
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Zoe Hilioti,
Centre for Research and Technology Hellas
(CERTH), Greece

REVIEWED BY

Suresh Kaushik,
Independent Scientific Researcher, India
Sundip Kumar,
G. B. Pant University of Agriculture and
Technology, India

*CORRESPONDENCE

Preetesh Kumari

preetesh79@gmail.com

Pramod Kumar Rai

pramodkrai68@gmail.com

RECEIVED 03 February 2024

ACCEPTED 11 June 2024
PUBLISHED 24 June 2024

CITATION

Singh KP, Kumari P and Rai PK (2024) GWAS
for the identification of introgressed
candidate genes of Sinapis alba with
increased branching numbers in
backcross lines of the
allohexaploid Brassica.
Front. Plant Sci. 15:1381387.
doi: 10.3389/fpls.2024.1381387

COPYRIGHT

© 2024 Singh, Kumari and Rai. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 24 June 2024

DOI 10.3389/fpls.2024.1381387
GWAS for the identification of
introgressed candidate genes of
Sinapis alba with increased
branching numbers in
backcross lines of the
allohexaploid Brassica
Kaushal Pratap Singh1, Preetesh Kumari2,3*

and Pramod Kumar Rai1*

1Plant Protection Unit, Indian Council of Agricultural Research (ICAR)-Directorate of Rapeseed
Mustard Research, Sewar, Bharatpur, India, 2Genetics Division, ICAR-Indian Agricultural Research
Institute, New Delhi, India, 3School of Agriculture, Sanskriti University, Mathura - Delhi Highway,
Chhata, Mathura, India
Plant architecture is a crucial determinant of crop yield. The number of primary

(PB) and secondary branches (SB) is particularly significant in shaping the

architecture of Indian mustard. In this study, we analyzed a panel of 86

backcross introgression lines (BCILs) derived from the first stable allohexaploid

Brassicas with 170 Sinapis alba genome-specific SSR markers to identify

associated markers with higher PB and SB through association mapping. The

structure analysis revealed three subpopulations, i.e., P1, P2, and P3, in the

association panel containing a total of 11, 33, and 42 BCILs, respectively. We

identified five novel SSR markers linked to higher PB and SB. Subsequently, we

explored the 20 kb up- and downstream regions of these SSR markers to predict

candidate genes for improved branching and annotated them through BLASTN.

As a result, we predicted 47 complete genes within the 40 kb regions of all trait-

linkedmarkers, among which 35 were identified as candidate genes for higher PB

and SB numbers in BCILs. These candidate genes were orthologous to ANT,

RAMOSUS, RAX, MAX, MP, SEU, REV, etc., branching genes. The remaining 12

genes were annotated for additional roles using BLASTP with protein databases.

This study identified five novel S. alba genome-specific SSR markers associated

with increased PB and SB, as well as 35 candidate genes contributing to plant

architecture through improved branching numbers. To the best of our

knowledge, this is the first report of introgressive genes for higher branching

numbers in B. juncea from S. alba.
KEYWORDS

Brassica juncea, backcross introgression lines (BCILs), plant architecture, genome-
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Introduction

Crop wild relatives (CWRs) have been established as valuable

sources for incorporating genes for adaptation in crop plants under

changing climatic conditions by allowing modifications in crop

genetic constitution and developing high-yielding crop varieties

(Hajjar and Hodgkin, 2007; Bohra et al., 2022). Among CWRs,

Brassica wild relatives (BWRs) have maintained valuable genetic

diversity for improving yield-related and climate-resilient traits,

such as plant vigor, architecture, and the ability to withstand biotic

and abiotic stresses. By enriching the gene pool of crop species,

BWRs have contributed significantly by augmenting the genetic

diversity of cultivated plants (Quezada-Martinez et al., 2021). The

family Brassicaceae includes several wild genera, such as Brassica

fruticulosa, Camelina sativa, Diplotaxis catholica, D. erucoides,

Erucastrum abyssinicum, Erucastrum cardaminoides, Eruca sativa,

Moricandia arvensis, and Sinapis alba. Among these, S. alba (white

mustard), commonly grown as a condiment, has the highest

number of PB and SB (Kumari et al., 2011; Singh et al., 2023).

Interestingly, S. alba is diploid (2n= 24, SS) and has close genetic

proximity to Brassica nigra L. (BB, 2n=16), a diploid ancestor of the

Indian mustard (Warwick and Black, 1991).

Indian mustard (B. juncea; AABB; 2n=36) is an important

oilseed crop cultivated globally for its edible oil, vegetables, and

condiments (Banga and Banga, 2016). The genetic diversity of

Brassica oilseed crops has become limited due to strong selection

pressure for yield and quality attributes, which has made it

increasingly challenging to further increase yields. Consequently,

the production levels of these crops have plateaued (Singh et al.,

2021a). Therefore, the enhancement of crop yield depends on the

introduction of yield-related alien genes to augment the genetic

basis. However, the introgression of alien genes is a tedious and

time-consuming process (Kumari et al., 2020b, 2020c). Thus, the

closest genera of the crop are a more reliable source for gene

introduction due to the inhibition of the introduction of alien genes

by intergeneric incompatibility, hybrid sterility, and reduced or

absent chromosome pairing between alien and crop species and the

resulting linkage drag (Bohra et al., 2022). Subsequent generations

of hybrids and early backcross progenies exhibited high levels of

male and female sterility due to abnormal meiosis (Lelivelt et al.,

1993). In vitro fusion or protoplast fusion was initially used to

introduce genes to overcome the pre- and postfertilization barriers

within intergeneric hybridizations that contributed to biotic and

abiotic stress tolerance in Indian mustard (Kirti et al., 1992, 1995).

