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Tomato leaf disease detection
based on attention mechanism
and multi-scale feature fusion
Yong Wang*, Panxing Zhang and Shuang Tian

School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
When detecting tomato leaf diseases in natural environments, factors such as

changes in lighting, occlusion, and the small size of leaf lesions pose challenges to

detection accuracy. Therefore, this study proposes a tomato leaf disease detection

method based on attention mechanisms and multi-scale feature fusion. Firstly, the

Convolutional Block Attention Module (CBAM) is introduced into the backbone

feature extraction network to enhance the ability to extract lesion features and

suppress the effects of environmental interference. Secondly, shallow feature maps

are introduced into the re-parameterized generalized feature pyramid network

(RepGFPN), constructing a new multi-scale re-parameterized generalized feature

fusion module (BiRepGFPN) to enhance feature fusion expression and improve the

localization ability for small lesion features. Finally, the BiRepGFPN replaces the Path

Aggregation Feature Pyramid Network (PAFPN) in the YOLOv6 model to achieve

effective fusion of deep semantic and shallow spatial information. Experimental

results indicate that, when evaluated on the publicly available PlantDoc dataset, the

model’s mean average precision (mAP) showed improvements of 7.7%, 11.8%, 3.4%,

5.7%, 4.3%, and 2.6% compared to YOLOX, YOLOv5, YOLOv6, YOLOv6-s, YOLOv7,

and YOLOv8, respectively. When evaluated on the tomato leaf disease dataset, the

model demonstrated a precision of 92.9%, a recall rate of 95.2%, an F1 score of

94.0%, and a mean average precision (mAP) of 93.8%, showing improvements of

2.3%, 4.0%, 3.1%, and 2.7% respectively compared to the baseline model. These

results indicate that the proposed detection method possesses significant detection

performance and generalization capabilities.
KEYWORDS

disease detection, YOLOv6, attention mechanism, feature pyramid network, multi-scale
feature fusion
1 Introduction

Tomatoes are widely cultivated globally and are a significant source of income for many

agricultural countries. Due to various environmental factors such as climate change,

tomatoes are highly susceptible to infections by fungi, bacteria, and viruses, which

severely affect their yield and quality. Early detection and identification of these diseases
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are crucial for reducing the infection and spread among tomato

plants, with initial symptoms often appearing on the leaves.

Therefore, accurate disease identification becomes crucial (Yao

et al., 2023). Traditional disease detection methods rely on the

experiential judgment of agricultural experts, which are not only

inefficient but also limited in accuracy, unable to meet the needs of

modern high-efficiency agriculture. With the development of

computer and Internet of Things (IoT) technologies, integrating

object detection technology into tomato production has become an

important trend in the modernization of tomato cultivation.

The powerful autonomous learning capability of deep learning

has enhanced neural network performance, becoming a major trend

and new direction in agricultural disease detection (Sunil et al., 2023).

Compared to traditional machine learning, deep learning-based

object detection algorithms offer advantages such as faster detection

speeds, higher accuracy, and better generalization capabilities (Liu

and Wang, 2021). Currently, the mainstream object detection

algorithms include classic models such as Faster R-CNN (Ren

et al., 2015), SSD (Liu et al., 2016), and YOLO series (Ge et al.,

2021; Li et al., 2022a; Wang et al., 2023). Consequently, researchers

have conducted a series of detection tasks under experimental

conditions, demonstrating the potential of object detection

algorithms in agricultural disease detection. Albattah et al. (2021)

proposed a framework for automatic detection and classification of

plant diseases based on DenseNET-77, which cannot be deployed on

mobile devices. Jing et al. (2023)improved upon YOLOv5 by

incorporating the Convolutional Block Attention Module (CBAM)

and replacing the original FPN with BiFPN, achieving detection of 9

types of tomato diseases and healthy leaves with a 96.4% accuracy rate

while also obtaining good tomato disease image annotation results.

However, data images in controlled experimental environments often

have simple backgrounds and sufficient lighting. When dealing with

diseases in complex environments, the detection performance is

inadequate and difficult to meet the requirements of actual

production environments.

In the natural environment, factors such as lighting, soil

conditions, and climate pose many challenges for leaf disease

detection, such as difficulties in disease localization due to lighting

changes, feature loss from obstruction, similarity of different disease

symptoms, and small lesion sizes. Faced with these challenges,

researchers have proposed methods for leaf disease detection in

natural environments. Roy et al. (2022) proposed a high-

performance, fine-grained object detection framework based on

YOLOv4, addressing issues of irregular shapes, multi-scale targets,

and similar textures in plant disease detection. Li et al. (2022c)

proposed a lightweight detection method that combines improved

YOLOv5 and ShuffleNet to detect peach tree leaf diseases in natural

environments, albeit with a slight decrease in accuracy. Liu and

Wang (2023) introduced a mixed attention mechanism into the

feature prediction structure of YOLOv5 to improve the detection of

tomato brown spot disease in complex scenes. Zhang et al. (2022)

improved the real-time detection of cotton pests and diseases in

complex natural environments by introducing efficient channel

attention (ECA), hard-Swish activation function, and Focal Loss

function based on the YOLOX model. Liu et al. (2023) proposed

PKAMMF based on the YOLOv7 model to address the challenges of
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complex natural backgrounds, indistinct disease features, and

partial obstruction. This method integrates a prior knowledge

attention mechanism, adding new feature fusion layers and

prediction layers to enhance the detection capability of small

objects. On their custom tomato disease dataset, the mean

Average Precision (mAP) reached 91.96%, but the addition of

fusion layers reduced inference speed. Qi et al. (2022) proposed a

tomato virus disease detection method based on SE-YOLOv5,

incorporating the SE attention mechanism to extract key disease

features, thus enhancing the detection accuracy of tomato diseases.

