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Seed quality and safety are related to national food security, and seed variety

purity is an essential indicator in seed quality detection. This study established a

maize seed dataset comprising 5877 images of six different types and proposed a

maize seed recognition model based on an improved ResNet50 framework.

Firstly, we introduced the ResStage structure in the early stage of the original

model, which facilitated the network’s learning process and enabled more

efficient information propagation across the network layers. Meanwhile, in the

later residual blocks of the model, we introduced both the efficient channel

attention (ECA) mechanism and depthwise separable (DS) convolution, which

reduced the model’s parameter cost and enabled the capturing of more precise

and detailed features. Finally, a Swish-PReLU mixed activation function was

introduced globally to improve the overall predictive power of the model. The

results showed that our model achieved an impressive accuracy of 91.23% in

corn seed classification, surpassing other related models. Compared with the

original model, our model improved the accuracy by 7.07%, reduced the loss

value by 0.19, and decreased the number of parameters by 40%. The research

suggested that this method can efficiently classify corn seeds, holding significant

value in seed variety identification.
KEYWORDS

artificial intelligence, computer vision, corn seeds, variety identification, ResNet model
1 Introduction

Corn is the most widely grown cereal crop worldwide and is extensively used in food

processing and as a primary component of animal feed (Shafinas et al., 2022). Seed purity

refers to the degree of consistency in typical characteristics, directly impacting the yield and

quality of corn. During seed harvesting and storage, impurities may inadvertently infiltrate

average seeds, leading to economic losses in agricultural production and processing.
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During seed sales, some individuals or companies exploit inferior

maize varieties to impersonate superior ones, aiming to make

excessive profits (Sun and Zou, 2022). This erroneous behavior

may damage investors’ interests and disrupt the seed market (Park

et al., 2016). Therefore, an urgent need is to explore a non-

destructive and efficient identification method for screening and

grading maize seeds before they are marketed to ensure agricultural

production, quality control, and market regulation (Tenaillon and

Charcosset, 2011).

Traditional methods for seed purity identification include

morphological inspection, field planting inspection, chemical

identification, and electrophoresis technology (Ye-Yun et al.,

2005; Sundaram et al., 2008; Pallavi et al., 2011; Satturu et al.,

2018). However, these methods generally take a long time, require

professional personnel and specialized equipment, and are often

subject to the subjective experience of the testers. Additionally, the

identification process may damage the samples. Hence, there is a

need to develop a rapid, accurate, and non-destructive classification

method for maize seed identification.

Deep learning has emerged as a critical research focus across

various domains, particularly in the realm of computer vision.

Integrating deep learning techniques with image processing has

found widespread applications in seed classification and

identification (Javanmardi et al., 2021; Tu et al., 2021). For

instance, Zhu (Zhu et al., 2019) developed a self-designed

Convolutional Neural Network (CNN) to classify seven varieties

of cotton seeds, achieving an accuracy rate exceeding 80%—

outperforming residual networks and other traditional models.

Similarly, Rybacki (Rybacki et al., 2023) constructed a CNN with

a fixed architecture comprising five alternating layers of Conv2D,

MaxPooling2D, and Dropout. This model successfully identified

seeds from three winter rapeseed varieties, attaining the highest

validation accuracy of 85.6%. Atlanta (Altuntas ̧ et al., 2019)

employed a transfer learning approach using CNN to

automatically differentiate between haploid and diploid corn

kernels, achieving accuracy rates of over 90% across all models. In

another study, Zhang (Zhang et al., 2020) proposed a deep learning

model that combines near-infrared hyperspectral imaging (NIR-

HSI) to determine the variety of coated maize seeds. Spectral

reflectance values were extracted to train both CNN and Long

Short-Term Memory (LSTM) models. The test results demonstrate

that all models achieved classification accuracies exceeding 90%. Ma

(Ma et al., 2020) integrated NIR-HSI and CNN deep learning

techniques to differentiate between viable and non-viable seeds,

achieving a seed detection rate of 90% in the process. Zhang (Zhang

et al., 2021) investigated the feasibility of combining hyperspectral

imaging (HSI) with deep CNN for classifying four varieties of maize

seeds. The study showed that the classification performance of the

deep CNNmodel was generally the highest among all varieties, with

a validation accuracy of 93.3%. Yu (Yu et al., 2021) utilized HSI

(948.17-1649.20nm) combined with CNN technology to identify 18

species of hybrid okra seeds, achieving a recognition rate of 93.79%.