Moreover, genetic engineering-induced and spontaneous mutations

have also been used to introduce genetic diversity. However, due to

the amphidiploid nature of B. juncea, the application of reverse

genetics to identify mutations that cause quantifiable phenotypic

impacts is challenging. Since each phenotype is controlled by at

least two mustard homoeologs with presumably redundant

activities, combining mutant homoeologs from both subgenomes

is necessary to change a monogenic trait (Wells et al., 2014; Emrani

et al., 2015). For the trait regulated by an oligogenic or polygenic

system in polyploid species, genome editing using CRISPR-Cas9 is

not a realistic approach (Endo et al., 2015).
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To overcome the consequences of intergeneric hybridization, we

used PEG-mediated protoplast fusion to introduce new alleles of S. alba

into B. juncea to avoid potential negative effects such as intergeneric

incompatibility and hybrid sterility. Fortunately, we succeeded in

achieving the first stable and fertile somatic hybrids of S. alba and B.

juncea with proper meiosis (Kumari et al., 2018; Kumari and Bhat,

2019, 2021). These hybrids were then backcrossed with B. juncea as the

recurrent parent, resulting in the first backcross progeny with a haploid

set of S. alba chromosomes with a high degree of gamete viability and

subsequent fertility. Among the BC1F2 generation, we identified a

backcross line with the highest number of PBs (26–27) and SB (166)

(Kumari et al., 2020b). The shoot branching pattern is controlled at

various levels, such as node pattern, meristem determination, and

axillary meristem elongation (McSteen and Leyser, 2005). Several genes

regulate node patterns in A. thaliana, such as LATERAL SUPPRESSOR

(LAS) (Greb et al., 2003), SHOOTMERISTEMLESS (STM) (Long et al.,

1996), REVOLUTA (REV) (Talbert et al., 1995), and the

REGULATORS OF AXILLARY MERISTEMS (RAX) genes (Keller

et al., 2006; Muller et al., 2006). The inflorescence meristem identity

is determined by the floral identity genes TERMINAL FLOWER1

(TFL1) (Bradley et al., 1997) and LEAFY (LFY) (Weigel et al., 1992).

Moreover, branch elongation is regulated by several phytohormones,

such as auxin, cytokinin, and abscisic acid (Ward and Leyser, 2004).

Critical analyses of genes that regulate auxin signaling and transport,

such as AUXIN RESISTANT1 (AXR1) (Lincoln et al., 1990; Leyser

et al., 1993; Stirnberg et al., 1999) and MORE AXILLARY GROWTH

(MAX) (Stirnberg et al., 2002; Sorefan et al., 2003; Booker et al., 2005;

Bennett et al., 2006), have shown that these hormones play a central

role in branch development.

However, a major challenge was the identification of the genes

responsible for the segmental introgressions of B. juncea

chromosomes, which were introduced in advance BCILs. To

address this issue, we developed a set of SSR markers specific to

the S. alba genome from the draft assembly and used them to

genotype core sets of BCILs (Kumari et al., 2020a; Singh et al.,

2021b, 2022b). Using a set of 170 monoallelic SSR markers specific

to S. alba, we identified associated markers with high PB and SB by

using genotypic and phenotypic data from two successive years. We

utilized association mapping, which is a reliable method for

addressing quantitative variations, to better understand

introgressed variants (Risch and Merikangas, 1996; Nordborg and

Tavaré, 2002; Gupta et al., 2014). The BCILs used in this study have

euploid chromosomal counts high fertility, and are stabilized as

translocation homozygotes.

Although the size of the introgressed segment likely plays a crucial

role in defining BCILs, physical linkage significantly impacts the

linkage disequilibrium (LD) between molecular markers (Remington

et al., 2001). This provided a genetic basis for the association mapping

of genes responsible for a substantial proportion of PB and SB. The

extent of LD between linked markers in the complete set of BCILs was

notably greater than that between unlinkedmarkers. This study reports

the results of association mapping experiments using markers specific

to the donor genome and phenotypic data that were subsequently

recorded from BC2F6-7 generations from two successive crop seasons.

