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Development of next generation bio stimulants for sustainable agriculture
Chemical fertilizers have been at the core of the agricultural production system in the

last century, but their excessive usage poses a threat to the ecosystem (Del Buono, 2021;

Shukla et al.). Additionally, only 18-49% of the applied fertilizer was used by the plants, and

the remaining is lost to runoff to aquatic bodies causing eutrophication and leaching

(Gomiero et al., 2011). In the current scenario, there is an urgent requirement to develop a

sustainable agricultural system to address fundamental issues related to economical

agricultural production in an ecologically friendly manner (Tahat et al., 2020). Plant

biostimulants are gaining interest as an alternative sustainable strategy to improve the

innate ability of treated plants to cope with stress tolerance and efficiently utilize the

available nutrients (Shukla et al.; Nephali et al., 2020; Shukla and Prithiviraj, 2021). These

biostimulants were derived from seaweeds, microbes, and other natural sources (Shukla

et al.). There is a demonstrable need to develop more potent biostimulants and explore

their additional functionalities so that agriculture can be more resilient and sustainable.

This involves the exploration of synergistic actions by the combination of different classes

of biostimulants, identification of new sources with higher bioactivity, development of

novel extraction methods, and understanding the new functionalities for the existing

biostimulant products (Rouphael and Colla, 2018; Aeron et al., 2021; Johnson et al., 2023).

This editorial summarizes the contributions of different researchers toward the

development of next-generation biostimulants for sustainable agriculture.

Spinelli et al. demonstrated the biostimulant activity of culture filtrate obtained from

the fungus, Chaetomium globosum and Minimedusa polyspora on the leaf area, fresh and

dry biomass, and root:shoot ratio of Cichorium intybus. The bioactive compounds present

in the culture filtrate of C. globosum induced the biosynthesis of phenylalanine and chicoric

acid in the roots of C. intybus. In contrast, the culture filtrate of M. polyspora induced 4-

OH-benzaote in the roots of C. intybus. Trehalose, chitosan, humic acids, and gamma-

aminobutyric acid were screened for their biostimulant activity on the germination and
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growth of maize (Li et al.). Interestingly, these biostimulants

increased the nitrogen, potassium, phosphorous content and

grain quality of maize. Even though they did not have any effect

on germination rate, the seedlings from humic acid treatments had

significant drought resistance. Humic acid effectively improves the

synthesis of unsaturated fatty acids, alkaloids and metabolites

involved in improving abiotic stress tolerance in those treated

seedlings. The publications by Spinelli et al. and Li et al. provided

evidence that selected bioactive molecules could elicit specific plant

growth responses.