Li et al. (2022b) proposed a multi-scale detection method for

cucumber diseases in natural scenes. This method combines CA

and Transformer to reduce interference from irrelevant background

information, and employs a multi-scale training strategy to enhance

the detection of small lesions. Researchers (Guo et al., 2022; Zhao

et al., 2022; Cai and Jiang, 2023) also from the perspectives of multi-

scale feature fusion concepts and attention mechanisms, achieve the

detection of diseases in the leaves of grapes, strawberries, and other

plants in complex environments.

Although previous detection methods have achieved certain results

in leaf disease, accurately identifying tomato leaf diseases in real

environments remains challenging. The shadows created by changes

in lighting affect the characterization of disease lesions on tomato

leaves, making them resemble the spots caused by tomato leaf mold.

Early blight and septoria leaf spot in tomatoes initially show small,

roughly circular spots with relatively few texture features, leading to a

high incidence of misdiagnosis. Given these common yet challenging

issues in complex natural environments, the accuracy of existing

methods for detecting tomato leaf diseases needs to be improved.

The aforementioned studies have shown that adding P2 fusion layers

and additional small-scale detection heads can improve the accuracy of

detecting small lesions, but also comes with a higher computational

cost. Furthermore, by introducing attention mechanisms at different

positions within the model structure, the model places more emphasis

on the weighted learning of lesion features, further enhancing its

performance in detecting leaf diseases. However, it is necessary to

select the appropriate attention mechanism based on the characteristics

of the leaf diseases.

The YOLO series is widely used for real-time detection of

agricultural diseases due to its excellent balance between speed

and accuracy, among which the YOLOv6 model, considering real-

world conditions, has advantages in balancing inference speed and

detection precision. Therefore, this paper selects this model as the

baseline model. However, the model has some limitations in

processing images of diseases with small leaf lesions and natural

environmental factors such as lighting and occlusion. Therefore,

addressing the aforementioned issues and based on the

aforementioned research findings, this study proposes an

improved tomato leaf disease detection method based on the

YOLOv6 model, with the main contributions as follows:
(1) The Convolutional Block Attention Module (CBAM) is

integrated into the backbone feature extraction network of

the model, refining the feature maps from both channel and

spatial dimensions, thereby emphasizing the weighted

learning of features in tomato leaf lesions.
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(2) The Reparameterized Generalized Feature Pyramid

Network (RepGFPN) was improved by introducing small-

scale features and developing a new feature fusion module

(BiRepGFPN), which captured the characteristics of small

lesions on tomato leaves.

(3) By replacing the original feature fusion network with

BiRepGFPN, shallow spatial information and deep

semantic information are efficiently aggregated, achieving

precise localization of tomato leaf lesions at various scales.
2 Materials and Methods

2.1 Data Acquisition

Current studies on disease detection predominantly concentrate

on identifying lesions. This study considers that in actual

agricultural production, lesions often affect the growth and health

condition of the entire leaf, and lesion shapes are diverse. Therefore,

this paper selects the entire leaf as the research subject, aiming to

conduct disease detection from a global perspective. The dataset

utilized in this study originates from the publicly accessible tomato

leaf disease dataset on the roboflow1 platform (Bryan, 2023; SREC,

2023; projectdesign, 2023), comprising the PlantVillage dataset, the

PlantDoc (Singh et al., 2020) dataset, internet-captured data, and

photographs taken by the researchers themselves. PlantVillage

includes 14 different crops, such as potatoes, tomatoes, apples,

soybeans, sweet peppers, etc., with a total of 54,309 images. The

tomato segment features images of 9 diseases and 1 healthy state.

However, the images in PlantVillage are captured under laboratory

settings, missing the context of real-world environments. The

PlantDoc dataset contains 30 categories, including 13 plant

species and 17 disease types, with the tomato leaf disease

categories consistent with PlantVillage. The images in PlantDoc

were collected in various natural environments and feature multiple

annotation boxes within a single image.

This paper selects several common but difficult to accurately

identify tomato leaf diseases from the original dataset to form a new

tomato leaf disease dataset. The characteristics of the dataset are

as follows.
(1) Complex lighting and occlusion conditions: The dataset

accounts for occlusion between leaves, as well as shadows

and light spots caused by changes in lighting. Additionally,

the data includes occlusions caused by external objects such

as soil.

(2) Diversity of disease features: The dataset contains

variations of lesions throughout the disease lifecycle,

covering different sizes, shapes, textures, and colors.