We identified closely linked markers to pinpoint the genetic regions
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responsible for PB and SB. The discovery of these markers will facilitate

the rapid introduction of the higher branching phenotype into new

germplasms, marker-assisted breeding, and selection.
Materials and methods

Plant material

We employed a subset of 86 backcross introgression lines

(BCILs; BC2F6-7) of S. alba-B. juncea somatic hybrids with their

parents (S. alba and B. juncea) for association studies on the

number of branches in fully matured plants. These BCILs were

derived by backcrossing two stable allohexaploids of B. juncea and

S. alba, namely, H1 and H2, as previously reported by Kumari et al.

(2018) and Kumari and Bhat (2019, 2021), with B. juncea cv. RLM-

198 and NPJ-212 (Kumari et al., 2020b).
Experimental design and
trait measurement

Independent field trials were conducted at the agricultural farm of

the ICAR-Directorate of RapeseedMustard Research, Bharatpur, India,

during the 2021–22 (CS-I) and 2022–23 (CS-II) crop seasons. The

experimental field is situated at 77.300°E and 27.150°N. To grow the

BCILs, a randomized complete block design was employed with three

replications, and standard farming techniques were implemented for

mustard without the use of fertilizers or fungicides. The BCILs were

cultivated using 45 cm row-to-row and 30 cm plant-to-plant spacing

within each row. Five plants at random from each replication of the

BCILs were selected to record the phenotypic data, which included the

number of PB and SB at the end of flowering.
Statistical analysis

In this study, we utilized the variability package (https://

CRAN.R-project.org/package=variability; Singh and Chaudhary,

1977) in R v4.2.1 to estimate several attributes, including the

standard error of the mean (SEm), the critical difference at 5%

(CD), broad-sense heritability (H2), analysis of variance (ANOVA),

environmental variation (EV), genotypic variation (GV),

phenotypic variation (PV), coefficient of variation (CV), and

frequency distribution among the 86 BCILs.
Genomic DNA extraction

Genomic DNA was extracted from fresh young leaves of both

the parent plants and the backcross progeny (BC2F6) using a

modified CTAB method (Kirti et al., 1995). The extracted DNA

was then quantified using a Nanodrop 8000 spectrophotometer

(Thermo Fisher Scientific, USA).
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SSR markers

Genotyping was performed using S. alba genome-specific SSR

markers (Singh et al., 2022b) that were developed using a de novo

whole-genome assembly (Kumari et al., 2020a). A set of 170 S. alba-

specific SSR markers randomly chosen from the whole genome was

used to genotype 86 BCILs of the BC2F6 generation, revealing

morphological variations in PB and SB.
PCR and data scoring

The genotyping study used a 10 ml PCR mixture containing 1.6 ml
of template DNA (30 ng/ml), 1.1 ml of primer pairs (forward and

reverse) (10 mM), 0.30 ml of dNTP mix (10 mM), 1.1 ml of MgCl2 (2.5

mM), 1.1 ml of Taq DNA polymerase buffer (10X), 0.30 ml of Taq DNA
polymerase (GCC Biotech, India) (2.5 U), and 4.5 ml of nuclease-free
water. The PCR conditions involved initial denaturation for 5 min at

94°C, followed by 40 cycles of denaturation at 94°C/30 s, primer

annealing at 57–59°C/40 s, and primer extension at 72°C/45 s, and a

final extension at 72°C for 7 min. The PCR products were separated on

a 3% agarose gel and visualized using ethidium bromide staining in a

gel documentation unit. The amplified bands were scored as present (1)

or absent (0) for genotyping analysis (Kumari et al., 2024).
Population structure and
phylogenetic analysis

The population structure of the BCILs was analyzed using the

model-based Bayesian clustering method in STRUCTURE v2.3.4. A

burn-in period of 10,000 and 100,000 Markov chain Monte Carlo

(MCMC) iterations was used, with k ranging from 2 to 10, to

investigate the population structure (Pritchard et al., 2000). The

ideal number of subpopulations (K) was determined using Evanno’s

method through the use of STRUCTURE HARVESTER (Earl and

VonHoldt, 2012). In TASSEL v5.0 (http://www.maizegenetics.net/),

the genotypic data were utilized to calculate the genetic distance

across BCILs, and a phylogenetic tree was constructed using the

unweighted pair group method with arithmetic mean (UPGMA)

method (Bradbury et al., 2007).
Kinship coefficient, association mapping,
principal component analysis, and
linkage disequilibrium

Once the K value was established, the population structure

matrices (Q) were identified using STRUCTURE. TASSEL was used

to estimate the kinship coefficients (K-matrix) among all genotypes

(BCILs) based on similarities in the SSR markers. The association

analysis between individual SSR and phenotypic values was

conducted at the p-value 1e-4 using mixed linear model (MLM)

and general linear model (GLM) approaches, combining K and Q
frontiersin.org
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matrices (Bradbury et al., 2007). Every marker used for genotyping

was employed in the association analysis. A quantile–quantile (QQ)

plot was used to compare the relative distributions of the observed

and expected -log10(P)-values for each SSR marker–trait

association. Principal component analysis (PCA) was used to

stratify the population structure. Eigenvalue analysis (Patterson

et al., 2006; Price et al., 2006) and a kinship matrix (Malosetti

et al., 2007; Pasam et al., 2012) were used to eliminate the effects of

structure on the mapping panel and relatedness between the

genotypes. To assess linkage disequilibrium, r2 was calculated for

each allele of the SSR marker using TASSEL software. The

calculation was performed using the LD full matrix, with

heterozygous calls set to missing. The r2 threshold was set at 0.1,

so any SSR marker with a r2 value below that threshold was

considered to have weak LD (Nyine et al., 2019). A graph in the

form of an LD heatmap was generated using TASSEL to visualize

the distribution pattern of the genome-wide LD decay.
Candidate gene prediction and annotations