This demonstrates the reliable advantage of CNN models in

achieving high accuracy and stability. Wang (Wang and Song,

2023) utilized hyperspectral imaging technology combined with

deep learning methods to identify various varieties of sweet corn
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seeds. The results indicated that the deep learning model achieved a

classification accuracy of over 95% on both the training and testing

datasets. Bi (Bi et al., 2022) improved the Swin Transformer model

and applied transfer learning to achieve high-precision classification

and recognition of corn seed images, with an average accuracy of

96.53%. Xing (Xing et al., 2023) proposed a network model called

GC_DRNet, incorporating the concept of dense networks and

achieving an accuracy of 96.98% on a wheat seed dataset. Deep

learning algorithms are gradually becoming optimal for establishing

lossless detection models (Zhou et al., 2020; Zhang et al., 2023).

According to the studies above, efficient identification of seed

varieties is challenging due to similar appearance, genetic diversity,

and growth environment. Therefore, combining neural networks

and hyperspectral data has been predominantly relied upon to

recognize seed varieties effectively. Although this approach

outperforms using convolutional neural networks alone for

recognition, acquiring hyperspectral data is not easily accessible,

and the processing involved is complex. In order to address the

limitations above, this study is based on a pure image dataset of

corn seeds. By improving the classical ResNet50 model, a new

convolutional neural network model for corn seed identification is

proposed. The main contributions and novelties of this work are

listed as follows.
1. We introduced the IResStage structure in the early stages of

ResNet50, enhancing the residual blocks to improve the

model’s feature extraction and network representation

capabilities. This enables it to capture and convey image

features more effectively.

2. In the later stages of the network, we incorporated the ECA

module and depthwise separable convolution. The attention

mechanism strengthens the focus on channel information,

while the use of depthwise separable convolution aims to

reduce time costs, further enhancing the model’s ability to

capture more precise and detailed features, thereby

increasing the efficiency of model recognition.

3. We introduced a global hybrid activation function by

combining different activation functions, enhancing the

model’s generalization ability and accuracy during the

prediction phase, allowing it to process input data better

and make more accurate predictions.
The following of this article was organized as the section

“Materials and Methods” described the details of the datasets and

the overview of the methods, the experimental results were

described and discussed in the section “Results and Discussions”,

and the section “Conclusions” was the concluding remarks.
2 Materials and methods

2.1 Image acquisition and preprocessing

2.1.1 Data source and acquisition
The six different varieties of corn seeds, including JD407, JD50,

JD83, JD953, JD209, and JD626, were provided by the Corn
frontiersin.org

https://doi.org/10.3389/fpls.2024.1382715
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1382715
Institute of Jilin Academy of Agricultural Sciences in Jilin Province.

These seeds were photographed using a Canon 70D camera. The

high-definition color images are shown in Figure 1. During

sampling, experts selected and certified the seeds and manually

screened them to select whole, uniformly shaped seeds as

experimental samples while removing impurities and dust.

Subsequently, image acquisition work was carried out. All

samples appeared normal, displaying a neat exterior without any

visible damage. Approximately 900 to 1000 samples were randomly

selected from each variety for imaging and stored in sealed plastic

packaging at room temperature (20 ± 1°C). This sample size is

because deep learning networks require a large number of samples

for proper training (Wen, 2020).

2.1.2 Image preprocessing and segmentation
The research on maize variety identification focuses on

authenticating and ensuring the purity of maize seeds. Seed purity

comprises the authenticity of individual seeds. A single-seed

identification method is employed to identify the variety of seeds,

requiring the segmentation of images containing multiple maize

seeds. Firstly, the image is converted to a grayscale image to

facilitate the removal of color information and to highlight

brightness-related features. Subsequently, automatic global

thresholding and morphological filtering are then applied to

obtain a binary image, simplifying the image and extracting the

contours of the targets. Finally, morphological filtering of the binary

image is used to score the mask of the maize seed region. This is

then used to partition it into individual maize seeds of size 224*224,

resulting in a total of 5877 original images. The image cutting

process is shown in Figure 2.
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Each model underwent training using a 5-fold cross-validation

