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The production and consumption of soybeans are widespread due to their

nutritional and industrial value. Nutrient enrichment is vital for improving the

nutritional quality of soybeans. This study aimed to evaluate the effect of foliar

application of amino acids (AA) and zinc (Zn) on agronomic traits and the

accumulation of grain Zn in soybeans. The experimental design comprised 16

treatment combinations involving four levels of amino acid application (0, 50,

100, and 150 ml 100 L-1) and Zn (0, 2, 4, and 6 mg L-1) following a randomized

complete block design with three replications in field conditions. The results

demonstrated that the application of foliar Zn and AA did not affect the yield,

whereas that of AA50*Zn2 and AA150*Zn2 affected the number of pods and

branches. The effects of AA application on N and the protein content in grains

were determined to be significant. The application of AA100*Zn6 emerged as the

most effective treatment for the enhancement of Zn biofortification in soybean

grains. The combined foliar application of AA and Zn contributed to enhanced Zn

accumulation in the grains.
KEYWORDS

amino acid, biofortification, mineral nutrition, soybean, zinc
Introduction

Increasing the nutrient density and bioavailability in crops is important for combating

hidden hunger and ensuring food security in growing populations. There has been an

increase in the number of applications aiming to optimize the utilization of the

consumption of goods by living organisms and address shortages of essential nutrients.

Organizations such as the World Health Organization (WHO) and the Consultative Group

on International Agricultural Research (CGIAR) emphasize the importance of
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biofortification and prioritize the enrichment of the consumed parts

of plant products with amino acids, proteins, vitamin A, and

elements such as calcium, magnesium, iron, zinc, copper,

selenium, and iodine (Orman and Ok, 2016). Nutrient

enrichment studies in plants using agronomic biofortification

have gained significant importance in recent years, with the

demand for items with elevated nutritional value in the food

industry notably increasing. Fundamental nutrition philosophy

emphasizes the use of high-quality, nutrient-dense items over

quantity in terms of the preservation of living health. Researchers

have attempted to address micronutrient deficiencies with different

interventions, which may be categorized into four main groups—

pharmaceutical supplementation, industrial fortification, dietary

diversification, and biofortification (Meenakshi et al., 2010).

The most appropriate method to reduce microelement

deficiency is biofortification, which involves the biological

enrichment of staple food crops with essential micronutrients.

The biofortification process prioritizes the strategies of breeding

new cereal genotypes rich in microelements or expanding the use of

fertilizers containing microelements (Cakmak, 2008). Agronomic

biofortification through fertilization (soil, foliar fertilization, and

grain coating) aims to increase the nutrient content of plants

without changing their genetic structure (Storksdieck and Hurrell,

2009). The foliar application of mineral fertilizers to plants is an

environmentally friendly and cost-effective agronomic strategy for

biofortification in an easily phyto-available form (White and

Broadley, 2011; Rawat et al., 2013). The efficacy of agronomic

biofortification in enhancing zinc (Zn) levels however, a

combination of soil and foliar treatment for Zn yields the most

favorable results. Zinc plays an important role in the synthesis of

tryptophan, the basic component of some important proteins, and

with its deficit, plants experience a drop in tryptophan

concentration, cessation of protein synthesis, and accumulation of

free amino acids (Turan and Horuz, 2012; Acık and Oncan Sumer,

2023). This condition inherently results in reduced yield up to 40%

and quality (Noulas et al., 2018). Zn deficiency also causes

physiological stress, which results in the development of

abnormalities such as stunted growth, chlorosis in leaves, small

leaves, and spikelet sterility (Alloway, 2009). Plants become more

susceptible to damage from high light intensity and temperature, as

well as to infection by certain fungal diseases (Marschner, 1995;

Cakmak, 2000).

