigate this, we introduced a novel bounding box

similarity comparison metric, MPDIoU (Siliang and Yong, 2023),

based on the minimum point distance.

MPDIoU incorporates three key factors: overlapping or non-

overlapping area, central points distance, and width and height
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deviation. It streamlines calculations by minimizing the distance

between top-left and bottom-right points in predicted and ground

truth bounding boxes. This adaptable metric accommodates

overlapping or non-overlapping bounding box regression.

Equation 1 shows the computation method for MPDIoU.

d21 = (xB1 − xA1 )
2 + (yB1 − yA1 )

2

d22 = (xB2 − xA2 )
2 + (yB2 − yA2 )

2

MPDIoU = A∩B
A∪B −

d21
w2+h2 −

d22
w2+h2

(1)

In the formulation, d1 and d2 represent the intersection and

minimum point distance. Shapes A and B are two arbitrary convex

entities, with w and h signifying the width and height of the input

image. The coordinates (xA1 , y
A
1 ) and (x

A
2 , y

A
2 ) denote the top-left and

bottom-right points of shape A, respectively, and (xB1 , y
B
1 ) and (xB2 ,

yB2 ) represent the top-left and bottom-right points of shape B.

Benefiting from the implementation of MPDIoU to replace

CIoU in YOLOv8, our model has demonstrated competitive results.

The subsequent section detailing illustrates that our proposed

MPDIoU surpasses the original CIoU and other loss functions.

2.2.6 PCDetect
YOLOv8 introduces the decoupled head mechanism, separating

convolutional layers from fully connected layers. This technique

leverages neck network output features to predict category and
FIGURE 3

Structural diagram of neck.
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location via distinct branches. While enhancing model convergence

and accuracy, the decoupling head introduces additional

parameters and computational costs.

To boost computational efficiency, we propose the PCD

module, building on PConv from Section 2.2.3. The PCD module

features a 3 × 3 PConv layer for extraction, augmented by a CBS

module using a 1×1 convolutional kernel for channel adjustment.

This enhancement improves feature fusion and cross-channel

perception without a substantial parameter increase, enhancing

model expressiveness.

The PCD module replaces some CBS modules in the detection

head, forming PCDetect. Input and output feature maps are H × W

× C. Equation 2 shows the FLOPs ratio of PCD to traditional

convolution is only 1/5–1/6 when k = 3, r = 4 (Jiang et al., 2023).

s =
FLOPsPCD
FLOPsConv

=
k� k� C=r �W � H � C=r + C �W �H � C

k� k� C � H �W � C

=
1
r2

+
1
k2

  (2)

Substituting PCDetect for the Detection module in YOLOv8

significantly reduces model parameters while maintaining similar

detection accuracy. This effectively resolves conflicts between

accuracy and detection speed.
3 Experiments and analysis of results

3.1 Experiment settings

3.1.1 Experimental parameter settings
The experimental setup utilized a Dell tower workstation (Dell,

Inc., Round Rock, Texas, USA) running Windows 11. It was

equipped with a 12th Gen Intel(R) Core(TM) i5–12500 processor

operating at 3.00 GHz, 32GB of RAM, a 1TB solid-state drive, and

an NVIDIA GeForce RTX 3080 graphics card with 10GB of video

memory for GPU-accelerated computing. The software

environment included Python 3.8.17, PyTorch 1.13.0, Torchvision

0.14.0, and CUDA 11.7.

The experiment comprised 300 iterations with a batch size of 4.

The optimization algorithm used was Adam, with an initial learning

rate of 1e-3, a maximum learning rate of 1e-5, a momentum of

0.937, a weight decay of 5e-4, and an input image resolution of

640×640. These training parameters and dataset were consistent

across all models during the training process.

3.1.2 Evaluation indicators
To assess the model’s performance, various evaluation metrics

were used, including Precision, Recall, mAP@0.5, mAP@0.5:0.95,

Speed (measured in frames per second or FPS), the number of

parameters (Params), and computation costs (FLOPS).

Precision measures the ratio of correctly classified positive

samples to all samples predicted as positive, calculated using the

formula in Equation 3:
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Precision =
TP

TP + FP
(3)

Where TP is the true positive samples, and FP is the false

positive samples.