method to address the many uncertainties in the experiments. 80%

of the dataset is randomly selected as the training set and 20% as the

test set. Due to the limited sample size and to ensure the

generalization ability of the model, the validation set is also used

as the test set to evaluate the results. The dataset comprised 4703

images for training and 1174 images for validation, as shown in

Table 1. Therefore, the final experimental results in this paper were

based on the average of the results of five experiments.
2.2 Building the model

2.2.1 ResNet50 model
ResNet is a deep neural network proposed by He et al (He et al.,

2016). Due to its deeper network structure, unique residual

connection design, and higher parameter efficiency, it can learn

complex features, alleviate the vanishing gradient problem, and

exhibit good generalization ability while maintaining a relatively

fast inference speed. Due to these advantages, ResNet50 has become

an ideal model for maize seed recognition, effectively extracting

useful information from images for classification purposes. The

residual block is an essential structure of ResNet50, which addresses

the vanishing gradient and exploding gradient problems in deep

neural networks by introducing skip connections and identity

mapping. The residual block consists of two primary operations:

the main path and the shortcut connection. The main path

comprises a series of convolutional, normalization, and non-

linear activation layers, which extract high-level representations of

the input features. The shortcut connection is a simple mapping
FIGURE 1

Image of maize seed varieties.
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that achieves cross-layer information propagation by directly

adding the input to the output of the main path. The structure of

the residual block is shown in Figure 3.

2.2.2 ResStage structure
To facilitate the network’s learning process, we need to provide

better pathways for information propagation across network layers.

C. Duta et al. proposed a simple, practical, stage-based CNN

module called the ResStage structure (Duta et al., 2020), as shown

in Figure 4. The ResStage structure has modified the arrangement of

components, dividing each central stage into three parts: a Start

ResBlock, a Middle ResBlock, and an End ResBlock. The Start

ResBlock includes a BN layer after the last conv operation,

preparing for element-wise addition through normalization. The

End ResBlock is completed by BN and ReLU operations, preparing

for a stable transition into the next stage. The module aims to

achieve efficient information flow while maintaining controlled

signal propagation through learning in these three stages.

In the original residual block, the number of ReLU units on themain

propagation path is directly proportional to the network depth. In

contrast, ResStage contains a fixed number of ReLU units on the main

path, facilitating forward and backward information propagation. In the
Frontiers in Plant Science 04
main stage, there are only four ReLU units along the main information

propagation path, and they are not affected by changes in depth. This

design enables the network to prevent signal obstruction as information

passes through multiple layers, enhancing information extraction and

learning capability. The complexity of maize seed morphology may

challenge traditional feature extraction methods in capturing all essential

features. The ResStage structure effectively reduces information loss,
TABLE 1 Dataset partition.

Seed
Variety

Training
Set

Validation
Set

Totals

JD407 781 195 976

JD50 781 195 976

JD83 781 195 976

JD953 768 192 960

JD209 799 199 998

JD626 793 198 991
FIGURE 2

Corn seed image cutting processing.
FIGURE 3

Residual block.
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extracts more comprehensive feature information, prevents model

gradient vanishing, and reduces hyperparameter demand.
2.2.3 Improved residual block
The attention mechanism plays a crucial role in deep learning,

effectively and accurately filtering out valuable information from a

large amount of data. This is highly beneficial for various image-

processing tasks (Mi et al., 2020; Zang et al., 2022; Feng et al., 2024).

Therefore, in this study, we introduced an attention mechanism

called ECA (Efficient Channel Attention) after the first convolution of

the subsequent residual block (Wang et al., 2020). The ECA module

can adaptively adjust the weights of channel features, allowing the

network to focus on essential features better. Most maize seeds have

similar shapes and delicate textures, affecting recognition after

downsampling and making it difficult to extract detailed features

from the network. The ECAmodule helps improve the discriminative

ability of features and suppress unimportant features, thereby

reducing the risk of overfitting. Ultimately, this enhances feature

representation and improves the model’s generalization ability

without significantly increasing computational costs. The structure

of the ECA module is shown in Figure 5.

The forward process of the ECA module is as follows: first, the

input feature map with a size of H×W×C undergoes global average

pooling to obtain feature information. Then, new weight values w
are generated through a one-dimensional convolution of size k and
Frontiers in Plant Science 05
a sigmoid activation function, completing inter-channel

information interaction, as shown in Equation (1).

w = s (C1Dk(y)) (1)

where C1Dk represents a one-dimensional convolution with a

kernel size of k, and s is the sigmoid activation function. The

number of channels C is proportional to the one-dimensional

convolution with kernel k, as shown in Equation (2).