(3) Dense overlapping among leaves: Considering the

challenges in real agricultural environments, the dataset
ttps://universe.roboflow.com/
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includes phenomena of dense overlapping among leaves,

which increases the complexity of detection.
The dataset includes tomato septoria leaf spot (TSLS), tomato

early blight (TEB), tomato leaf mold (TLM), tomato late light

(TLB), tomato leaf miner (TLMR), and healthy leaves (TL),

totaling 1425 images. Considering that healthy leaves are not

detected in actual disease detection, annotations for healthy leaves

were removed. The dataset was randomly divided into a training set

and a test set at a ratio of 8:2. To ensure precise assessment of model

performance, training and test sets were kept distinct without any

overlap, and data in each category were uniformly distributed

following an identical ratio. Sample images of tomato leaf diseases

are shown in Figure 1. It can be observed that tomato early blight

and tomato septoria leaf spot exhibit relatively small lesions on the

leaves, and there is similarity between these two diseases, making

them difficult to distinguish. The symptoms of tomato leaf miner

can easily be confused with the texture of healthy leaves. The lesions

of tomato leaf mold and tomato late blight are susceptible to the

effects of lighting.
2.2 Data Preprocessing

To increase the diversity of training samples, this paper applied

data augmentation to the training set, including random noise

addition, brightness adjustment, and flipping, ultimately

expanding the training set to 4659 images. The detailed

information of the training set is shown in Table 1. Table 1 lists

the number of each disease category in the original training set and

the augmented training set.

This paper assesses the complexity of images by calculating

their entropy values (Wu et al., 2022), with high entropy values

typically indicating that the images contain more textures and

objects. Figure 2 displays the complexity distribution of images

from each category in the tomato disease dataset using a density

plot. The x-axis represents the entropy values of images, with higher

entropy values indicating greater complexity. The y-axis indicates

the probability density values, with higher values suggesting a

greater number of images near that entropy value. Observing the

distribution in the figure, it is found that the complexity of images

from each category is mostly concentrated near high entropy values,

indicating that the images in this dataset have a certain level of

complexity and richness of information. This analysis aids in

gaining a deeper understanding of the characteristics of this dataset.
2.3 YOLOv6

The YOLOv6 network architecture is divided into four parts:

the input layer, backbone network, feature fusion network, and

detection head. The input layer performs data augmentation, such

as Mosaic, and size-adaptive scaling on the input images before

feeding them into the backbone network. The backbone network,

also known as the feature extraction network, consists of a series of

re-parameterizable (Ding et al., 2021) convolutions (RepConv),
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residual blocks (CSPRepBlock), and spatial pyramids (SimSPPF),

mainly for extracting feature information of various scales. A

notable feature of this network is the design of an efficient re-

parameterizable backbone (EfficientRep), which fully utilizes the

computing capabilities of hardware, significantly reducing inference

latency and enhancing feature representation ability.

The feature fusion network employs a Path Aggregation Feature

Pyramid Network structure (PAFPN) for the fusion of multi-scale

features from the output of the backbone network, facilitating

interaction among features at different levels. By adopting

CSPRepBlock, it maintains good multi-scale feature fusion capability

while ensuring efficient inference. The feature fusion network outputs

feature maps of sizes 80×80, 40×40, and 20×20, to detect small,

medium, and large objects, respectively. The detection head employs

a Hybrid Channels strategy to construct a more efficient decoupled

head, which reduces latency while maintaining accuracy. This module

predicts outcomes for feature maps of three different scales, thereby

obtaining the final object location and category information.
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2.4 Improved YOLOv6

While the YOLOv6 model has achieved significant results in

general object detection, it has some limitations in detecting tomato

leaf diseases in natural environments. Due to its inability to

effectively suppress interference information when dealing with

environmental factors such as lighting and occlusion, the

YOLOv6 model has certain limitations in the effectiveness of

distinguishing features. Additionally, the fusion method in the

YOLOv6 model feature fusion network does not fully consider

deep semantic information and shallow spatial information.

Moreover, the features covered by the feature maps of three scales

are relatively limited, making it weaker in capturing characteristics

of small leaf spots.

Considering the aforementioned limitations, this study aims to

improve the original YOLOv6 model in two aspects. Firstly, by

integrating CBAM (Woo et al., 2018) following three CSPRepBlocks

in the backbone network of YOLOv6, the approach suppresses

redundant information from complex backgrounds and enhances

the capability to extract disease spot features. Secondly, a multi-

scale reparametrized generalization feature fusion module

(BiRepGFPN), is proposed to enhance the expressive power of

feature fusion by aggregating shallow features, thereby improving

the accuracy of disease localization at different scales. The network

architecture of the improved YOLOv6 model is illustrated

in Figure 3.

2.4.1 Convolutional Block Attention Module
The baseline model YOLOv6, when processing image feature

maps, is insensitive to differences in image features, thus exhibiting

poor suppression of redundant information brought about by

complex environments. This study considers that the spatial

dimensions of feature maps contain spatial location information

of diseases, with each channel containing different features.

Consequently, the CBAM attention mechanism was introduced,

emphasizing the importance of channels and spatial dimensions by

allocating more weight to key channel information and spatial

location information. As a data processing method, CBAM can

enhance key features through autonomous learning while

suppressing irrelevant background information. As shown in

Figure 4, CBAM is a hybrid attention mechanism that combines

spatial and channel aspects.