The SSR markers that were found to be associated with

branching traits were aligned with the S. alba genome. The 40k

bp genome sequence located up- and downstream of the SSR was

used for complete gene prediction through the AUGUSTUS web

server (https://bioinf.uni-greifswald.de/augustus/submission.php),

with A. thaliana serving as the reference organism. The genes

predicted through AUGUSTUS were then annotated using

BLASTP with the UniProtKB/Swiss-Prot (Swissprot_v5),

nonredundant protein sequence (Nr_v5), and RefSeq protein

databases. These predicted genes were also subjected to a local

BLASTP for domain searches using CLC Genomics Workbench

version 20.0.4 (Qiagen, USA). Furthermore, the PANNZER web

server (http://ekhidna2.biocenter.helsinki.fi/sanspanz/) was utilized

to predict protein functions (Toronen and Holm, 2022). To further

annotate these 47 predicted genes, 1127 branching-related genes in

FASTA format were retrieved from the European Nucleotide

Archive (ENA). Finally, the predicted genes were subjected to

BLASTN with a transcriptome assembly of H1 allohexaploid to

confirm their presence in BCILs (Singh et al., 2022a).
Results

During the CS-I and CS-II crop seasons at the ICAR-

Directorate of Rapeseed Mustard Research, phenotypic data were

collected from backcross introgression lines (BCILs) of S. alba and

B. juncea. The PB and SB numbers were recorded and showed

considerable variability among the BCILs. For example, BCIL 70

had an average minimum of 2.0 PB, while the donor parent S. alba

in CS-II had an average maximum of 21.0 PB. The grand mean

values for the number of PB were 6.32 ± 0.77 and 6.48 ± 0.45 for CS-

I and CS-II, respectively. The donor parent S. alba had the highest

average number of SB at 43.6, followed by BCILs 10 (26.2) and 83

(24), while BCILs 49 (5), 32 (6.6), 28 (7), 66, and 70 (7.2) had the

lowest average number of SB. The grand mean values for the
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number of SB were 14.314 ± 3.06 and 14.36 ± 1.42 for CS-I and

CS-II, respectively (Figures 1A, B). The cumulative effect of

genotypic and environmental variance for both crop seasons

resulted in the phenotypic variance of PB and SB, respectively.

The phenotypic coefficient of variation (PCV) was greater than the

genotypic coefficient of variation (GCV) for both traits, indicating a

significant environmental influence. However, both PB and SB

exhibited high broad-sense heritability (H2) values, suggesting

that these traits are not influenced by environmental factors. The

genetic variability for these traits was low, with genetic

advancement percentages of the mean (GAM) determined to be

36.67 and 51.30 for PB and 36.55 and 69.31 for SB, respectively

(Table 1). The correlation between PB and SB in both seasons was

very high, as shown in the correlation heatmap (Figure 2).
Population structure, linkage
disequilibrium, relative kinship, and
principal component analysis

Population structure analysis was conducted on the association

panel using 170 donor genome-specific microsatellite markers.

Clustering inference was performed with possible clusters (k)

ranging from 2 to 10, with five replicates for each k value. The

likelihood distribution (LnP k) showed a significant change when k

increased from 2 to 3, with the maximum Dk value observed at k=3

(Figures 3A, B). The Dk scheme revealed that the 86 BCILs could be

grouped into three subpopulations, namely, P1 (donor group; S.

alba), P2 (mixed population), and P3 (recipient parent group; B.

juncea). The association panel had 11, 33, and 42 BCILs assigned to

the P1, P2, and P3 populations, respectively (Figure 4A). These

groups were also confirmed through kinship analysis (Figure 4B)

and UPGMA-based phylogenetic analysis (Figure 4C). The

phylogenetic tree constructed using the UPGMA method showed

three major clades corresponding to the three groups identified by

STRUCTURE. BCILs belonging to the mixed population group

were distributed between the P1 and P2 subpopulations in the

phylogenetic tree. Linkage disequilibrium (LD) analysis and

association mapping were conducted using 170 SSR markers in a

subset of 86 BCILs. The TASSEL v. 5.0 program was used to

calculate LD as the squared allele frequency correlation (r2)

(Bradbury et al., 2007).

Pairwise linkage disequilibrium (LD) was examined in the

current genotyping panel using 170 SSR markers to assess

the amount of LD at a sliding window size of 50, resulting in the

detection of LD in 7225 locus pairs. Among these, 2535 marker

pairs (35%) showed substantial LD at the r2 threshold of 0.05, while

significant LD was observed for 1309 (18%) and 433 (6%) marker

pairings at much higher r2 values of 0.1 and 0.2, respectively. The

details of both the R2 and P values are presented in Figure 5.