C = 2(g�k−b) (2)

Thus, we can obtain the final kernel size k, as shown in Equation

(3).

k =  
log2(C)

g
+
b
g
 

����
����
odd

(3)

where t is the nearest odd number to tj jodd, g is 2, and b is 1.

In addition, to reduce the computational cost and time

consumption of the network model, we incorporate depthwise

separable convolution (Chollet, 2017) into the subsequent residual

blocks of the maize seed recognition model. Depthwise separable

convolution consists of two sub-layers: depthwise convolution and

pointwise convolution, as illustrated in Figure 6. In the first stage of

depthwise convolution, convolution operations are performed

individually on each channel. In the second stage of pointwise

convolution, the number of channels is adjusted to match a
B CA

FIGURE 4

ResStage structure: (A) Start ResBlock, (B) Middle ResBlock, (C) End ResBlock.
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predefined output channel number. Unlike conventional

convolution, where each kernel operates on the entire input

volume, each kernel is responsible for a single channel in

depthwise convolution. For example, in a three-channel color

image, the first stage of depthwise convolution performs a two-

dimensional convolution operation for each channel independently,

resulting in three feature maps. Subsequently, the pointwise

convolution process is akin to traditional convolution, as it entails

a weighted combination of the preceding feature maps along the

channel dimension to produce new feature maps.

Depthwise convolution utilizes a single convolution kernel to

perform channel-wise convolutions on input channels, effectively

reducing computational complexity and accelerating forward and

backward propagation, lowering computation and storage costs.

Furthermore, depthwise separable convolution combines

information from different channels through pointwise

convolution, thus preserving a specific feature extraction capability.

In conclusion, we incorporated the ECA module into the

subsequent residual blocks to efficiently recognize maize seeds

and replaced the second convolution with a depthwise separable

convolution. This enables us to reduce the model parameter count

while enhancing the model’s overall performance. The improved

residual block is shown in the Figure 7.
2.2.4 Using mixed activation functions
The activation function is a non-linear function used to increase

the non-linearity of the network model between the output of

upper-layer nodes and the input of lower-layer nodes in a multi-
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layer neural network (Ohn and Kim, 2019). For a specific training

model, selecting an appropriate activation function can effectively

improve the neural network’s performance (Apicella et al., 2021). In

order to maximize the expressive power of the model, this paper

selects the Swish and PReLU activation functions to replace the

original ReLU function at different positions. The corresponding

image is shown in Figure 8.

ReLU is the most commonly used activation function, which

effectively alleviates the gradient vanishing problem in deep neural

networks. Its proposal has led to significant advances in the field of

deep learning (Wang et al., 2018). The expression is defined as

shown in Equation (4):

ReLU(x)  =
    0,       x   ≤   0

    x,       x   >   0

(
(4)

where x is the input. When the input value is less than or equal

to 0, the gradient of ReLU is 0, which means that the neuron

becomes “dead” and cannot update its weights, resulting in

information loss. Therefore, the PReLU activation function was

proposed to address the issues of the ReLU function (He et al.,

2015). The expression is defined as shown in Equation (5):

PReLU(x)  =
        0,       x   ≤   0

   ax,       x   >   0

(
(5)

where x is the input, and a is a learnable parameter. PReLU is

an improvement over LReLU, as it can adaptively learn parameters

from the data, offering the advantages of fast convergence and low

error rates. Additionally, PReLU can be used for backpropagation

training and can be jointly optimized with other layers.

Swish is a novel composite activation function (Ramachandran

et al., 2017), and its expression is defined as shown in Equation (6):

f (x) = x · sigmoid(x) (6)

where x is the input. The Swish activation function possesses the

characteristics of having no upper bound, a lower bound,

smoothness, and non-monotonicity, which can alleviate the

gradient vanishing problem. Furthermore, its performance in

deep models surpasses that of the ReLU activation function.

The PReLU and Swish activation functions can, to some extent,

address the drawbacks of the ReLU activation function. Therefore, in
FIGURE 6

Structure of the depthwise separable convolution.
FIGURE 5

Structure of the efficient channel attention module.
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this study, a combination of these two activation functions is employed

to replace the ReLU function at different positions, aiming to enhance

the model’s predictive capability for maize seed classification.