The channel attention module of CBAM concentrates on

channels, applying global average pooling and global max pooling

separately to the input features F ∈ RW�H�C to produce two novel

feature maps. These two feature maps are fed into a three-layer

neural network multilayer perceptron (MLP), and after element-

wise summation, the channel attention map Mc(F) is obtained

through a Sigmoid activation function. Mc(F) is multiplied by the

feature map F to obtain the stage output feature map, with the

calculation formula of Mc(F) as shown in Equation 1:
TABLE 1 Tomato leaf disease training set distribution.

Diseases
Before
augmentation

After
augmentation

tomato leaf miner 263 1125

tomato early blight 234 945

tomato late light 182 713

tomato leaf mold 159 673

tomato septoria
leaf spot

108 424

healthy leaves 189 779
B C

D E F

A

FIGURE 1

Sample images of tomato leaf diseases: (A) healthy leaves; (B)
tomato leaf mold; (C) tomato leaf miner; (D) tomato early blight; (E)
tomato late light; (F) tomato septoria leaf spot.
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Mc (F)=s (MLP(AvgPool(F))+MLP(MaxPool(F))) (1)
The spatial attention module focuses on meaningful positional

information within the feature map. It takes the feature map F0

output by the channel attention module as input. This input is then
Frontiers in Plant Science 05
subjected to max pooling and average pooling, followed by

concatenation along the channel dimension. The spatial attention

map Ms(F
0) is obtained through a 7×7 convolution operation

followed by a Sigmoid activation function. Ms(F
0) is multiplied by
FIGURE 3

Improved YOLOv6 network structure diagram.
B C

D E F

A

FIGURE 2

Tomato leaf disease image complexity distribution: (A) healthy leaves; (B) tomato leaf mold; (C) tomato leaf miner; (D) tomato late light; (E) tomato
early blight; (F) tomato septoria leaf spot.
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the feature F0 to obtain the final output feature map F00, with the

calculation formula for Ms(F
0) as shown in Equation 2:

Ms(F
0)=s (conv7�7(½AvgPool(F0);MaxPool(F0)�)) (2)

In the formula, s represents the Sigmoid activation function,

and conv7�7 denotes convolution operations with a kernel size

of 7×7.
2.4.2 Multi-Scale Reparameterization Generalized
Feature Fusion Module

The symptoms of tomato leaf diseases are diverse and vary in

size, posing certain challenges for disease detection. Feature

Pyramid Networks (FPN) can effectively detect objects of different

sizes. FPN primarily relies on hierarchical pyramid features,

building a top-down feature fusion pathway to progressively

transfer deep features to shallow levels, achieving the fusion of

features at different levels. However, during this process, the deep

features are not fused with the shallow features. To further enhance

feature transmission, Path Aggregation Feature Pyramid Network

(PAFPN) introduces a bottom-up path based on FPN, allowing

deep features to extract finer information from shallow features,

thereby improving the accuracy of location features. The structural

diagram of PAFPN is shown in Figure 5A, where P3, P4, P5

represent the output feature maps obtained by the backbone

network downsampling the input image by 8, 16, and 32 times,

respectively.C1, C2, C3 represent the three output feature maps of

the fusion network, respectively. Nonetheless, PAFPN can only

support top-down and bottom-up feature fusion, with a relatively

simple method of fusion.

The YOLOv6 model originally employed PAFPN as its feature

fusion network. This network merges feature maps of adjacent

levels through the transfer of information between them, without

fully considering the effective integration across different levels of

feature maps. However, as feature maps at different levels each
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contain unique information, a more refined fusion strategy can

achieve effective complementarity and enhancement between them.

Therefore, to enhance the model’s ability to understand image

details and structures, and to more comprehensively capture the

scale changes and complexity of leaf disease spots, this study

employs the efficient layer aggregation network RepGFPN (Xu

et al., 2022), which features skip connections and cross-scale

links, as the feature fusion network. RepGFPN is an improvement

on the Generalized Feature Pyramid Network (GFPN). GFPN (Tan

et al., 2021) employs Queen-Fusion for enhanced feature fusion,

which strengthens feature representation capabilities. However, due

to the sharing of the same number of channels across different

scales, there is feature redundancy, and the extensive use of

upsampling and downsampling operations results in low

inference efficiency. RepGFPN optimizes both the method of

feature fusion and the network structure. Firstly, it employs

varying numbers of channels for features at different scales,

flexibly controlling the expressive capabilities of deep and shallow

features. Secondly, a cross-stage partial network (CSPNet) with

reparameterization concepts and efficient layer aggregation network

(ELAN) connections was introduced, aimed at merging features of

adjacent layers and different scales within the same level. The

network structure as shown in the CSPRepELAN module in

Figure 3. The shallow layers of the feature extraction network

typically contain richer spatial information, while the deep layers

have richer semantic information. Therefore, to more precisely

locate the features of small lesions on tomato leaves, this study

uses the feature map P2, downsampled by a factor of 4 from the

feature extraction network, as a new output. P2 is then

downsampled and fused with the P3 feature map for enhanced

feature integration. This improvement aims to enhance the fusion

of deep semantic information and shallow spatial information,

thereby more effectively detecting tomato leaf diseases at various

scales. The improved Feature Pyramid Network is referred to as

BiRepGFPN, with the network schematic shown in Figure 5B.
FIGURE 4

CBAM network structure diagram.
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3 Results