Recall quantifies the proportion of actual positive samples

correctly identified by the model, calculated using Equation 4:

Recall =
TP

TP + FN
(4)

mAP, which stands for mean Average Precision, is determined

through the precision-recall (PR) curve and is calculated using

Equation 5:

mAP = o
N
i=1APi

N
(5)

Where mAP@0.5 is the average AP with an IoU of 0.5, and

mAP@0.5:0.95 is the average AP with IoU values ranging from 0.5

to 0.95 in steps of 0.05.

The number of parameters (Params) reflects the model’s

complexity and its capacity to learn and represent features. It’s

calculated using Equation 6:

Param =o(K � K � Cin  � Cout ) (6)

Where K represents the convolution kernel size, Cin is the input

size, and Cout is the output size.

Speed is measured in frames per second (FPS), calculated using

Equation 7:

speed=frames=time (7)

FLOPS (Floating-Point Operations Per Second) represents the

model’s computation costs, and its calculation is detailed in

Equation 8:

FLOPs =o(K� K � Cin  � Cout  �H�W) (8)

Where H × W is the size of the outputted feature map.
3.2 Analysis of results

3.2.1 Ablation experiments
For a more in-depth evaluation of the effectiveness of the

enhancement technique in the CDDLite-YOLO model, we

performed a series of ablation experiments. We used YOLOv8 as

the baseline model for comparison, and the results can be found

in Table 2.
(1) Effects of C2f-Faster: A comparative analysis between

YOLOv8 and experiments involving the gradual addition

of the C2f-Faster module highlights its effectiveness. The

incorporation of C2f-Faster significantly reduces

computational costs, with a 13.41% reduction in FLOPS

and a 13.33% decrease in Params. Simultaneously, it

modestly enhances feature extraction capabilities, leading

to a 1.3% increase in mAP@0.5. This demonstrates that

C2f-Faster not only significantly reduces parameters but
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also reduces computational costs without compromising

detection accuracy.

(2) Effects of Slim-neck: A comparison between YOLOv8 and

experiments involving the gradual integration of the Slim-

neck module reveals that the inclusion of the Slim-neck

contributes to a reduction in computational costs. It leads

to a notable 10.98% reduction in FLOPS and a 10.00%

decrease in Params. Simultaneously, it provides a modest

enhancement in feature extraction capabilities, resulting in

a 1.4% increase in mAP@0.5. When both C2f-Faster and

Slim-neck are added, computational costs experience a

significant decrease, with FLOPS and Params decreasing

by 24.39% and 20.00%, while mAP@0.5 remains stable.

This achieves model lightweight without compromising

mAP@0.5. This outcome can be primarily attributed to

the incorporation of the GSConv and VoVGSCSP module,

which utilizes depthwise separable convolution to

significantly reduce the number of computed parameters.

Additionally, it reshuffles the connections between

channels to ensure information multiplexing, thereby

maintaining detection accuracy. The deliberate decision to

integrate the GSConv module into the neck was made with

careful consideration. However, it was intentionally

omitted from the backbone to prevent an excessive

presence of GSConv modules. This choice aimed to avoid

over-complicating the network architecture, which could

hinder the flow of spatial information and substantially

increase inference times.

(3) Effects of MPDIoU: A comparative analysis between

YOLOv8 and experiments gradually introducing the

MPDIoU module highlights the efficacy of its integration.

The addition of MPDIoU notably enhances model

accuracy, achieving a mAP@0.5 of up to 90.7% and

showing improvements of 2.10%, with no additional
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parameters and speed costs. It also achieves high accuracy

when integrated with other improvements. This

substantiates that MPDIoU indeed contributes to

improved model performance by calculating the IoU

based on minimizing the point distance between the

predicted bounding box and the ground truth

bounding box.

(4) Effects of PCDetect: A comparative analysis between

YOLOv8 and experiments involving the gradual addition

of the PCDetect module highlights its effectiveness. The

incorporation of PCDetect contributes to a reduction in

computational costs, with FLOPS and Params experiencing

reductions of 31.71% and 20.00%, respectively. It maintains

accuracy while achieving these reductions when integrated

with other improvements.