2.2.5 Proposed model
To minimize information loss during the recognition process of

corn seeds, we introduced the ResStage structure in the early stages

of our model. This structure optimizes the positioning of BN layers

and the ReLU activation function, effectively mitigating the negative

impact of non-linear activations on information propagation. These

adjustments significantly enhance feature extraction and

information propagation capabilities. Furthermore, we enhanced

the residual structure in later stages by incorporating the ECA

module and depthwise separable convolution into each residual

block. This enhancement fosters effective feature interaction while

reducing computational costs, thus improving recognition

capabilities. Lastly, we globally integrated a mixed activation

function into the model. We replaced the activation functions

after skipping connections in the End ResBlock and improved

residual blocks, as well as the initial activation function in the

network input layer, with the Swish activation function.

Additionally, in all other positions, we replaced the activation

function with the PReLU activation function to enhance the

overall predictive capacity of the model. The improved model is

shown in the Figure 9.
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3 Results and discussions

3.1 Experimental setup

The configuration environment for this antler classification

experiment is: processor: Xeon 5220R, graphics card: NVIDIA

TESLA T4, operating system: windows10, Python3.8.16 based

Pytorch1.13.1 deep learning framework built on Python3.8.16

programming language, software configuration installed as

Anaconda3-2021.11- windows version. The specific parameter

settings in the experiment are shown in Table 2.

To select the optimal learning rate, comparative experiments

were conducted with the learning rate set to 0.01, 0.001, and 0.0001,

respectively, to determine the best parameters. The test results are

shown in Table 3. The experimental results indicate that when the

learning rate was 0.001, the original model achieved the highest

recognition accuracy in the test set, at 84.16%, higher than the

models with other parameters. Therefore, it was confirmed that a

learning rate of 0.001 is the training parameter.
3.2 Comparison experiments of
different models

In order to validate the effectiveness and advancement of the

new network model, we used model accuracy, model loss, model

parameters, model floating-point operations per second (FLOPs),

and model training time per epoch as evaluation metrics for the

model’s performance. We compared the new network model with

five classic convolutional neural networks (ResNet50, Res2Next50,

DenseNet201, ConvNext_T, and RepVgg_A2) to assess its

performance. The results are shown in Table 4, Figures 10, 11.

By analyzing the results of comparative experiments, this paper’s

proposed corn seed classification model achieved the best accuracy of

91.23%. It also demonstrated the lowest loss value of 0.27, the lowest

parameter count of 14.12 M, the lowest FLOPs value of 3.2 GMac, and

a running time of only 57s per epoch. Compared to the original model,
FIGURE 8

ReLU, Swish and PReLU activation function curves.
FIGURE 7

Structure of the improved residual block.
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it showed an improvement of 7.07% in accuracy, a reduction of 0.19 in

loss value, a 40% decrease in parameter count, a decrease of 0.92 GMac

in FLOPs, and a 3s acceleration in running time per epoch. In

comparison, other models exhibit slower recognition speed, lower

accuracy, and weaker generalization ability when classifying corn

seed image samples. These findings provide evidence for the superior

performance of the proposed model in this paper, as it converges

rapidly to find the optimal values. This proves the superior

performance of the model, which converges quickly to find the

best value.
3.3 Ablation experiments

To assess the impact of the ResStage structure, improved residual

structure, and mixed activation functions on model performance, we
Frontiers in Plant Science 08
conducted ablation experiments using ResNet50 as the base network.

The results, as shown in Table 5, indicate that integrating these three

modules enhances model performance, thereby improving its

suitability for classifying maize seed varieties. Furthermore, the

simultaneous integration of these modules further enhances model

accuracy, providing more reliable and precise classification results for

maize seed classification.

3.3.1 Effect of depthwise separable convolution
on network model performance

This study replaced traditional convolution operations with

depthwise separable convolutions, which embrace the concept of

lightweight design. Compared to the original model, the accuracy

improvement was only 0.6%. However, by restructuring the residual

blocks while ensuring a slight increase in accuracy, there was a

significant reduction in the number of model parameters. This
FIGURE 9

The improved model.
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change enhanced the model’s floating-point computation

capabilities, ultimately leading to a practical improvement in the

model’s training efficiency. The overall results of the model before

and after the introduction of depthwise separable convolutions are

shown in Table 6.

3.3.2 Effect of attentional mechanisms on
network model performance

Adding appropriate attention mechanisms in the network can

enhance its ability to extract effective image features. In this

experiment, we kept other factors constant and introduced

different attention mechanisms into the proposed maize seed
Frontiers in Plant Science 09
classification model for comparison. The results are shown in

Figure 12; after introducing the Squeeze-and-Excitation(SE),

Convolutional Block Attention Module(CBAM), Coordinate

attention(CA), and ECA modules, the model’s accuracy increased

by 1.18%, 0.59%, 1.65%, and 3.07%, respectively, compared to the

original model. Among them, the ECA module has a more

significant effect on improving network performance. This

indicates that by efficiently and accurately calculating attention

across channel dimensions, the ECA module can better capture the

dependency between features, utilize contextual information, and

suppress irrelevant noise, thereby achieving better performance in

the task of maize seed recognition.