Additionally, principal component analysis (PCA) was conducted

to assess the genetic diversity among the association panels (BCILs),

with the first two PCs explaining 100% of the genetic variation. The

branching trait donor parent was present in the first quadrant, while

the recipient plant (B. juncea) was present in the fourth quadrant

(Figure 6A). The correlation circle showed a very strong positive
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correlation between the PB and SB traits (Figure 6B). A total of 87

axes were identified through eigenvalue analysis of the relationships

between individual BCILs in the association panel, with the first ten

(1–10) principal components accounting for approximately 52% of

the variation (Figure 6C). The distance matrix was calculated

between the BCILs based on their genotyping data, revealing their

closeness between 0 and 1, where 0 represented the highest

closeness and 1 the greatest distance between BCILs. BCILs 91,

23, 96, and 93 showed distances of 0.435294, 0.458824, 0.464706,

and 0.488235, respectively, from the donor parent S. alba (Line 01),

while BCILs 10 (0.911765), 3 (0.929412), 19 (0.935294), 56

(0.947059), and 21 (0.964706) showed the greatest distances from

the donor parent. Additionally, the distance matrix of the recipient

parent (B. juncea) from the donor parent, S. alba, was 1.
Association mapping for PB and SB

Marker–trait associations were identified using two different

statistical models, MLM and GLM. The MLM used the population

structure and kinship matrix (Q + K) model, while the GLM used

numerical genotypic and phenotypic data. Five associations

(P<0.0001) were identified using MLM for the PB and SB traits,
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with five common microsatellite markers (Sa28738, Sa42751,

Sa164052, Sa225736, and Sa325747) associated with both traits.

These markers were distributed randomly in the association panel.

These associations were recorded above the threshold value log10

(P)= 4.00, with the markers showing an association with the traits at

the threshold value 4.934. The total phenotypic variations explained

by these markers for PB and SB were 4.55 and 28.95%, respectively.

Using GLM, five common microsatellite markers were identified as

being associated with the PB and SB traits, which were the same as

those identified using MLM. The associations were recorded above

the threshold value log10(P)= 6.4, with the markers showing an

association with the traits between the threshold values of 6.482 and

10.21. The figures provided more details on the marker–trait

associations identified using both models (Figures 7A, B, 8A, B).
Candidate gene prediction and annotations

To identify candidate genes associated with the branching trait,

we utilized the genome sequences of S. alba up- and downstream of

20 kb from each microsatellite marker. Our analysis revealed that

the 40 kb region surrounding five significant markers contained 47

complete genes. Using the AUGUSTUS web server, we predicted
A

B

FIGURE 1

The mean phenotypic distributions of the PB (A) and SB (B) traits for the 2021-22 and 2022-23 crop seasons. The grand mean value and standard
deviation (StDev) are presented in the top right corner of the graph.
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gene sequences for the Sa325747, Sa42751, Sa164052, Sa225736,

and Sa28738 markers, resulting in 10, 5, 12, 10, and 10 gene

sequences, respectively. We then used BLASTP to identify

domains and annotate the putative functions of the predicted

genes with protein databases such as the Pfam domain, SwissProt,

Nr, and RefSeq (Supplementary Tables S1–S4, respectively). Among

the predicted genes, the majority showed significant similarity to

Arabidopsis thaliana proteins in all three protein databases, with

similarities ranging from 30 to 100%. Interestingly, 35 of the

predicted genes showed absolute similarity to branching-related

genes (1127 genes) obtained from the ENA database, with 33 genes

belonging to A. thaliana and 2 genes belonging to Pisum sativum

(Supplementary Table S5).

Our analysis revealed several genes with significant similarity to

known regulators of the axillary meristem in A. thaliana. For

instance, Gene_164052_4 and Gene_225736_1 (At5g23000) were

identified as orthologous to REGULATOR OF AXILLARY

MERISTEMS1 (RAX1), while Gene_164052_2 (At2g36890) was

found to be orthologous to REGULATOR OF AXILLARY

MER I STEMS2 (RAX2 ) . S im i l a r l y , G e n e _ 2 8 7 3 8 _ 4 ,

Gene_164052_6, and Gene_164052_7 (At3G49690) were

identified as orthologous to REGULATOR OF AXILLARY

MERISTEMS3 (RAX3). We also identified a predicted gene,

Gene_42751_2, as orthologous to the MORE AXILLARY

GROWTH4 (MAX4) gene (At4g32810), which regulates auxin
Frontiers in Plant Science 06
transport. Other predicted genes, such as Gene_28738_2 and

Gene_28738_3 (orthologous to At1G19850), were found to play a

role in the establishment of vascular and body patterns during

embryonic and postembryonic development. Similarly,

Gene_28738_9 and _10 were found to be orthologous to

At5g03840, which controls inflorescence meristem identity.

Additionally, the predicted genes, such as Gene_28738_5 and _6,

Gene_225736_7, Gene_325747_1, and _3, exhibited significant

similarity to genes in A. thaliana that play an active role in the

transcriptional coregulation of AGAMOUS. Interestingly,

Genes_28738_7 and _8 were found to be orthologous to the

Pisum sativum gene AAS66906, which regulates shoot branching

via physiologically defined mobile signals. Finally, Gene_42751_3

was found to be orthologous to auxin resistance protein 6

(At4g02570), which plays an active role in auxin signaling during

embryonic and postembryonic development in Arabidopsis. We

also identified Gene_42751_5 as having a role in carbon and

nitrogen metabolism and being orthologous to the At1G53310

gene in A. thaliana.