(5) Effects of integrating together: CDDLite-YOLO seamlessly

combines the strengths of C2f-Faster, Slim-neck, MPDIoU,

and PCDetect. The result is a model with a 56.10% reduction

in parameters, a 40.00% decrease in computational demand,

and a noteworthy 2.00% improvement in mAP@0.5

compared to YOLOv8.
The CDDLite-YOLO model significantly reduces both model

size and computational costs while maintaining a comparable

detection accuracy. This emphasizes a harmonious balance

between enhancing accuracy and streamlining model efficiency,

underscoring the significance of our proposed improvements.

3.2.2 Performance comparison with the state-of-
the-art detection models

To evaluate the model’s effectiveness, we conducted

comparative experiments, comparing our proposed model against

well-known lightweight models such as YOLOv5n, YOLOv6n,

YOLOv7-tiny, and YOLOv8n. All experiments utilized the same
TABLE 2 Comparisons of ablation experiments.

BaseLine C2f-Faster Slim- neck MPDIoU PCDetect mAP@0.5 FLOPS/G Params/M

✓ 88.6% 8.2 3.0

✓ ✓ 89.9% 7.1 2.6

✓ ✓ ✓ 89.3% 6.2 2.4

✓ ✓ ✓ ✓ 90.2% 6.2 2.4

✓ ✓ 90.0% 7.3 2.7

✓ ✓ ✓ 90.1% 7.3 2.7

✓ ✓ ✓ ✓ 89.6% 4.7 2.2

✓ ✓ 90.7% 8.2 3.0

✓ ✓ ✓ 89.4% 5.6 2.4

✓ ✓ 89.0% 5.6 2.4

✓ ✓ ✓ ✓ ✓ 90.6% 3.6 1.8
The bold values in Table 2 represent the model proposed in this paper.
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cotton diseases dataset, which consists of 1224 training images, 153

validation images, and 153 test images. We maintained identical

experimental conditions throughout to ensure a fair comparison.

The comparison results are shown in Figure 4 and Table 3.

CDDLite-YOLO outperforms other mainstream lightweight

models in terms of detection accuracy. In this paper, CDDLite-

YOLO achieves mAP@0.5 and mAP@0.5:0.95 scores of 90.6% and

73.7%, surpassing the performance of YOLOv5n, YOLOv6n,

YOLOv7-tiny, Faster R-CNN, SSD, RetinaNet, FCOS and

YOLOv8n. Several factors contribute to this superior performance.

Firstly, the C2f-Faster module utilizes only 1/4 of the input channels

for convolution and processing 3/4 of the channels extracted from

these channels in subsequent 1×1 convolutions. This approach

enhances spatial feature extraction by reducing redundant

computation and memory access simultaneously. Secondly, Slim-

neck utilizes the shuffle operation to seamlessly integrate information

from SC into DSC-generated data while preserving hidden

connections. This approach effectively achieves a balanced trade-off

between model accuracy and speed, keeping complexity low.

Additionally, the PCDetect module employs a 1×1 convolutional

kernel for channel adjustment, enhancing feature fusion and cross-

channel perception without substantially increasing parameters. The

integration of the C2f-Faster module, Slim-neck, and PCDetect

module significantly reduces operational parameters while

maintaining inference speed, without compromising detection

accuracy. Furthermore, the inclusion of MPDIoU is pivotal in

enhancing model accuracy. It addresses limitations in existing loss

functions by considering the minimum point distance between

predicted and ground truth bounding boxes, particularly when they

share the same aspect ratio but possess varying width and height

values. These factors collectively enhance the effectiveness of the

CDDLite-YOLO model in detecting cotton diseases.