The use of Zn sulfate is the optimum form for meeting zinc

requirements. The timing of foliar Zn application is important; it is

generally known to be more effective during the middle phase of

root development or in the early milk stage (Lyons and Cakmak,

2012). It is an effective way to improve the concentration of Zn in

cereals. The application of 0.5% (w/v) Zn foliar fertilizer at later

growth stages of the crop resulted in a greater Zn increase in edible

parts, such as grains, indicating that this technique can maximize

Zn accumulation (Cakmak et al., 2010). Zinc, a cofactor with

structural and catalytic activities in 10% of human proteins (Acık

and Oncan Sumer, 2023), plays a crucial role in human health and

immune systems (Brown et al., 2004; Sánchez-Palacios et al., 2023).

17% of the global population has insufficient zinc intake (Kumssa
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et al., 2015), and many individuals do not get enough zinc in their

diets (Bouis and Welch, 2010). Prior studies have established that

the zinc needed for nutrition can be supplied by using zinc fertilizer

in grains (Joy et al., 2015; Wang et al., 2016). Agronomic

biofortification through the application of fertilizers that promote

the fortification of food crops (especially Zn-containing crops) may

be an important strategy in countries with high nutrient deficiency

(Joy et al., 2015).

Amino acids (AA) are crucial due to their extensive use in the

production of a broad range of chemical molecules, increasing

yields and quality, and reducing the productive cycle while

improving dry material content (Wahba et al., 2015). They may

be used as adjuvants to improve the efficiency of foliar fertilization

by increasing the permeability of the leaf cuticle and enhancing

nutrient uptake efficiency (Moreira et al., 2015; Moreira and

Moraes, 2017).

Soybeans (Glycine max L.) are a valuable high-protein source

that can help meet human nutrient requirements (Zhan et al.,

2019). It has a significant position as a crucial seed legume,

accounting for 25% of world vegetable oil output and two-thirds

of its protein concentrate used for animal feed (Agarwal et al.,

2013). Soybean is well-suited for biofortification because of its

elevated protein and oil levels, flexibility as a food and feed

component, and adaptability in various conditions. Fertilizer

containing zinc (Zn) have been widely accepted as prompt and

convenient treatments to address Zn deficiency issues in cereal

crops. Although several studies have been conducted on the

addition of Zn to different crops focusing on correcting Zn

deficiency and increasing grain yield, the majority of the research

has focused on yield parameters in cereals. With the HarvestPlus

Biofortification Challenge Programme, there is an increasing focus

on the biofortification of food crops with Zn using plant breeding

(genetic) and agronomic approaches (Lyons and Cakmak, 2012).

This study, therefore, aimed to improve the effectiveness of Zn

biofortification in soybeans by the combined application of Zn and

AA via foliar spraying.
Materials and methods

Plant material

The Victoria soybean cultivar was used as the genetic material

in this study. This variety has a protein content ranging from 39% to

41%, and an oil content ranging from 18% to 20%. It is additionally

characterized by a brown pod color, high potential for yield in

secondary crop production, and notable adaptation and tolerance to

various diseases, lodging, whitefly infestations, and shedding.
Site description

The experiment was carried out in a field condition (36°

53’54.4”N 30°38’28.9” E) at Akdeniz University, Turkey between

June and September 2022. The physical and chemical parameters of
frontiersin.org
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the soil samples were analyzed in detail and were obtained at a

depth of 0–20 cm in each plot within the experimental area. The

total CaCO3 (Evliya, 1964), organic matter (Black, 1965), pH

(Jackson, 1967), EC (Thomas, 1982), texture (Bouyoucos, 1955),

total N (Black, 1957), available P (Olsen and E.L., 1982), extractable

K, Ca, and Mg (Kacar, 1972), and available Zn, Mn, and Cu

(Lindsay and Norvell, 1978) were determined. Some soil

properties (0–20 cm) assessed as follows: loamy in texture,

organic matter (1.23%), CaCO3 (20.9%), pH = 7.7, EC (0.045%),

0.089% total (N), 4.03 mg kg-1 available (P), 96.8 g kg-1 extractable

potassium (K), 2425.5 g kg-1 extractable calcium (Ca) and 146 g kg-1

extractable magnesium (Mg), 0.82 mg kg-1 available zinc (Zn), 5.51

mg kg-1 available manganese (Mn) and 0.88 mg kg-1 available

copper (Cu) (Supplementary Table S1). The mean monthly

rainfall, air temperature, and humidity are presented in

Supplementary Figure S1.
Experimental parameters: dosages
and chemicals

Zinc treatments were applied to the plants as zinc sulfate

(ZnSO4.7H2O). The amino acid liquid products comprised total

amino acids of 46.70%, total organic matter, organic N, and organic

carbon concentrations of 51.35%, 5.42%, and 24.38%, respectively.