To intuitively analyze the effectiveness of the improved maize

seed classification model, we utilized the visualization tool Grad-

CAM (Selvaraju et al., 2016). Grad-CAM visualizes the image

regions focused on by the model during prediction by calculating

the gradients of the target class concerning the feature maps,

multiplying these gradients with the feature maps to obtain

weights, and ultimately generating a heatmap. The original

images are displayed in the first row, while the second and third

columns show the Grad-CAM mapping images before and after

incorporating the ECA module. The color spectrum from red to

blue indicates the degree of contribution.

The visualization of the experimental results is shown in

Figure 13. Before the introduction of the attention mechanism,

the model might have focused more on the local features of the

seeds, possibly due to the model’s insufficient grasp of the global

features of the entire image. Consequently, the heatmaps mainly

concentrated on the local areas of the seeds, causing the model to

prioritize certain local features while neglecting overall features

during prediction. However, after incorporating the ECA module,

the model’s attention to channel information increased, enhancing

its ability to grasp global features. This enabled the model to better

focus on the features of the entire seed, not just the local features,

during prediction. Therefore, the ECA module has enhanced the

feature extraction capability of the corn seed classification model,

enabling it to locate valuable areas within the corn seed images

more accurately.

3.3.3 Effect of mixed activation function on
network model performance

The choice of activation function is also crucial during the

training process, as it significantly impacts the performance of the
TABLE 3 Performance comparison results of different learning rate.

Learning rate Model Accuracy Loss

0.01 ResNet50 82.62% 0.5255

0.001 ResNet50 84.16% 0.4649

0.0001 ResNet50 77.34% 0.6478
TABLE 2 Training hyperparameter information.

Parameter
Value
or

Name
Description

Training
epochs

150

The complete number of times the entire
training dataset goes through forward and

backward propagation through the
neural network

Batch size 32
The number of samples used to calculate

gradients and update model parameters in a
single training iteration

Learning rate 0.001
A hyperparameter that controls the magnitude of

model weight adjustments

Momentum 0.9
An optimization technique used to accelerate
convergence and reduce fluctuations during

parameter updates

Weight decay 0.0005
A regularization technique used to suppress
model complexity and prevent overfitting

Optimizer SGD
An optimization method used for updating and
calculating neural network model parameters to

reduce the value of the loss function
TABLE 4 Comparison experiments of different models.

Model Accuracy Loss Params FLOPs Time/Epoch

ResNet50 84.16% 0.46 23.52 M 4.12 GMac 60s

Res2Next50 85.43% 0.43 22.63 M 4.21 GMac 104s

DenseNet201 87.47% 0.36 18.10 M 4.37 GMac 85s

ConvNext_T 83.25% 0.50 27.82 M 4.48 GMac 75s

RepVGG_A2 86.52% 0.44 26.81 M 5.70 GMac 54s

Our model 91.23% 0.27 14.12 M 3.20 GMac 57s
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same model. We experimented with three activation functions

(LeakyReLU, Swish, and PReLU) and the original ReLU

activation function to improve the ResNet50 network

architecture. We explored the impact of mixed activation

functions on the performance of deep networks. We divided the

overall activation functions into two categories. Activation 1

represents the activation function used after skipping connections

in the End ResBlock and improved residual blocks, and the first

activation function is in the network input layer. Activation 2

represents another activation function used in other positions.

The results are shown in Figure 14.