3.1 Experimental Environment

All experiments in this paper were conducted in the same

hardware and software environment. The main parameters of the

training platform used for this experiment are: NVIDIA RTX

A6000, 48GB of VRAM, CUDA version 11.1, Ubuntu 18.04.5

LTS operating system, and PyTorch 1.9.0 as the deep learning

framework. During the training process, the initial learning rate was

set to 0.01, batch size to 16, number of epochs to 300, using the SGD

optimizer. To save computational resources, training was

conducted using mixed precision and early stopping strategies.
3.2 Evaluation Metrics

This paper uses precision (P), recall (R), average precision

(AP50), F1 score, and mean average precision (mAP50) as the

evaluation metrics for the model. Precision represents the

proportion of correctly predicted samples among the samples

predicted to be of the positive class by the model. Recall
Frontiers in Plant Science 07
represents the proportion of correctly predicted samples among

the samples that are actually of the positive class. The F1 score is the

harmonic mean of precision and recall, reflecting the balance

between precision and recall and avoiding extreme values in

either metric. The calculation formulas are as shown in Equations

3–5:

P=
TP

TP+FP
(3)

R=
TP

TP+FN
(4)

F1 score=
2�P�R
P+R

(5)

In the formula, TP represents the number of samples correctly

predicted as positive. FP represents the number of samples

incorrectly predicted as positive. FN represents the number of

samples that are actually positive but were incorrectly predicted

as negative. The PR curve, formed with recall on the horizontal axis

and precision on the vertical axis, represents precision and recall at

different thresholds. The area under the PR curve is defined as the

AP, reflecting the performance of target detection accuracy, and the
B

A

FIGURE 5

Feature fusion network structure diagram: (A) PAFPN; (B) BiRepGFPN.
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mAP is the mean of AP across multiple categories. AP50 represents

the average precision for a certain category at a specific IoU

threshold of 0.5, and mAP50 represents the average precision

across multiple categories at the same IoU threshold of 0.5. The

calculation formulas are as shown in Equations 6, 7:

AP50=
Z1

0

P(r)dr,IoU≥0:5 (6)

mAP50=o
N
i=0AP50i
N

,IoU≥0:5 (7)
3.3 Results and Analysis

3.3.1 Comparative Analysis of
Attention Mechanisms

To verify the impact of different attention mechanisms on the

YOLOv6 model, this paper incorporates the CBAM, Efficient

Channel Attention ECA (Wang et al., 2020), Coordinate

Attention CA (Hou et al., 2021), and Efficient Multi-Scale

Attention EMA (Ouyang et al., 2023) into the YOLOv6 model

for experimentation.

By analyzing the data results in Figure 6, it was found that the

introduction of attention mechanisms had a positive impact on

enhancing the overall performance of the model. Among the four

popular attention mechanisms compared, CBAM showed superior

performance in the metrics of precision, recall, F1 score, and mAP,

outperforming the other attention mechanisms.

ECA introduces deformable convolutions to capture the

relationships between channels, while CA enhances feature maps

by learning the importance of each channel. However, both

primarily focus on channel information. EMA integrates features

of CA and convolution, aiming to learn multi-scale features and

proposes a cross-space information aggregation method for richer

feature integration. Nevertheless, the cross-space learning of EMA
Frontiers in Plant Science 08
may introduce noise. CBAM, by integrating channel attention and

spatial attention, fully leverages the information of channels and

space, effectively suppressing interference from complex

backgrounds, and thus is more conducive to the learning of

tomato leaf lesion features.

Figure 7 visualizes certain hierarchical feature maps output by

the backbone network through heatmaps, intuitively demonstrating

the effectiveness of CBAM in suppressing redundant information

and filtering key features. Deep red in the figure indicates areas of

increased focus by the network, while deep blue indicates lesser

attention. Analysis of the heatmaps reveals that the YOLOv6 model

is prone to interference from the background during the detection

process, making it difficult for the network to effectively extract key

feature information of leaf lesions. Comparing heatmaps before and

after incorporating the CBAMmodule reveals that the introduction

of the attention mechanism allows the model to effectively suppress

background influence, focusing more on the weight learning of leaf

lesion features. In the figure, the feature extraction effects for the

tomato early blight, tomato late light, tomato leaf miner, and

tomato leaf mold are evident. However, for septoria leaf spot, due

to its less distinct, dense, and relatively small presence on the leaves,

the introduction of the attention mechanism did not enable the

model to effectively distinguish between the key features of the leaf

lesions and the redundant background information.

Experimental results show that by integrating CBAM with

YOLOv6, the model focuses more on the features of leaf lesions,

reducing the learning of redundant information in the background.