Amino acids and ZnSO4 were applied twice during the BBCH

(Biologische Bundesanstalt, Bundessortenamt and Chemical

industry) 13 (3 leaf) and BBCH 60-62 stages (beginning of

flowering) of soybean plant growth. All amino acids were diluted

100 times with water and sprayed onto the plant leaves each time.

The control plants (AA1 and Zn1) were sprayed with tap water.

The chemical composition of the commercial amino acid

preparation included glycine (1.45 g 100 g-1), alanine (0.25 g 100

g-1), valine (0.56 g 100 g-1), isoleucine (0.34 g 100 g-1), threonine

(0.06 g 100 g-1), serine (0.14 g 100 g-1), lysine (0.28 g 100 g-1),

phenylalanine (0.23 g 100 g-1), glutamate (0.42 g 100 g-1), aspartate

(0.12 g 100 g-1), arginine (0.72 g 100 g-1), proline (1.65 g 100 g-1),

leucine (0.37 g 100 g-1), histidine (0.11 g 100 g-1), asparagine (0.09 g

100 g-1), cystine (0.04 g 100 g-1), hydroxyproline (0.78 g 100 g-1),

methionine (0.45 g 100 g-1), tryptophan (0.04 g 100 g-1) and

tyrosine (0.13 g 100 g-1).
Experimental design

The experiment was performed with 16 treatment

combinations involving four levels of amino acids (0, 50, 100, and

150 ml 100 L-1 as AA1, AA2, AA3, and AA4, respectively) and Zn (0,

2, 4, and 6 mg L-1 as Zn1, Zn2, Zn3 and Zn4, respectively), followed

by a randomized complete block design with three replicates. The

field was plowed twice followed by planking. In terms of basic

fertilization, 12 kg da-1 NPK (15:15:15) fertilizer was applied to the

soil, but the use of zinc was limited to foliar application. Sowing was

performed in the second week of June using the Viapora method

with a 4–5 cm plant spacing, and row-to-row spacing was

maintained at 70 cm. A total of ten soybean grains were planted

on each parcel.
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Sample collection

The plant height (cm), number of branches, number of pods,

first pod length (cm), and grain yield (g per plant) were also

measured in selected plants. The concentrations of nitrogen and

zinc were also analyzed in soybean leaves and grains. Leaf samples

were taken together with the petiole at the R2 growth stage (Fehr

et al., 1971) after 2-week foliar treatments.

Recommended agronomic practices were applied as per crop

and climatic parameters. Harvesting was performed manually from

the experimental plots after grain hardening (leaf yellowing). In

terms of agronomic measurements, five healthy plants were

randomly selected from each plot and labeled to determine their

developmental characteristics.

For the mineral analysis of the leaf and grain samples, each

dried plant and grain sample (0.5 g) was digested with an acid

mixture of 10 mL HNO3/HClO4 (4:1) on a hot plate. The samples

were then heated until a clear solution was obtained. This procedure

was repeated several times. The concentrations of zinc (Zn) in the

digests were determined using inductively coupled plasma (Perkin

Elmer Optima DV7000-ICP OES) (Kacar and Inal, 2008). The total

nitrogen (N) was determined using the modified Kjeldahl method

(Bremmer, 1965).
Statistical analysis

The data were analyzed using analysis of variance (ANOVA)

