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Introduction: Pine wilt disease spreads rapidly, leading to the death of a large

number of pine trees. Exploring the corresponding prevention and control

measures for different stages of pine wilt disease is of great significance for its

prevention and control.

Methods: To address the issue of rapid detection of pine wilt in a large field of

view, we used a drone to collect multiple sets of diseased tree samples at

different times of the year, which made the model trained by deep learning more

generalizable. This research improved the YOLO v4(You Only Look Once version

4) network for detecting pine wilt disease, and the channel attention mechanism

module was used to improve the learning ability of the neural network.

Results: The ablation experiment found that adding the attention mechanism

SENet module combined with the self-designed feature enhancement module

based on the feature pyramid had the best improvement effect, and the mAP of

the improved model was 79.91%.

Discussion: Comparing the improved YOLO v4 model with SSD, Faster RCNN,

YOLO v3, and YOLO v5, it was found that the mAP of the improved YOLO v4

model was significantly higher than the other four models, which provided an

efficient solution for intelligent diagnosis of pine wood nematode disease. The

improved YOLO v4 model enables precise location and identification of pine wilt

trees under changing light conditions. Deployment of the model on a UAV

enables large-scale detection of pine wilt disease and helps to solve the

challenges of rapid detection and prevention of pine wilt disease.
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1 Introduction

Pine wilt disease (PWD) is caused by pine wood nematode

(PWN), which is known for its high destructiveness (Kobayashi

et al., 2003). The disease has been widely distributed in Asia,

especially in China, Japan, and South Korea, where it has caused

the most damage (Kikuchi et al., 2011). The spread of PWD is swift.

Once a diseased tree is found, nearby pine trees may also be infected

(Asai and Futai, 2011). PWNS feed on and infest pine trees, causing

the trees to weaken and die (Yun et al., 2012), resulting in losses to

forestry production and the ecological environment. Countries have

strengthened quarantine and control measures to cope with the

spread of PWD. The spread of PWD poses a threat to Asia’s forestry

and ecological environment (Wu et al., 2020). Therefore,

monitoring PWD is of great significance for the safety of China’s

forest resources (Schröder et al., 2010). The application of drone

remote sensing technology has dramatically improved the efficiency

of forest resource surveys (Kentsch et al., 2020). Traditional

monitoring techniques rely on low-level semantic features

extracted from remote sensing images, making them susceptible

to factors such as noise, lighting, and seasons, which limits their

application in complex real-world scenarios (Park et al., 2016).

Using drones to aerially photograph areas affected by PWD, the

location and degree of diseased trees can be visually observed from

the aerial images, and targeted measures can be taken to deal with

diseased trees, reducing the workload of manual investigations. It is

of great significance to use drones combined with artificial

intelligence algorithms to detect pine wilt disease, which

significantly improves the detection efficiency of pine wilt disease.

With the rapid development of drone monitoring technology

and image processing technology, drone remote sensing monitoring

methods have gradually been applied in PWD monitoring (Syifa

et al., 2020; Vicente et al., 2012). When drones are used to aerially

photograph areas affected by pine wilt disease, visible light cameras

are carried to obtain ground images within the scope of the PWD

epidemic, and the images are transmitted to the display terminal for

automatic identification and positioning of diseased trees by the

trained target detection algorithm (Kuroda, 2010). The use of

drones for automatic monitoring of PWD can improve the

efficiency of diseased tree monitoring. Compared with satellite

remote sensing monitoring, drone remote sensing monitoring has

a lower cost and more straightforward operation. Applying this

technology in PWD detection is beneficial to the protection of pine

tree resources and the stability of the ecological environment (Gao

et al., 2015; Tang and Shao, 2015).

In target detection, accurate feature extraction from images is a

crucial issue affecting model performance. Traditional image target

detection uses machine learning algorithms to extract image features.

However, because machine learning algorithms can only extract

shallow feature information from images, the performance of target

detection is challenging to improve (Khan et al., 2021). Machine

learning algorithms use manually designed feature operators to

extract feature vectors of targets in the image, and based on these

feature vectors, use statistical learning methods to achieve intelligent

visual detection of image targets (Tian and Daigle, 2019). These

algorithms rely on colors or specific shapes whose features are not
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stable enough, resulting in detectionmode. Thus, the adaptability and

robustness of the model to the environment are not good enough

(Long et al., 2015). Therefore, deep learning algorithms have emerged

(Li et al., 2023), and it has been successfully applied in fields such as

computer vision, speech recognition, and medical image analysis.