However, the model’s ability to recognize densely distributed and

relatively small lesion features on leaves is still limited. To address

this issue, further enhancement of model detection capability for

densely distributed and small lesion features is necessary.
3.3.2 Analysis of the Effectiveness of BiRepGFPN
To assess detection performance of the feature pyramid

network on various types of tomato leaf disease, this study

employed four different feature fusion methods to train and test

on the tomato leaf disease dataset, including PAFPN, BiPAFPN,

RepGFPN, and BiRepGFPN. Among these, BiPAFPN represents an

attempt made in this paper to introduce a P2 layer on the basis of

PAFPN, and to downsample the P2 layer for fusion with the P3

layer. The related experimental results are shown in Figures 8, 9.

The experimental data from Figure 8 indicate that

modifications to the feature pyramid network enhanced the

detection of tomato leaf diseases. The study found that the simple

bidirectional feature fusion method used in PAFPN could not

effectively integrate shallow and deep feature information. In

contrast, the use of multipath feature fusion methods, such as

BiPAFPN, RepGFPN, and BiRepGFPN, significantly improved

the interaction and integration of information between feature

maps of different scales. Additionally, the introduction of the

finer-grained shallow feature map P2 increased the accuracy of

disease detection. In the detection of the tomato leaf miner, the

average precision of BiRepGFPN reached 99.6%.

In the detection of the tomato leaf mold and tomato early blight,

BiRepGFPN showed an improvement of 1.7% and 3.2% in average
FIGURE 6

Comparison of different attention mechanisms: Base represents
the YOLOv6.
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precision over PAFPN, respectively. However, in the detection of the

tomato late light, BiRepGFPN had a slight decrease in average precision

by 0.8% compared to RepGFPN, possibly due to the redundancy

brought about by the introduction of the P2 layer. Nonetheless,

BiRepGFPN still demonstrated a 1.3% improvement over PAFPN.

Considering the detection performance across five diseases,

BiRepGFPN holds certain advantages in handling different scale

features of tomato leaf diseases. Figure 9 displays the detection

results of four feature pyramid fusion networks on minor spots of

tomato leaves. Red arrows indicate false detections, and yellow arrows

mark missed detections. It can be observed from the figure that

multipath feature fusion methods such as BiPAFPN, RepGFPN, and

BiRepGFPN demonstrate superior detection performance for small

lesions compared to the simple bidirectional feature fusion method

PAFPN. Among these, the combination of BiRepGFPN with YOLOv6

achieved the best detection performance, effectively integrating feature

map information of different scales, enhancing the feature extraction

and localization ability for small lesions, and achieving the lowest false

positive rate.
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3.3.3 Ablation Experiment
To evaluate the impact of the improved methods proposed in

this study on the performance of tomato leaf disease detection, a

series of ablation experiments were conducted. These experiments

aim to test the effectiveness of each improvement individually,

thereby clarifying the contribution of each improvement to the

overall performance enhancement. The experimental results are

shown in Table 2.

The above experimental results reveal:
(1) Compared to the baseline model, after introducing the

CBAM attention mechanism into the backbone network,

the model showed varying degrees of improvement in

precision, recall, F1 score, and mAP. This result indicates

that the attention mechanism effectively suppresses the

interference of redundant information in complex

environments by allocating weights in both spatial and

channel dimensions, thereby enhancing the model’s

detection performance.
B

C

D

E

A

FIGURE 7

Feature map visualization: (A) Original image; (B) YOLOv6 shallow feature map; (C) Shallow feature map after introducing CBAM; (D) YOLOv6
intermediate feature map; (E) Intermediate feature map after introducing CBAM.
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Fron
(2) Compared to the baseline model, the improvement method of

BiRepGFPN had a positive effect on model performance,

especially in terms of significant improvements in recall, F1

score, and mAP, although there was a slight decrease in

precision. It is analyzed that, on one hand, the interaction

between feature maps of different layers might introduce some

noise, thus affecting the accuracy of detection. On the other

hand, the significant increase in recall underscores the

importance of integrating shallow spatial information with

deep semantic information, which reduces the miss rate of leaf

disease but also leads to a certain degree of false positives.
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(3) In comparing the two improvement strategies, it was found

that CBAM and BiRepGFPN each have their advantages in

terms of precision and recall, respectively. Among them,

BiRepGFPN performed better in balancing precision

and recall.
Overall, this study leverages the strengths of two distinct

improvement strategies. Compared to the baseline model, precision,

recall, F1 score, and mAP increased by 2.3%, 4.0%, 3.1%, and 2.7%,

respectively. These results validate the effectiveness of the proposed

methods and demonstrate the potential in detecting tomato leaf

diseases in complex environments.
3.3.4 Comparison of Mainstream
Model Performance

To validate improved model detection performance on tomato

leaf diseases in complex environments and generalizability to

diseases of other crops, this paper conducts training and testing

on tomato leaf disease dataset, PlantDoc dataset and FieldPlant

(Moupojou et al., 2023) dataset. Given the high speed and accuracy

of the YOLO series in real-time detection, YOLOX, YOLOv5,

YOLOv6, YOLOv7, YOLOv8 (Jocher et al., 2023) and improved

YOLOv6 were selected for comparative experiments. The tomato

leaf disease dataset focuses on tomato leaf diseases in complex

environments, while the PlantDoc dataset includes not only tomato

leaf diseases but also diseases of other crops, thus verifying the

generalizability of the improved model.