using SAS statistical software (SAS Institute, 2011). The least

significant difference (LSD) test was used at a significance level

of p<0.05.
Results

Foliar doses of AA and Zn significantly increased the average

number of pods in soybeans (p<0.001). As shown in Table 1, While

the highest average number of pods of soybean was obtained from

treatment A3 (155.6 plant-1) in AA treatment dose, the same was

observed Zn2 (158 plant-1) in the Zn treatment dose. The results

demonstrated that foliar doses of AA and Zn increased the number

of pods in the plants, with the AA × Zn interaction being

statistically significant (p<0.001). The highest number of pods was

recorded in the AA2*Zn2 treatment (191 plant-1), with no linear

relationship between the number of pods and dose increase

(Figure 1). The effects of foliar AA and Zn treatments on the

number of soybean branches are presented in Table 1 and Figure 2.

The results indicated that foliar doses of AA and Zn increased the

number of branches and that the AA × Zn interaction was

statistically significant (p<0.001). The highest number of branches

was recorded in the AA4*Zn2 treatment (8.3 plant-1), and foliar

treatment doses of AA and Zn significantly increased the average

number of branches in soybeans (p<0.001). The highest average

value was observed in A4 (6.3 plant
-1) under the AA treatment, and

in Zn2 (6.3 plant-1) under the Zn treatment. Statistical analysis

revealed that there was no significant effect on the plant height or
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first pod length of soybean when treated with AA and Zn. The

recorded values for soybean plant height ranged from 110.9 cm to

117.2 cm, whereas the first pod length varied between 15.4 cm and

18.8 cm. The effects of foliar AA and Zn treatments on the grain

yield of soybean plants are presented in Figure 3. The effects of AA

and Zn treatments on grain yield were not found to be statistically

significant. The soybean seed yield varied between 1.03 and 1.48 g

plant-1. There was no significant correlation observed between foliar

AA and Zn treatments or grain yields.

The effects of foliar AA and Zn treatments on the nitrogen

content of soybean plants and grains are presented in Table 2 and

Figure 4. The findings of this study indicate that foliar spraying with

AA and Zn resulted in increased nitrogen levels in soybean plants

and their corresponding grains. Foliar treatment with AA and Zn

significantly increased the average nitrogen content of soybeans

(p<0.001). The highest average nitrogen content was obtained in the
Frontiers in Plant Science 04
A4 treatment in soybean leaves (3.45%) and grains (7.16%) with AA

treatment doses. Statistical analysis did not reveal any significant

interactions between AA and Zn treatments in either the leaves or

grains. Furthermore, the application of different Zn dosages did not

significantly affect the nitrogen content in the leaves and grains.

The effects of foliar AA and Zn treatments on the protein

content of soybean grains are presented in Table 2 and Figure 5.

This indicated that higher doses of AA resulted in increased grain

protein content in soybean grains, a plant known for its high

protein content. The highest protein content of grain was

observed in A4 (44.8%), and a linear relationship was observed

between increasing AA doses and grain protein content. The

application of Zn, however, did not result in any significant

alterations in the protein composition of soybean grains. The

effects of foliar AA and Zn treatments on the Zn content of

soybean leaves and grains are presented in Table 2 and Figure 6.
FIGURE 1

Effect of foliar AA and Zn treatments on number of pods (plant-1) of soybeans. The letters on the bars indicate the difference between the
mean values.
TABLE 1 Effect of foliar AA and Zn treatments on average number of pods (NOP), number of branch (NOB), grain yield (GY), plant height (PH) and first
capsule lenght (FCL) of soybeans.