The results indicate that compared to the original global use of

the ReLU activation function, the accuracy improved by 1.12% when

using the Swish-PReLU mixed activation function. It outperformed

other global activation functions and combinations of mixed

activation functions. The Swish activation function, with its non-

zero mean within the input range, preserves more information and
Frontiers in Plant Science 10
helps enhance the expressive power of the model. On the other hand,

the PReLU activation function provides more detailed information to

maximize inter-class differences, such as the texture, lines, and colors

of corn seeds, enabling the extraction of detailed features that are

challenging to capture. Using the Swish-PReLU mixed activation

function, we can leverage the advantages of both functions to achieve

better generalization performance and recognition results. This

significantly improves the performance of the corn seed

classification model.
3.4 Comparison of relevant indicators

This article also cites three metrics: precision, as seen in Equation

7 (Kosmopoulos et al., 2015), recall, as seen in Equation 8 (Zhu et al.,

2010), and F1-score, as seen in Equation 9 (Hai et al., 2017), as

evaluations of the model’s performance on different classes. Precision
FIGURE 11

Results of the loss of different model comparison experiments.
FIGURE 10

Results of the accuracy of different model comparison experiments.
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refers to the probability of a specific category being correctly predicted

among all predicted results. Recall refers to the probability of a specific

category being correctly predicted among all actual values. The F1

score is the harmonic mean of precision and recall.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2� (Precision �  Recall)
(Precision  + Recall)

(9)

where TP refers to the correctly classified positive samples, FP

refers to the negative samples mistakenly classified as positive, TN

refers to the correctly classified negative samples, and FN refers to

the positive samples mistakenly classified as negative.
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The results from the Table 7 demonstrate that the improved

model, when compared to the original model, has enhanced various

indicators for all six types of corn seeds. The Precision for each

category of corn seeds has increased by 5.7%, 4.8%, 3.5%, 13.2%,

8.3%, and 6.7% respectively. The Recall has seen improvements of

10.3%, 12.3%, 1%, 4.6%, 2.6%, and 11.6% respectively. Furthermore,

the F1 scores have shown improvements of 0.08, 0.085, 0.022, 0.089,

0.056, and 0.093 respectively. These findings indicate that the

improved network exhibits better recognition performance in the

classification of corn seed images.

In order to further validate the recognition capability of the

original identification model proposed in this paper, we have

provided visual confusion matrix comparison charts for the

model before and after improvement in Figure 15. It can be

observed that the improved network model has effectively

reduced the error rates for each category, especially significantly

decreasing the misclassification of the first category seed as the

fourth category, the misclassification of the second category seed as

the fifth category, and the misclassification of the sixth category

seed as the fourth category.

In summary, the improved model can better extract fine-

grained features such as color and texture information from corn

seeds, leading to a significant reduction in recognition error rates.

However, the model still needs to improve in identifying seeds in

the fourth and fifth categories. Therefore, improving the

recognition rates for these particular categories will be a focal

point of our future research efforts.
3.5 Comparison of related studies

Detailed comparisons with related studies were not feasible in

this experiment due to the different methods, datasets, and
TABLE 5 Comparison of ResNet50 experimental models with different module combinations.

Num ResNet50 ResStage Structure Improved Residual Block Activation Function Accuracy Params

1 √ 84.16% 23.52 M

2 √ √ 86.62% 23.52 M

3 √ √ 87.99% 14.12 M

4 √ √ 85.43% 23.52 M

5 √ √ √ 90.11% 14.12 M

6 √ √ √ 87.79% 23.52 M

7 √ √ √ 89.16% 14.12 M

8 √ √ √ √ 91.23% 14.12 M
fro
TABLE 6 Comparison results before and after adding depthwise separable convolution to the model.

Num ResNet50 Other Modules DS Conv Accuracy Params FLOPs

1 √ √ None 90.63% 23.52 M 4.13 GMac

2 √ √ √ 91.23% 14.12 M 3.20 GMac
FIGURE 12

Recognition results comparison of different attention
mechanism models.
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classification criteria employed. Nonetheless, we compared some

applications in agricultural classification tasks, considering several

criteria such as dataset size, applications, methods used, and

accuracy. The comparisons, as shown in Table 8, indicate that the

accuracy of different classification tasks is above 85%, with most

methods utilizing deep learning models combined with HSI or

employing transfer learning. In contrast, the method proposed in

this paper achieved an accuracy of over 90% solely using CNN. This

demonstrates the rationality of the sample size selection and the

effectiveness of the proposed approach. In this scenario, the

credibility of this study has been enhanced, providing a valuable

reference for agricultural product classification.
3.6 Validation of model
generalization ability

To further validate the generalizability and robustness of the

model, this study selected the maize dataset used by Chunguang Bi
Frontiers in Plant Science 12
et al (Wang and Song, 2023). The dataset consists of 19 categories of

maize seeds, making it representative and challenging. As shown in

Table 9, the improved model achieved an accuracy increase from

90.17% to 93.96% on this dataset. The analysis of other performance

metrics, including precision, recall, and F1 score, also showed

significant improvements. This indicates that the improved model

can adapt to different maize seed conditions and maintain high

performance when faced with new datasets. It demonstrates the

effectiveness of the latest model in handling data from various

sources and characteristics, highlighting its strong generalization

ability and robustness.
4 Conclusions

Our research involves image acquisition of six different types of

corn seeds, namely JD407, JD50, JD83, JD953, JD209, and JD626.