The detection results on the tomato leaf disease dataset are

shown in Table 3. As can be observed from Table 3, compared to the

original YOLOv6 model, the improved model has seen increases of

3.1% in F1 score, 4.0% in recall, 2.3% in precision, and 2.7% in the

mAP. Although its precision is slightly inferior to other models, it

has the highest recall rate. This is because a higher recall rate can

reduce precision to some extent. Taking into account various

evaluation criteria, compared to the other six models, the

improved model in this paper achieves the best balance between

precision and recall rate, reaching the highest mAP.

Figure 10 shows the average precision for each disease by seven

models in detecting diseases on the tomato leaf disease dataset. It

can be seen from the figure that the improvements in this paper

achieved an accuracy rate of over 90% in detecting the tomato leaf

miner, tomato early blight, tomato late light, and tomato leaf mold.

In the detection of the tomato septoria leaf spot, the model

demonstrated the highest accuracy compared to other models.

In the detection of tomato leaf miner, due to its distinct disease

characteristics from other diseases, especially in terms of texture

clarity, the model is able to recognize it with a high degree of

accuracy. For tomato late blight in tomatoes, the relatively large size

of the lesions enables the model to also demonstrate high accuracy

in detecting this disease. In handling tomato leaf mold, the distinct

color of the lesions from other diseases provides a good basis for

differentiation by the model. However, in detecting tomato early

blight and tomato late blight, the main challenges arise from the
FIGURE 8

Comparison of different feature fusion methods.
B

C D

A

FIGURE 9

The detection effects of different fusion networks: (A) PAFPN; (B)
BiPAFPN; (C) RepGFPN; (D) BiRepGFPN.
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small size of the lesions and the difficulty in capturing texture

information, coupled with a certain degree of similarity in the

shapes of these two diseases, which increases the difficulty of feature

extraction. Notably, this paper significantly improves the accuracy

of detecting small lesions by implementing fusion between feature

maps of different levels.

In summary, the improved method proposed in this paper

demonstrates significant effectiveness in the detection of tomato leaf

diseases. This is not only reflected in the high accuracy of detecting

diseases with clear characteristics (such as tomato leaf miner,

tomato late blight, and tomato leaf mold) but also in the

significant improvement in detecting performance for disease

categories that are more difficult in feature extraction (such as

tomato early blight and tomato late blight).
Frontiers in Plant Science 11
Figure 11 illustrates the visualization of detection results by six

models on the tomato leaf disease dataset. Red arrows indicate false

detections, and yellow arrows denote missed detections.

Observations from the first column reveal that under conditions

of lighting and shadow interference, YOLOX and YOLOv6-s

misidentify late blight as early blight, while YOLOv5 experiences

severe missed detections. The reason for this phenomenon is that,

when the lesions of tomato early blight and tomato late blight are

slightly larger, the differences in shape and color are minimal.

Coupled with the effect of lighting, texture information is further

disturbed, leading to this misidentification. In complex scenes with

multiple targets obstructing each other, as in columns 2 and 3, the

improved model in this paper is the only one that can accurately

identify the tomato leaf miner and tomato leaf mold, while other

models suffer from missed and false detections. Specifically, the leaf

wilting symptoms caused by the tomato leaf miner are similar to

those of early blight and late blight, leading to the misidentification

of the tomato leaf miner. For cases with densely distributed small

lesions and occlusions, as shown in columns 4 and 5, all seven

models exhibit varying degrees of false detection of tomato early

blight and tomato septoria leaf spot. This is because both tomato

early blight and tomato septoria leaf spot appear as small circles in

the early stages of growth, making the expression of disease

characteristics less obvious. Observing from the figures, YOLOv5,

YOLOX, YOLOv7, and YOLOv8 exhibit poor performance in

handling occlusions present in the images. When detecting the

diverse lesion characteristics of tomato septoria leaf spot, YOLOv8

and the improved model presented in this paper demonstrate a

detection advantage. However, in detecting the small lesions of

tomato early blight, only the model improved in this paper achieved

optimal precise detection. Therefore, compared to YOLOv5,

YOLOX, YOLOv7, YOLOv6, YOLOv6-s, and YOLOv8, the
TABLE 2 Results of ablation experiments.

YOLOv6 CABM BiRepGFPN Precision (%) Recall (%) F1 score (%) mAP (%)

√ 90.6 91.2 90.9 91.1

√ √ 90.8 95.0 92.9 92.5

√ √ 90.1 97.0 93.4 92.6

√ √ √ 92.9 95.2 94.0 93.8
FIGURE 10

Disease detection performance of different models.
TABLE 3 Performance indicators of different models in the tomato leaf disease dataset.

Model Precision (%) Recall (%) F1 score (%) mAP (%)

YOLOX 92.6 87.2 89.8 90.5

YOLOv5 93.5 78.0 85.0 85.6

YOLOv6 90.6 91.2 90.9 91.1

YOLOV6-s 88.9 91.3 90.1 89.1

YOLOv7 94.9 84.2 89.2 88.6

YOLOv8 91.5 90.3 90.9 89.8

Ours 92.9 95.2 94.0 93.8
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enhanced YOLOv6 model exhibits superior performance in

detecting and recognizing diseases of different scales in complex

env i ronmen t s , d emons t r a t in g a s i gn ifi can t ove r a l l

performance advantage.