Treatments NOP NOB GY PH FCL

(plant-1) (plant-1) (g plant-1) (cm) (cm)

AA1 132.5 C 5.1 B 1.19 117.2 16.0

AA2 143.2 B 5.3 B 1.18 115.5 18.8

AA3 155.6 A 5.7 B 1.27 110.9 15.9

AA4 133.3 C 6.3 A 1.30 114.3 17.8

Zn1 134.8 B 5.4 BC 1.17 113.8 18.4

Zn2 158.0 A 6.3 A 1.25 114.5 15.4

Zn3 120.3 C 5.9 AB 1.31 116.3 18.6

Zn4 151.5 A 4.8 C 1.23 113.2 16.1

AA 16.517*** 5.828** 1.230ns 1.619ns 0.761ns

Zn 41.034*** 7.575*** 1.055ns 0.430ns 0.984ns

AA*Zn 17.22*** 6.962*** 0.992ns 1.223ns 0.402ns
The values followed by uppercase letters indicate the difference between the mean values of amino acid treatments. Values followed by uppercase letters in brackets indicate the difference between
Zn treatments. ** p<0.01 *** p<0.001 ns, non-significant.
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The findings of this study indicate that foliar treatment with AA and

Zn led to a notable increase in the Zn levels of both soybean leaves

and grains. These results were found to be statistically significant

(p<0.001). The application of AA and Zn increased the zinc (Zn)

content in soybean leaves, as well as the average concentration of

Zn. The greatest values of Zn concentration 35.2 and 33.6 mg kg-1

were notably observed in the maximal dosages of AA4 and

Zn4, respectively.

The interactions between AA and Zn treatments were found to

be statistically significant in grains (p<0.05), and the effective

AA*Zn dose was determined from the AA3*Zn4 treatment (61.2

mg kg-1). In terms of the combined effect of AA and Zn treatments,

it was determined that both AA and Zn treatments increased the Zn

concentration in soybean grains and contributed to Zn

biofortification. In terms of the average Zn concentration of

grain, it was observed that the maximal dosages (AA4 and Zn4)

provided the highest values (51.3 and 59.5 mg kg-1). The changes in

Zn concentrations in the leaves and grains of the AA and Zn

treatments are presented in Figure 6. This study revealed a positive

correlation between Zn dose of zinc (Zn) and grain accumulation,

indicating a linear increase in grain accumulation with higher dose

application of Zn. The application of increasing doses of AA

additionally promoted an increase in grain accumulation. A

considerable increase in the biofortification effect was observed

after the application of maximal dosages of AA and Zn.
Frontiers in Plant Science 05
Discussion

The objective of this study was to enhance the nutritional

quality of soybean crops using improved fertilization programs,

focusing specifically on the foliar application of AA and Zn. The

combination of Zn treatment and AA was effective for soybean

growth, especially in terms of the number of pods and branches.

Correlative results were obtained by Abd El-Aal and Eid (2018),

highlighting the favorable impact of foliar amino acid spraying on

soybean growth and yield. The results of this study are similarly

consistent with the research conducted by Zewail (2014), which

indicated that the application of amino acids by foliar approaches

enhances the growth attributes of bean plants, including increased

plant height and an increased number of branches and leaves per

plant. The requirement of amino acid nitrogen is one way to

increase the growth and yield of all crops. Nitrogen and/or amino

acids are essential components of protein synthesis; they are

important due to their widespread use in the biosynthesis of a

wide variety of non-protein nitrogenous substances, such as

pigments, vitamins, coenzymes, purines, and pyrimidine bases.

Several studies have reported that foliar application of amino

acids results in increased plant growth, yield, and composition

(Kamar and Omar, 1987; El-Shabasi et al., 2005). Zinc is another

trace element that is essential to all living organisms. In this study,

we identified that zinc application increases the number of branches
FIGURE 3

Effect of foliar AA and Zn treatments on grain yield of soybeans.
FIGURE 2

Effect of foliar AA and Zn treatments on number of branch (plant-1) of pods of soybeans. The letters on the bars indicate the difference between the
mean values.
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and pods. The finding was also in partial conformity with the works

of Choudhary et al. (2014) and Kanase et al. (2008), who outlined

that zinc application increases the number of branches and pods.

Similar to our findings, Imsong et al. (2023) outlined that the

number of pods was highest at the highest level of zinc and lowest in

the control group. Also, the authors noted that elevated zinc

fertilization resulted in a more pronounced plant response with

enhanced branch numbers. This change in growth parameters may

be linked to the involvement of zinc in tryptophan synthesis,

nitrogen metabolism, and the production of growth hormones

like indole acetic acid (Imsong et al., 2023). The above findings

align with the research conducted by Raghuwanshi et al. (2017) and

Singh et al. (2017), which stated the enhanced growth

characteristics of soybean with the application of zinc.