This study identified several predicted genes that may be

involved in the regulation of plant branching. Gene_164052_12

and Gene_225736_6 were found to be orthologous to ERECTA1

(ER1) (At2g26330), which plays a role in specifying organs that

originate from the shoot apical meristem. Gene_164052_8 was

predicted to be orthologous to APETALA1 (AP1) (At1g69120),
TABLE 1 Descriptive statistics of the primary (PB) and secondary branching (SB) traits evaluated in a set of 86 backcross lines (BCILs) of
S. alba + B. juncea allohexaploids.

S. No. Particulars PB* SB*

2021–22 2022–23 2021–22 2022–23

1 Maximum 18.0000 21.0000 43.6000 53.0000

2 Minimum 2.6000 2.0000 5.0000 4.0000

3 Grand Mean 6.3221 6.4750 14.3108 14.3614

4 Standard Error of Mean (SEm) 0.7666 0.4454 3.0567 1.4206

5 Critical Difference (CD) 5% 2.1317 1.2389 8.4998 3.9513

6 Critical Difference (CD) 1% 2.8068 1.6315 11.1912 5.2033

7 Environmental Variance (Ve) 2.9386 0.9919 46.7186 10.0900

8 Genotypic Variance (Vg) 2.6938 3.3660 20.7626 30.9566

9 Phenotypic Variance (Vp) 5.6324 4.3579 67.4812 41.0466

10 Environmental Coefficient of Variance (ECV) 26.7372 15.3816 47.9866 22.1182

11 Genotypic Coefficient of Variance (GCV) 25.7372 28.3346 31.9902 38.7419

12 Phenotypic Coefficient of Variance (PCV) 37.2156 32.3403 57.6723 44.6111

13 Heritability (Broad Sense) (H2
b) 0.4783 0.7724 0.3077 0.7542

14 Genetic Advance (GA) 2.3382 3.3216 5.2066 9.9536

15 Genetic Advance as percentage of mean (GAM) 36.6657 51.2988 36.5536 69.3082

16 $Kurtosis (Pearson) 15.8060 15.4780 6.8680 6.2890

17 #Skewness (Pearson) 2.8770 2.9080 1.7580 1.8440
*Significant at P = 0.001; $Kurtosis is the distribution of observed data around the mean; #Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable
about its mean.
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which specifies flower meristem identity and is also required for the

normal development of sepals and petals. Gene_164052_9

(At4g08150) was found to be actively expressed in the peripheral

and rib zones of the shoot apical meristem but not in the leaf

primordia. It is also expressed in the fourth floral whorl, particularly

in the cell surrounding the transmitting tissue. Gene_225736_8,

orthologous to At3g54720, encodes a glutamate carboxy peptidase
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and was found to be involved in ethylene-enhanced hypocotyl

elongation in light. The alleles of this gene also showed an

increased cotyledon number and rate of leaf initiation, along with

the transformation of leaves to cotyledons, altered flowering time,

and photomorphogenesis.

Gene_325747_5, orthologous to REVOLUTA (REV)

(At5g60690) of A. thaliana, has been shown to regulate meristem
FIGURE 2

The correlation coefficients between branching traits for different crop seasons are presented (all coefficients were found to be statistically
significant at a p value <0.01).
A

B

FIGURE 3

(A) The graph displays the estimated logarithm of the probability of data [LnP(D)] for possible clusters (k) ranging from 1 to 10; (B) Delta K is based on
the rate of change in LnP (K) between successive K values.
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A

B C

FIGURE 4

Population structure, Kinship analysis, and UPGMA tree for the mapping panel used in the current study. (A) Population structure. Here, different
subpopulations (i.e., P1, P2, P3) are indicated using different colors. (B) Kinship dendrogram. (C) UPGMA tree.
FIGURE 5

Graphical representation of the LD plot (linkage disequilibrium plot) for the current association mapping panel. Here, the R square and P value are
shown as measures of LD (upper and lower diagonal, respectively).
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initiation at lateral positions and is a member of a small

homeodomain-leucine zipper family. Gene_325747_6 was

orthologous to AINTEGUMENTA (ANT) (At4g37750), which is

required for the control of cell proliferation and is actively expressed

in lateral shoot organ primordia. It also regulates growth and cell

numbers during organogenesis and modulates auxin biosynthesis in

ovules via the regulation of YUC4. Gene_164052_11 (At1g16410)

was found to be orthologous to the SUPERSHOOT1 (SPS1) gene of

A. thaliana and was significantly associated with branching

variation. Gene_SSR325747_2, orthologous to the At3g62980

gene of A. thaliana, regulates root and hypocotyl growth, lateral

root formation, cell elongation, and gravitropism. Six predicted

genes (Gene_225736_3, _4 (At2g45000), _9 (At2g42640),

Gene_325747_4 (At2g45010), _7 (At2g42610), and _8

(At2g42650)) were orthologous to A. thaliana genes that have

putative roles in shoot branching via unknown mechanisms. The
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remaining 12 genes did not show any similarity with these

branching-related genes. Among these 12 genes, Gene_28738_P1

is annotated as an orthologous gene of At5G64730 of A. thaliana

and is involved in cell wall synthesis, while Gene_42751_P4

(At1G11580) is involved in root growth. Gene_164052_P3

(At5G26742) is involved in chloroplast development, and

Gene_164052_P10 (At4G02250) is involved in the regulation of

sugar metabolism. These functions were found to be associated with

branch initiation and development. Furthermore, all 47 predicted

genes were subjected to BLASTN analysis of the coding genes of A.