Most images in PlantDoc have low resolution and noticeable

noise, making disease detection more challenging. The results from

Table 4 show that, in terms of F1 score, the proposed improved

model has increased by 7.4%, 12.7%, 9.4%, 5.2%, 3.4%, and 2.4%

compared to YOLOX, YOLOv5, YOLOv6, YOLOv6-s, YOLOv7,

and YOLOv8, respectively. In terms of mAP, compared to YOLOX,

YOLOv5, YOLOv6, YOLOv6-s, YOLOv7, and YOLOv8, the

improved model has increased by 7.7%, 11.8%, 3.4%, 5.7%, 4.3%,
Frontiers in Plant Science 12
and 2.6%, respectively. Overall, the model performs excellently on

the PlantDoc dataset, achieving significant improvements in both

F1 score and mAP compared to other models. This further validates

model effectiveness on public datasets and demonstrates

generalization ability in detecting diseases in other crops.

Images in the FieldPlant dataset directly come from plantations,

featuring various lighting conditions, totaling 5,156 images. The

dataset focuses on various diseases on leaves of corn, cassava, and

tomatoes. Considering the high resolution of images in the dataset

might lead to significant computational resource consumption, this

study manually adjusted the resolution of images and the size of

annotation boxes to reduce resource demands while trying to
FIGURE 11

Comparison of prediction results from different models.
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maintain image quality as much as possible. As can be seen from the

results in Table 4, the method proposed in this paper shows a

significant advantage over YOLOX, YOLOv5, YOLOv6-s, YOLOv7,

and YOLOv8. However, compared to the YOLOv6 model, the F1

score is slightly higher, and the mAP is slightly lower. This

performance discrepancy might stem from the disease annotation

boxes in the FieldPlant dataset containing more background

information, such as soil, weeds, and sky, due to the angle of

photography, which leads to more redundant information in the

disease annotation boxes for corn leaves. Additionally, the

BiRepGFPN module proposed in this paper enhances feature

fusion through connections between different levels of feature

maps, but it may also introduce more noise, thereby affecting the

detection performance. Therefore, future research could further

improve the model, especially in terms of optimizing feature fusion

and reducing noise interference.

4 Conclusion

To enhance the accuracy of tomato leaf disease detection in

complex environments, this paper has improved the YOLOv6

model. By incorporating CBAM, the emphasis of the model on

crucial disease features has been amplified, effectively diminishing

environmental interference. Simultaneously, improvements were

made on the basis of RepGFPN by proposing BiRepGFPN to

replace the feature fusion network, enhancing the ability of the

model to capture small lesion features and express less obvious

characteristics. The research results indicate that the improved

YOLOv6 model can precisely detect tomato leaf diseases in
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natural environments, demonstrating more effective performance

compared to other commonly used models. On the public dataset

PlantDoc, the model still achieved better detection results, further

verifying its advantage in generalization performance.

However, due to the imbalanced distribution of disease features

in the dataset, the model in this paper still has room for further

improvement when dealing with small disease spots with similar

symptoms. Furthermore, its performance on the public dataset

FieldPlant requires further enhancement. Future research

work includes:
(1) Improve and optimize the model structure: Optimize the

design of the aggregated residual blocks to reduce

information loss and noise amplification during the

fusion process , thereby enhancing the model ’s

detection capabilities.

(2) Designing Rotated Annotation Boxes: Considering the

actual shape of the leaves and the angle of photography,

rotate the annotation boxes for leaf diseases to include more

key information. The design of the rotated boxes should be

reflected both in the dataset preprocessing and model

design stages.

(3) Dataset diversification: Expand the dataset to include image

data from different growth stages, seasons, and regions to

enhance the model’s generalization ability and robustness.

(4) Multimodal data processing: Combine non-visual data,

such as temperature and humidity, for multimodal

recognition, to enhance the accuracy and robustness of

disease detection in natural environments.
TABLE 4 Performance indicators of different models in the PlantDoc dataset and FieldPlant dataset.

Dataset Model Precision (%) Recall (%) F1-score (%) mAP (%)

PlantDoc

YOLOX 66.8 69.4 68.1 69.6

YOLOv5 71.0 56.3 62.8 65.5

YOLOv6 67.6 78.4 66.1 73.9

YOLOv6-s 65.0 76.4 70.3 71.6

YOLOv7 73.5 70.7 72.1 73.0

YOLOv8 75.4 70.9 73.1 74.7

Ours 69.0 83.4 75.5 77.3

FieldPlant

YOLOX 65.0 66.2 65.6 61.7

YOLOv5 58.8 47.5 52.5 53.7

YOLOv6 64.4 75.4 69.5 67.1

YOLOv6-s 63.3 70.1 66.5 65.7

YOLOv7 67.8 57.5 62.2 64.8

YOLOv8 69.9 61.5 65.4 66.4

Ours 70.1 69.6 69.8 66.5
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