The foliar application of AA and Zn demonstrated no

significant effect on soybean grain yield (Table 1). These findings

are consistent with those of Enderson et al. (2015), indicating that
Frontiers in Plant Science 06
the foliar applications of B, Cu, Mn, Zn, and their mixture did not

result in an increase in soybean grain yield across all 42 sites. Similar

findings have been reported in other studies for soybean. For

example, Souza et al. (2019) identified no significant effect of Zn

and AA foliar fertilization on yield components, and Mallarino et al.

(2001) reported that foliar fertilization with various nutrient

mixtures, including Zn, resulted in very small and infrequent

yield increases. Similar results have also been identified for

different crops; Teixeira et al. (2008) found no effect of Zn foliar

application on the grain weight of beans grown in soil with a

sufficient Zn concentration. Cakmak et al. (2010) reported that

foliar Zn treatments did not affect wheat grain yield. These studies

support the claim that soybeans are less sensitive to Zn fertilizer

than other crops (Sutradhar et al., 2017). The findings contrast with

those reported by Vahedi (2011); Tousi et al. (2014), and Teixeira

et al. (2018), indicating that foliar application of amino acids

improves the yield components of soybean plants.
FIGURE 4

Effect of foliar AA and Zn treatments on N contents (%) of soybeans leaves and grains.
TABLE 2 Effect of foliar AA and Zn treatments on average N concentration, Zn concentration and proetin content of soybeans.

Treatmen-
ts

N concentration Protein Zn concentration

% % mg kg-1

Leave Grain Grain Leave Grain

AA1 2.43 D 6.24 C 39.0 C 26.3 D 48.3 B

AA2 2.74 C 6.57 B 41.0 B 29.3 C 48.6 B

AA3 3.27 B 6.73 B 42.1 B 32.2 B 50.5 A

AA4 3.45 A 7.16 A 44.8 A 35.2 A 51.3 A

Zn1 3.02 6.60 41.2 27.7 D 40.4 D

Zn2 2.92 6.69 41.8 30.1 C 47.8 C

Zn3 2.90 6.75 42.2 31.7 B 51.0 B

Zn4 3.04 6,66 41.6 33.6 A 59.5 A

AA 59.487*** 15.886*** 15.850*** 41.363*** 13.667***

Zn 1.405ns 0.462ns 0.448ns 98.138*** 415.813***

AA*Zn 1.592ns 1.845ns 0.840ns 1.367ns 3.354*
The values followed by uppercase letters indicate the difference between the mean values of amino acid treatments. Values followed by uppercase letters in brackets indicate the difference between
Zn treatments. * p<0.05 *** p<0.001 ns, non-significant.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1382397
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2024.1382397
Foliar AA treatment was found to increase the nitrogen

concentration in soybean leaves and grains. Zn treatments were not

as effective as increasing the nitrogen concentration in the leaves and

grains of soybeans (Table 2). Amino acids help increase nitrogen and

some nutrients in plants (Liu et al., 2008; Abo Sedera et al., 2010).

This might be because amino acids demonstrate chelation properties

with nutrients, thereby enhancing the uptake and translocation of

these vital elements inside the plant. This phenomenon may be

related to the effects on cell membrane permeability, which enhances

the efficiency of nutrient absorption (Marschner, 1995). The use of

amino acids as nitrogen (N) and carbon (C) sources by plants has

been widely documented in studies (Thornton and Robinson, 2005).