The CDDLite-YOLO model excels in reducing parameter count

and computational complexity. Compared to YOLOv5n,

YOLOv6n, YOLOv7-tiny, Faster R-CNN, SSD, RetinaNet, FCOS

and YOLOv8n, our proposed CDDLite-YOLO model offers lower

FLOPS and Params, specifically 3.6G and 1.8M. This reduction can

be mainly attributed to the incorporation of the C2f-Faster module,

Slim-neck, and PCDetect module.
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Upon analyzing the results, we observe that the Params of the

YOLOv5n model are slightly lower than those of our proposed

model, albeit by only 0.1. However, what sets CDDLite-YOLO apart

is its superior performance in terms of Precision, Recall, mAP@0.5,

mAP@0.5:0.95, and speed. The CDDLite-YOLO model

outperforms YOLOv5n with a 0.5% increase in Precision, 4.9% in

Recall, 3.1% in mAP@0.5, 7.1% in mAP@0.5:0.95, and a remarkable

107.28 FPS boost in speed.

The results unequivocally establish the superiority of our

proposed model over the current mainstream lightweight

algorithms in three key aspects: model size, detection accuracy,

and detection speed. To further substantiate the performance of the

CDDLite-YOLO model, we randomly selected detection results

from a variety of environmental conditions among all testing

samples, as displayed in Figure 5.

3.2.3 Performance comparison of loss function
We experimented with various IoU loss functions to determine

their impact on performance. The tested loss functions include

CIoU loss, GIoU loss (Rezatofighi et al., 2019), SIoU loss

(Gevorgyan, 2022), WIoU loss (Cho, 2021), and MPDIoU loss,

while the remaining aspects of the YOLOv8 model were kept

constant. The comparative results are presented in the Table 4.

Notably, when using MPDIoU as the loss function for YOLOv8,

the highest mAP is achieved. This can be attributed to its

adaptability to diseases of various shapes and sizes in field

environments, distinguishing it as the most suitable choice for

our model in comparison with the other tested loss functions,

particularly when compared to the original IoU loss.

3.2.4 Performance comparison of detection
head optimization

To evaluate the impact of the PCDetect detection head on

cotton disease detection, we conducted experiments to determine

the most effective detection head. We tested several detection heads,

including Origin YOLOv8 (featuring two 3x3 Conv layers), a

detection head with one 1x1 ScConv (Li et al., 2023a) + one 1x1

Conv, a detection head with two 3x3 RepConv (Soudy et al., 2022),

and PCDetect (comprising 1x1 PConv + one 1x1 Conv). The
A B

FIGURE 4

Comparison of detection results between different models. (A) Detection performance. (B) Computational complexity, parameter, and
detection time.
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Comparison of different detection heads on YOLOv8 is shown

in Table 5.

Comparing PCDetect with Origin YOLOv8 and the detection

head with one 1x1 ScConv + one 1x1 Conv, we observed that the

mAP@0.5 of the PCDetect detection head remained stable. However,

the number of parameters decreased by 20% and 4%, while

computational complexity increased by 31.71% and 1.75%. It’s worth

noting that although the mAP@0.5 of the detection head with two 3x3

RepConv was 0.6 higher than that of PCDetect, the computational

costs and parameter count increased by 44.64% and 58.33% compared

to PCDetect, even surpassing those of the Origin YOLOv8 model.

Our experimental results unequivocally confirm that using the

PCDetect detection head outperforms other options, maintaining

detection accuracy while requiring fewer parameters and lower

computational complexity.
4 Discussion

4.1 The importance of model lightweight

In recent years, advances in deep learning and convolutional

networks have significantly enhanced object detection capabilities.

Embedded computing devices have emerged as the preferred

computational core for cost-effective and portable agricultural

equipment. However, a graphics card’s performance depends on

its single-precision floating-point capabilities, CUDA core count,

and overall computing power, creating a noticeable power gap

between embedded devices and professional computing cards

(Cui et al., 2023). Consider the NVIDIA H100, a pinnacle in

professional computing, with an impressive 1200.00 TFlops in

single-precision floating-point performance and a substantial

18432 CUDA cores. Meanwhile, the NVIDIA A100, another

powerhouse in professional computing, maintains a balanced

profile with 312.00 TFlops and 6912 CUDA cores. On the other

hand, the NVIDIA GeForce RTX 4090, a robust GPU not

specifically tailored for professional computing, emphasizes a

different performance profile with 82.58 TFlops and 16384 CUDA

cores. In contrast, embedded devices like the NVIDIA Jetson AGX
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Orin and Jetson TX2, efficient in their own right, demonstrate more

modest capabilities with 5.30 TFlops/2560 CUDA cores and 1.36

TFlops/256 CUDA cores, respectively.

Deep learning models demand a considerable number of

multiplicative operations for accurate feature extraction.