thaliana, and the results showed an absolute similarity of 45

predicted genes, while the remaining two genes showed

approximately 96% similarity (Supplementary Table S6). All the

genes predicted in this study were BLASTN with the transcriptome

assembly of the H1 allohexaploid, one of the parents of BCILs, and

the results showed an absolute similarity of these predicted genes
A

B C

FIGURE 6

(A) Principal component analysis (PCA) between observations (BCILs); (B) Circle of correlation between variables (phenotypic traits) after principal
component analysis (numbers on the axes represent the correlation coefficient); (C) A scree plot showing the eigenvalues of the F1 and F2 factors
with their percent cumulative effects on the phenotypes.
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with various coding sequences of the allohexaploid. The successful

BLAST results confirmed the presence of introgressed genes

control l ing the number of PB and SB in the BCILs

(Supplementary Table S7).
Discussion

Plant architecture plays a crucial role in determining yield

potential, and thus, a positive correlation between high yields and
Frontiers in Plant Science 10
a greater number of PB and SB has been established in Indian

mustard (Ehrenreich et al., 2007). Traits that have a large genetic

component and a direct correlation with yield, such as the number

of branches and pods per plant, number of seeds per pod, seed

weight, and flowering time, can be used as suitable selection criteria.

Molecular mapping has been used to analyze these morphological

characteristics to identify the genes that control them. The yield

potential of B. juncea has reached a plateau due to changing climatic

conditions and genetic uniformity, which are likely to worsen due to

various biotic and abiotic stresses, such as insects, diseases, drought,
A

B

FIGURE 7

General linear model (GLM) showing the association of SSR markers with PB (A) and SB (B) traits.
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salinity, and high temperature. The expansion of agricultural land is

not a feasible solution; hence, increasing crop production through

higher yields is essential. The Indian mustard has a narrow genetic

base, which makes it difficult to improve its yield potential through

interspecific hybridization. Therefore, it is essential to investigate

genetic or allelic variability to significantly improve the yield of B.

juncea. Therefore, alien gene introgression is required to strengthen

the genetic base of the crop Brassicas. However, it is challenging to

introgress alien genes into crop species due to various barriers,

including pre- and postfertilization incompatibility, poor or lack of
Frontiers in Plant Science 11
pairing between chromosomes, hybrid sterility, and consecutive

linkage drag (Kirti et al., 1992; Bohra et al., 2022). S. alba has been

used as a resistance source for biotic and abiotic stresses and seed

color for almost four decades (Primard et al., 1988; Hansen and

Earle, 1997; Wang et al., 2005; Kumari and Singh, 2019; Kumari

et al., 2020c, 2023; Singh et al., 2021a, 2022b). To date, the S. alba

genome has not been utilized for the introgression of genes related

to plant architecture. The identification of alien genes that govern

branching phenotypes is also difficult because the introgression of

alien genes has still not been reported. However, these genes were
A

B

FIGURE 8

Mixed linear model (MLM) showing the associations of six novel SSR markers with PB (A) and SB (B) traits.
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identified in the model plant A. thaliana, and it has been confirmed

that these traits are controlled by multiple genes (Ehrenreich

et al., 2007).

Notably, the introgression of alien genes into a crop plant is an

intricate and slow process that requires a significant amount of time

and effort. To address the issue of poor or lack of pairing between

chromosomes of the two species, we used S. alba as a donor for

genes that govern yield-contributing traits due to its potential for

greater branching (Kumari et al., 2011, 2020b). S. alba and B. nigra

(a diploid progenitor of B. juncea) share the common ‘Nigra’

lineage of the subtribe Brassicinae (Warwick and Black, 1991;

Nelson and Lydiate, 2006), which makes them more suitable for

use as protoplast fusion partners of B. juncea. In an experiment

involving the S. alba and B. juncea genomes, we recorded

approximately 78% genome similarity between the two genera

(Singh et al., 2022b). These homologies between the S. alba and

B. juncea genomes might have contributed to the successful

production of the first stable and fertile somatic hybrids between

B. juncea and S. alba, with adequate pairing at meiosis, which

maintained the fertility of the hybrids and their backcross progenies

(Kumari et al., 2018, 2020c; Kumari and Bhat, 2019, 2021). This has

also allowed for the inheritance of the bushy plant architecture and

higher numbers of PBs and SBs in the backcross generation

(Kumari et al., 2018, 2020b; Singh et al., 2023). This, in turn, has

contributed to higher yields.

The identification of S. alba introgressions in advanced

backcross generations has been challenging due to the small size

of the chromosomes and the presence of more heterochromatic

regions, which is similar to the findings in Arabidopsis thaliana

(Schweizer et al., 1987). This is because each chromosome in these

species has an approximately equal amount of DNA, making it

difficult to distinguish segmental introgressions in the recipient

genome. Nonetheless, early generations of allohexaploids revealed

S. alba introgression via in situ hybridization, which is a powerful

technique for visualizing the localization of DNA sequences on

chromosomes (Kumari et al., 2020b, 2020c). With the advanced

generation of second backcross progeny of somatic hybrids, these

BCILs carry enormous allelic diversity due to the presence of half of

the haploid set of the S. alba genome, either in the form of

segmental or additional chromosomal introgressions. Thus,

association analysis by SNP genotyping could not be possible

because of sufficient allelic variations within the core set of BCILs.