Furthermore, the application of lithovit at a rate of 500mg and amino

acids at a rate of 4 ml l-1 provided the highest values of leaf chemical

composition (N, P, K, Ca, Mg%, and Fe ppm) in soybean plants (Abd

El-Aal and Eid, 2018). Similarly, the application of amino acids by

foliar spraying resulted in an enhancement of nitrogen content in

plants compared to that in the control group in another study

(Shehata et al., 2011). Several studies have demonstrated the

efficiency of amino acid uptake by plants, with the foliar

application of amino acids demonstrating promising results

(Abdel-Mawgoud et al., 2011; Sadak et al., 2014).
Frontiers in Plant Science 07
The results of this study indicated that higher doses of AA led to

an increase in the protein content of soybean grains. Varying the

dosages of Zn, however, did not have a significant impact on the

protein content of the soybean grains. The use of amino acids may

have favorable effects, which may be attributed to their internal

roles as osmoregulatory agents (Treichel, 1975). This is due to their

high solubility in water, which leads to an increase in the

concentration of osmotic components inside the cells (Abdel-

Mawgoud et al., 2011). Suciu et al. (2022) reported that the

application of biofertilizers containing amino acids contributed to

the protein content of soybeans. Research on the positive effect of

biostimulants on the protein content in legume seeds is available in

terms of common beans; the treatment of Fabaceae plants with

biostimulants containing amino acids has resulted in an increase in

protein content in the seeds of common beans (Zewail, 2014; Kocira

et al., 2017).

Foliar treatments of AA and Zn increased the average Zn

concentration of soybean leaves and grains. The most effective dose

was obtained from the AA3*Zn4 treatment in the AA*Zn interaction

in grain Zn concentration. Increasing the treatment rates of AA and

Zn increased the Zn accumulation in both leaves and grains, and the

AA*Zn combination contributed to Zn biofortification, especially in
FIGURE 6

Effect of foliar AA and Zn treatments on Zn contents (mg kg-1) of soybeans leaves and grain. The letters on the bars indicate the difference between
the mean values.
FIGURE 5

Effect of foliar AA and Zn treatments on protein contents (%) of soybeans grains.
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the grains. The application of foliar zinc sulfate was effective in

biofortifying winter wheat by increasing the grain Zn from 20 to 30

mg kg-1 (Mao et al., 2014). Choudhary et al. (2014) stated that by

increasing the Zn doses, the Zn content increased in soybean grain,

with the highest Zn content of soybean grain being measured at 57.4

mg kg-1. Foliar fertilization with Zn at a ratio of 4 (0, 0.91, 1.82, 2.73,

and 6.37 mg kg-1) increased plant height, grain mass, and protein

content in soybean grains (Oliveira et al., 2018). In addition, Zn is

crucial for the function of dehydrogenase, proteinase, RNA enzymes,

and chlorophyll synthesis (Hansch and Mendel, 2009). These results

can be considered preliminary in establishing the optimal dosage of

AA*Zn for future studies aimed at gaining information into

these mechanisms.

Foliar application, which contributes to the rapid uptake of

nutrients from leaves and minimizes environmental pollution and

groundwater contamination (Dehnavard et al., 2017), may be a

viable agronomic biofortification practice for zinc at the advanced

stages of soybean development. A greenhouse study on soybeans

reported that foliar Zn applied at the full-pod stage at low soil Zn

concentrations was more effective than other treatments in

improving seed Zn concentration (Oliveira et al., 2018).

Moreover, considering the low canopy height of soybeans, it

allows the use of a ground sprayer (Cuesta et al., 2023).
Conclusion

In this study, foliar Zn and amino acids, an organic compound

and biostimulant, were applied together to soybean to determine

plant development and Zn biofortification performance, particularly

in the grain. Positive effects of the co-use were observed in some foliar

applications. While no effect of foliar treatments was observed on the

yield values, the combined treatments demonstrated significant

effects on the pod number (AA2*Zn2) and branch number

(AA4*Zn2). There was a significant combined effect of AA and Zn,

where the application of AA3*Zn4 provided the maximum value for

Zn biofortification. In addition to foliar Zn application at later stages

of cultivation, the application of materials with organic components

(AA, seaweed, etc.) may have increased the availability of Zn by

supporting the uptake in leaves and grains.
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