Deploying detection models on embedded devices presents a

significant challenge due to their constrained computational

resources. Unfortunately, the computing power of the NVIDIA

Jetson TX2 is only 1/882nd of that of the NVIDIA H100,

highlighting the embedded devices’ inability to handle such

demanding calculations within a reasonable timeframe.

In the context of deployment on agricultural inspection robots

and resource-constrained devices, while some detection networks

boast high accuracy, their extensive parameters and computations

strain devices. Conversely, the most lightweight detection models

offer faster detection but often sacrifice accuracy, posing challenges

for application. Thus, ensuring the model lightweight while

maintaining detection accuracy is a fundamental requirement for

deploying the cotton disease detection model on agricultural

inspection robots and other resource-constrained devices. The

CDDLite-YOLO model adeptly amalgamates the strengths of

various lightweight modules such as C2f-Faster, Slim-neck, and

PCDetect. By doing so, it achieves a harmonious balance between

enhancing accuracy and streamlining model efficiency, rendering it

well-suited for deployment on agricultural inspection robots and

other resource-constrained agricultural devices.
4.2 Discussions of the detection results

Extensive research has been conducted on detecting cotton

diseases using deep learning. However, previous studies, such as

those by (Priya et al., 2021; Devi Priya et al., 2022; Susa et al., 2022;

Zhang et al., 2022; Zhang et al., 2023b, Zhang et al., 2023c), did not

fully consider the requirement for fast detection in applications

involving agricultural inspection robots or detection conducted

within controlled environments. This study addresses these

specific needs.

The advantages of the CDDLite-YOLO model are as follows:
TABLE 3 Comparison of detection performance of different models.

Models Precision Recall mAP@0.5 mAP@0.5:0.95 FLOPS/G Params/M Speed

YOLOv5n 88.5% 81.2% 87.5% 66.6% 4.1 1.7 114.9

YOLOv6n 87.4% 79.5% 87.2% 71.9% 11.8 4.2 220.3

YOLOv7-tiny 89.5% 84.0% 88.0% 66.4% 13.2 6.0 80.0

YOLOv8n 87.1% 85.2% 88.6% 72.8% 8.2 3.0 158.7

Faster R-CNN 43.9% 83.2% 74.3% 46.3% 370.2 137.1 21.0

SSD 74.4% 85.4% 82.1% 58.4% 62.8 26.3 117.6

RetinaNet 89.5% 76.8% 84.4% 60.8% 170.1 38.0 39.3

FCOS 86.3% 86.8% 89.4% 67.4% 161.9 32.2 41.5

CDDLite-YOLO 89.0% 86.1% 90.6% 73.7% 3.6 1.8 222.2
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FIGURE 5

Prediction results of the proposed method. (A) Under complex backgrounds such as plastic film, water pipes, and soil in the field. (B) Under dense
disease conditions. (C) Under the conditions of image blurriness generated during the agricultural inspection robot movement and
collection process.
TABLE 4 Comparison of different loss functions onYOLOv8.

Loss Functions CIoU (Origin YOLOv8) GIoU SIoU WIoU MPDIoU

mAP@0.5 88.6% 89.3% 90.1% 90.0% 90.7%
F
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(1) Lightweight and Speed: The CDDLite-YOLO model

exhibits lightweight characteristics and reduces model

size, making it well-suited for deployment on agricultural

inspection robots and other resource-constrained

agricultural devices.

(2) Balance of Accuracy and Efficiency: The CDDLite-YOLO

model strikes a harmonious balance between detection

speed, accuracy, and model size, positioning it as a

promising candidate for deployment on an embedded

GPU chip without compromising performance.
4.3 Limitations and future prospects

While our proposed method has demonstrated encouraging

results, there are still certain limitations that need to be addressed in

future research.