Seaweeds (macroalgae) are a major source of marine bioactive

molecules which are widely reported to induce growth, stress

tolerance, and nutrient-use-efficiencies in treated plants. There are

some differences between species of seaweeds used to make the

extract, as well as specificities of foliar or soil applications, dose rate

and frequencies to elicit specific plant responses (Shukla et al., 2016,

2019; Shukla and Prithiviraj, 2021; Deolu-Ajayi et al., 2022; Trivedi

et al., 2023). Seaweeds belonging to the Rhodophyceae (i.e., red

algae) had previously been less explored as a source of biostimulants

for plants than those belonging to the Phaeophyceae (brown

seaweeds). Various types of extracts of Kappaphycus alvarezii, a

cultivated, tropical red seaweed, have been recently explored for

their applications as plant biostimulants (Trivedi et al., 2023). Most

of these reports reviewed focused on concentrated “sap” extracted

from the algal thallus by processes such as crushing or mincing

(Ghosh et al., 2015; Vaghela et al., 2022). The sap from K. alvarezii

reportedly contains phenols, flavonoids, steroids, quinones,

carbohydrates, protein, lipids, carotenoids and ascorbic acid

(Vaghela et al., 2022). Shukla et al. reported that LBS6, a

commercial differentiated product derived from K alvarezii thalli,

by mixing the sap together with chemically hydrolyzed pulp

demonstrated the induced expansion of cucumber cotyledons by

regulating the expression of genes involved in cell division,

expansion and proliferation. In addition, this specific K. alvarezii-

derived biostimulant, also regulated the expression of genes

involved in the endogenous phytohormone regulation of the

treated plants, primarily playing an important role in cell

division, expansion, and proliferation (Shukla et al.). These same

authors also translated the beneficial effects of K. alvarezii-derived

biostimulant (LBS6) in whole plant assay too, where those plants

sprayed with the product showed better growth in terms of leaf area,

fresh and dry biomass. The treated plants demonstrated modulation

of electron and proton transport-related pathways which help better

growth by efficiently utilizing the photosynthetically available

radiation (Shukla et al.). LBS6, when applied as a root drench to

Pisum sativum grown under optimum, excessive, and deficient

nitrogen (N) conditions, improved the growth and plastochron

under optimum and N-deficient conditions (Shukla et al.). LBS6-

treated plants showed a reduction in N deficiency-induced lipid

peroxidation and improved photosynthetic parameters. In P.

sativum, LBS6 was shown to regulate the differential expression of

the genes involved with N uptake, transport, assimilation, and

remobilization (Shukla et al.).

Morales-Sierra et al. screened extracts from the red algae:

Bonnemaisonia hamifera, Galaxaura rugosa, Dasycladus

vermicularis, the green alga: Ulva clathrata, and the brown
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seaweeds: Cystoseira foeniculacea, C. humilis, Lobophora dagamae,

Colpomenia sinuosa and Halopteris scoparia all for their various

biostimulant activities when applied to tomato seedlings. Their results

showed that an extract from the red alga, Galaxaura rugosa exhibited

the highest biostimulant activity in tomato seedlings when grown

under water deficit stress. G. rugosa-derived extract mitigated water-

deficit-stress by improving both CO2 fixation and water-use-

efficiency (Morales-Sierra et al.). The beneficial effects of the G.

rugosa-derived extract in conferring water-deficit-stress tolerance

was attributed to the induced expression of abscisic acid-responsive

genes (Morales-Sierra et al.). Taken together the three publications of

Morales-Sierra et al., Shukla et al., and Shukla et al. provided missing

evidence regarding the potential of specific red seaweeds as a source

of biostimulant extracts for sustainable agriculture. In another study,

Vaghela et al. evaluated the beneficial effect of minimally processed

aqueous homogenates (MPHs) derived from the red K. alvarezii and

the brown seaweed Sargassum wightii on the growth of Zea mays.

TheseMPHs were rich in bioactive compounds for plant growth such

as retronecine, tyrosyl-glycine, hexyl 2-furoate, 1-phosphatidyl-1D-

myo-inositol, 12-(2,3-dihydroycyclopentyl)-2-dodecanone, and

trihomomethionin. The above publications collectively provide

much needed, new insights to the efficacy and biological activities

of various seaweed-based biostimulants, as well and insights to their

specific modes of action in improving plant growth, stress tolerance,

and nutrient-use-efficiency. It is patently obvious from the above that

not all extracts of seaweeds (SWEs) are the same. Different extracts,

different biotic and abiotic responses of treated plants. There are

considerable differences based on both raw materials and extraction/

hydrolysis processes. Understanding these not insignificant

differences is essential to establishing product value in the market,

as well as new and future applications for sustainable agriculture.

Protein hydrolysates (PHs) are produced by the chemical or

enzymatic hydrolysis of the proteins extracted from different animal

or plant bio-products of agro-industrial wastes (Colla et al., 2015).

PHs serve as plant biostimulants and are known to regulate key

molecular, biochemical, and physiological processes involved in

treated plant growth and stress tolerance (Colla et al., 2014).

Rouphael et al. showed the effects of vegetal protein hydrolysates

(VPH), free copper and copper-complexed peptides, and amino

acids of vegetal origin (Cu and Cu-VPH), and their combination on

the growth of Ocimum basilicum. Specifically, the application of a

combination of VPH and Cu-VPH improved the yield of O.

basilicum by regulating the photosynthetic efficiency and

carboxylation capacity of the plants.

In summary, the research published broadly covers different

aspects of microbial, extracts of various seaweeds and protein

hydrolysate-derived products broadly falling in the biostimulant

registration category, in improving plant growth, stress tolerance,

and nutrient-use-efficiency. These collated articles provide a holistic

insight into understanding the modes of actions of various types of

biostimulants in plant development and nutrient-use-efficiency.

These findings will lead to the development of next-generation

biostimulants for sustainable agriculture. In future, it is expected

that next-generation products will be synergistic formulations of

multiple types of biostimulants, such as seaweed extracts with

additions of protein extracts, humates, and microbial metabolites.
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