As a consequence, we used a reverse genetics approach in the

present study to identify the genes responsible for the greater

numbers of PB and SB in a core set of 86 S. alba-B. juncea BCILs

by genotyping with a set of 170 S. alba genome-specific SSR

markers. However, the chromosome-wide sequence of the S. alba

genome is not available to date (Kumari et al., 2020a; Singh et al.,

2022b). We used these markers as an alternative approach for

establishing a marker–trait association to identify the genes that

contribute to the greater number of PB and SB in BCILs, which can

contribute to greater yields.

The mixed linear model (MLM) and general linear model

(GLM) are statistical methods commonly used in association

analysis between genetic markers and phenotypic traits. The

MLM approach is preferred due to its ability to control
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population structure and relatedness among individuals, which

can lead to false positives in association analysis. The GLM

approach, on the other hand, assumes independence among

individuals and can produce spurious associations. In this study,

both MLM and GLM were employed, and the Q and K matrices

obtained from the population structure analysis and kinship

analysis, respectively, were incorporated as covariates to account

for the confounding effects of population structure and relatedness

(Bradbury et al., 2007). It is interesting to note that despite the small

size of the association panel, there was wide variation in branch

numbers, indicating the presence of natural genetic diversity. The

heritability of the trait was also high, suggesting that genetic factors

play a significant role in determining the number of PB and SB. The

identification of significant marker–trait associations using the

MLM (Q + K) model provides further evidence that genetic

factors influence the trait. These associations may help in

identifying genomic regions or specific genes that are responsible

for regulating branch numbers in BCILs.

Using multiple methods to analyze population structure and

determine the most appropriate model for association mapping is a

common practice in genetic studies. Population structure is

responsible for the identification of numerous false-positive QTLs

(Zhao et al., 2007). In this study, the Q+K model and the PCA

model were considered, but the MLM (Q + K) was found to be the

most appropriate for the population of BCILs being analyzed (Yu et

al., 2006; Stich and Melchinger, 2009). Additionally, the use of

STRUCTURE analysis, a kinship matrix, and a UPGMA tree helped

to categorize the BCILs into three populations, which provided

valuable information for association mapping analysis. Overall, it is

important to carefully consider population structure and

appropriate models when conducting association mapping studies

to avoid false-positive results and to accurately identify QTLs

associated with traits of interest. Indeed, the modification of plant

architecture has been a major focus of crop improvement for several

years and has contributed significantly to the increase in crop yield

during the Green Revolution (Pingali and Raney, 2005).

Based on the MLM (Q + K) model, a total of five significant

marker–trait associations were identified for PB and SB in both crop

seasons. The genomic regions associated with these markers

contained a total of 47 complete genes, 35 of which were

identified as candidate genes for regulating the branching trait in

BCILs. These genes were identified as orthologous to

AINTEGUMENTA - ANT (Elliott et al., 1996; Mizukami and

Fischer, 2000; Krizek et al., 2020), APETALA 1 - AP1 (Irish and

Sussex, 1990; Byzova et al., 1999; Monniaux et al., 2018),

RAMOSUS– RMS (Arumingtyas et al., 1992; Grbić and Bleecker,

2000; Foo et al., 2005, 2007), REGULATOR OF AXILLARY

MERISTEMS - RAX (Keller et al., 2006; Muller et al., 2006),

MORE AXILLARY GROWTH - MAX (Stirnberg et al., 2002;

Sorefan et al., 2003; Booker et al., 2005; Bennett et al., 2006),

MONOPTEROS - MP (Thomas and Gerd, 1993; Przemeck et al.,

1996; Christian and Thomas, 1998), SEUSS - SEU (Bao et al., 2010;

Gong et al., 2016; Huai et al., 2018), REVOLUTA - REV (Talbert

et al., 1995), TERMINAL FLOWER 1 - TFL1 (Bradley et al., 1997),

ALTERED MERISTEM PROGRAM 1 - AMP1 (López-Garcıá et al.,

2016, 2020; Yang et al., 2018), ERECTA - ER (Godiard et al., 2003;
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Qu et al., 2017), SUPERSHOOT1– SPS1 (Tantikanjana et al., 2001;

Ehrenreich et al., 2007), etc. genes that controlling the branching

trait. The genes associated with branching traits identified in our

study could be utilized in crop improvement programs through

targeted genetic modifications, marker-assisted breeding (MAB),

and selection (MAS) programs. The introduction of genes

responsible for higher branching traits into high-yielding cultivars

could lead to increased branching and consequently higher yield

potential. This study demonstrated the introgression of 47 genes

into B. juncea from S. alba and identified 35 of these genes as

candidates involved in increased PB and SB traits (Ehrenreich et al.,

2007). The identified genes were subjected to BLASTN analysis,

which matched their sequences with those of the transcriptome

assembly of the first stable allohexaploid Brassica (H1) strain

developed from RNA-seq at the time of flowering (Singh et al.,

2022a). This study highlights the potential for gene introgression to

improve crop traits, such as branching, through the transfer of

genetic material from related wild species.
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