The mAP@0.5 of the CDDLite-YOLO model for detecting

cotton verticillium wilt diseases currently stands at 78.1%, leaving

room for improvement. This lower accuracy may be attributed to

factors such as background interference, as the color of cotton

verticillium wilt diseases closely resembles that of the soil, making

them easily blend into the background. Additionally, cotton

verticillium wilt diseases and cotton Fusarium wilt diseases share

a similar color, leading to occasional misdetections. To address

these limitations, future experiments will explore the use of spectral

imaging or hyperspectral imaging to capture more detailed

information about the spectral characteristics of cotton

verticillium wilt diseases. This can aid in distinguishing them

from the soil background. Moreover, we will enrich our dataset

by gathering and analyzing images of cotton diseases from various

varieties and regions captured by agricultural inspection robots

during their operation. This initiative will further validate the

applicability of the model proposed in this study. Furthermore,

we intend to implement systems that integrate human expertise to

validate and refine model predictions, thus strengthening the

accuracy of disease detection.

Regarding model deployment, we have successfully deployed

the CDDLite-YOLO model on embedded devices such as the

NVIDIA Jetson AGX Orin, NVIDIA Jetson TX2, and NVIDIA

Jetson Nano. It performs well and fulfills the requirements for low

computational power embedded devices in detecting cotton

diseases in natural field environments. It achieves a balance

between detection speed, accuracy, and model size, allowing

deployment on these embedded GPU chips without sacrificing

performance. Additionally, the CDDLite-YOLO model has been
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applied on agricultural inspection robots equipped with NVIDIA

Jetson AGX Orin, demonstrating excellent performance in rapidly

inspecting. We hope to deploy it on more cost-effective agricultural

inspection robots in the future. However, our lab currently lacks

access to agricultural inspection robots which are equipped with

more cost-effective devices like NVIDIA Jetson Nano, which will be

the focus of our future research.

Despite its limitations, CDDLite-YOLO serves as a valuable

technical reference for detecting cotton diseases in natural field

conditions. The application of the CDDLite-YOLO model in

agricultural inspection robots for cotton disease detection holds

the promise of validating its reliability.
5 Conclusions

Cotton, a crucial global source of natural textile fibers, is highly

susceptible to cotton diseases, which significantly impact both

cotton quality and yield. The use of deep learning has become an

integral approach to cotton disease detection. However, current

detection models often suffer from an overabundance of model

parameters, making them unsuitable for resource-constrained

devices and hindering the delicate balance between detection

accuracy and speed. To address these challenges, our research

establishes a dedicated dataset for cotton disease detection.

Building upon the YOLOv8 model, we introduce significant

improvements, resulting in the CDDLite-YOLO model that meets

the demands for accuracy, lightweight design, and real-time

performance in agricultural inspection robots and resource-

constrained agricultural devices. These enhancements encompass

the introduction of the C2f-Faster module, Slim-neck structure, the

PCDetect detection head, and the MPDIoU loss function. These

innovations enable automatic cotton disease detection in natural

environments, even on resource-constrained agricultural devices.

Our experimental results validate the model’s effectiveness,

achieving an impressive mAP@0.5 of 90.6%. It outperforms

comparable models in mAP@50–95, precision, and recall. The

model excels in computational efficiency, with parameters totaling

1.8M, FLOPS at 3.6G, and a rapid detection speed of 222.22ms.

These advancements represent a significant leap compared to

mainstream lightweight detection models like YOLOv5n,

YOLOv6n, YOLOv7-tiny, and YOLOv8n, rendering them highly

suitable for deployment on agricultural inspection robots. This

study provides innovative methods for developing lightweight

cotton disease detection models and deploying them on

agricultural inspection robots and other resource-constrained

agricultural devices. Additionally, it is also a reference for crop
TABLE 5 Comparison of different detection heads onYOLOv8.

Detection head Origin YOLOv8 one 1x1 ScConv
+ one 1x1 Conv

two
3x3 RepConv

PCDetect

mAP@0.5 88.6% 88.7% 89.6% 89.0%

FLOPS/G 8.2 5.7 8.1 5.6

Params/M 3.0 2.5 3.8 2.4
frontiersin.org

https://doi.org/10.3389/fpls.2024.1383863
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2024.1383863
loss estimation, pesticidal management practices, and

understanding symptom-environment relationships. the

CDDLite-YOLO model for detecting cotton verticillium wilt

indicates room for improvement. This limitation could potentially

be addressed by exploring the use of spectral imaging or

hyperspectral imaging to capture more detailed information about

the spectral characteristics of cotton verticillium wilt diseases.
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