We introduce the ResStage structure early in the model to facilitate

better information propagation throughout the network layers,

thereby promoting the learning process and reducing information

loss. In addition, we have introduced both the ECA module and

depthwise separable convolution on the residual blocks in the later

stages of our model. This simultaneous integration allows us to

capture global correlations between features better while

significantly reducing the required number of model parameters

and computational workload. Finally, we globally introduced the

Swish-PReLU hybrid activation function, which combines the

unbounded lower-bound, smooth, and non-monotonic properties

of the Swish activation function with the adaptive parameter

learning capabilities of the PReLU activation function. This was

done to enhance the model’s predictive ability for corn seeds.

Integrating these three improvements and conducting

experiments on datasets comprising six different types of corn

seeds demonstrated that the proposed method achieved an

impressive accuracy of 91.23%.

Our proposed network model outperforms other commonly

used image classification models, including ResNet50, Res2Next50,

DenseNet201, ConvNext_T, and RepVgg_A2, in terms of

performance while maintaining lower model complexity.
FIGURE 13

Visualization results of the new network thermal characteristic map before and after improvement.
FIGURE 14

Recognition results comparison of for different combinations of
activation functions. Note: A single name represents the global
activation function. The activation function before the “-” symbol
denotes activation 1, while the activation function after the “-”
symbol denotes activation 2.
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Compared to the original network models, our model has achieved

a 7.07% increase in accuracy, reduced the loss value by 0.19,

decreased the parameter count by 40%, lowered FLOPs by

0.92GMac, and shortened the training time per epoch by 3s.
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In conclusion, our proposed method has shown good

performance in applying maize seed variety identification.

However, seed variety identification involves crucial decisions in

agricultural production, such as planting time, fertilization
BA

FIGURE 15

Model confusion matrix visualization. (A) Original model confusion matrix visualization. (B) Our model confusion matrix visualization.
TABLE 8 Comparison of the proposed model and related studies (seeds).

Imaging Method Dataset Size Application Approach Result References

Digital camera 7500 Variety identification CNN 85.6% (Rybacki et al., 2023)

Digital camera 3000 Variety identification CNNs
(transfer learning)

Over 90% (Altuntas ̧ et al., 2019)

Near-infrared spectroscopy 5400 Variety identification NIR-HSI+LR/SVM/
CNN/RNN/LSTM

Over 90% (Zhang et al., 2020)

Near-infrared spectroscopy 1200 Viability prediction NIR-HSI+CNN 90% (Ma et al., 2020)

Hyperspectral imaging 3200 Variety identification HSI+DCNN 93.3% (Zhang et al., 2021)

Digital camera 5877 Variety identification Our model 91.23% Our work
TABLE 7 Comparison of model recognition performance evaluation metrics.

Label
Seed

Category

Precision Recall F1-score

Before After Before After Before After

1 JD407 86.8% 92.5% 84.6% 94.9% 0.857 0.937

2 JD50 82.2% 87.0% 80.5% 92.8% 0.813 0.898

3 JD83 91.7% 95.2% 90.8% 91.8% 0.912 0.935

4 JD953 79.7% 92.9% 83.9% 88.5% 0.817 0.906

5 JD209 80.0% 88.3% 88.4% 91.0% 0.84 0.896

6 JD626 85.4% 92.1% 76.8% 88.4% 0.809 0.902
TABLE 9 Comparison of the model before and after improvement on a new dataset.

Num Model Accuracy Precisioin Recall F1-score

1 ResNet50 90.17% 90.04% 89.91% 0.9002

2 Our Model 93.96% 93.57% 93.53% 0.9355
f
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methods, irrigation levels, etc. Moreover, the design and

optimization of the model should provide deep insights into seed

variety characteristics, growing environmental conditions, and

agricultural production management decisions. Therefore, in

future research, in addition to considering the impact of factors

such as seed storage time, cultivation conditions, and shooting

angles on the model’s performance, we will also focus on the

model’s management impact and insights into decision-making

purposes. This aims to achieve effective support and guidance for

seed variety identification and production.
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