This algorithm uses convolutional neural networks to extract image

features, which can extract deep-level feature information of image

targets, thereby improving the detection accuracy of diseased trees

(Lifkooee et al., 2018). The theoretical system of target detection

algorithms has gradually improved as research in this subject has

progressed, and many distinct method frameworks have been

employed in many image detection fields (Zhang and Zhang,

2019). Li proposes a multi-block SSD method based on small

object detection to the railway scene of UAV surveillance (Li et al.,

2020). Xu extends the Faster RCNN vehicle detection framework

from low-altitude drone images captured at signalized intersections

(Xu et al., 2017). The focus of the research is how to change the

structure of the algorithm model and achieve a balance between

detection accuracy and processing time (Hosang et al., 2016).

Under changing lighting conditions, the texture features of the

image change, resulting in a decrease in detection accuracy (Barnich

and Van, 2011). There are relatively few algorithms for monitoring

pine wilt diseased trees in the lighting change scene, and most of the

target detection algorithms for diseased trees have complex

structures, low detection accuracy, and low computational

efficiency (Zhang et al., 2019). Huang et al. Constructed a densely

connected convolutional networks (D-CNN) sample dataset, using

GF-1 and GF-2 remote sensing images of areas with PWD. Then,

the “microarchitecture combined with micromodules for joint

tuning and improvement” strategy was used to improve the five

popular model structures (Huang et al., 2022). In 2021, a

spatiotemporal change detection method to improve accurate

detections in tree-scale PWD monitoring was proposed by Zhang

et al., which represents the capture of spectral, temporal, and spatial

features (Zhang et al., 2021).

Currently, most of the detections for pine wilt are done by

biological sampling, which is time-consuming and labor-intensive.

Research on the detection of pine wilt disease using unmanned

aerial vehicle (UAV) has mainly focused on stable light conditions,

and little attention has been paid to the detection of pine wilt disease

under changing light conditions, resulting in the low detection

accuracy of the existing models, as well as the inability of their

improved methods to detect disease spots under changing light

conditions. And there is the problem of small field of view and small

number of targets. The research object of this paper is PWD tree, by

increasing the flying height of UAV, increasing the field of view

range of the camera, increasing the number of image targets, and

based on this, a set of algorithms for detecting and recognizing the

targets of diseased tree is proposed, which provides theoretical and

practical support for detecting and recognizing the targets of remote

sensing images by UAV.

In conclusion, this paper proposes a YOLO v4 target

recognition algorithm based on the Attention Mechanism Module

to establish a model for rapid localization and accurate recognition

of pine nematode disease trees under dynamic light changes.

Further, combining it with UAV image technology realizes rapid
frontiersin.org
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multi-target detection over a large field of view. This can save time

in investigating pine wood nematode disease and realize prevention

in advance, which is of great significance for preventing the spread

of pine wood nematode disease.
2 Experimental parameters and YOLO
v4 network structure

2.1 Sample collection sites and UAV
images acquisition

The prominent peak of Yunji Mountain has an elevation of

1434.2 meters and is located at 24°07’ north latitude and 114°08’

east longitude (Figure 1A). It is located in the north of Guangzhou

City, in the central part of Xinfeng County, 10 kilometers away from

the county town. It belongs to the natural ecosystem transitional

zone from the South sub-tropical zone to the Central subtropical

zone, with a jurisdictional area of 2700 hectares. The panoramic

image collected by the drone was taken in multiple shots and

stitched together to form a complete image. The collection area

includes a winding road and houses distributed along the roadside.

The mountain is higher in the northeast and lower in the southwest

as shown in Figure 1B.

The visible light images were acquired using the DJI Mavic 2

drone, equipped with ten sensors distributed in six directions: front,

rear, left, right, up, and down. The sensor model is 1-inch

Complementary Metal Oxide Semic (CMOS), and the captured

image resolution is 5472×3684. The drone can reduce air resistance

by 19% during high-speed flight, and its maximum flight speed can

reach 72 km/h, with a flight time of up to 31 minutes, the

experimental drone is shown in Figure 1C.

The illumination can affect the clarity of the drone remote

sensing image collection. Due to the continuously changing natural

lighting conditions over time and weather, the lighting conditions

greatly affect the image quality, resulting in complex information in
Frontiers in Plant Science 03
the collected images of diseased trees. According to the lighting

conditions of the photos, they can be divided into two categories:

sufficient light and insufficient light. The light intensity was

measured by an illuminometer.

To balance the image quality and the diseased tree target

detection network, all remote sensing images of diseased trees are

uniformly resized to a resolution of 416×416 pixels. The uneven

lighting caused by changes in the lighting conditions affects the

quality of the images (Figure 1D). The change in the lighting

environment poses a significant challenge for object detection.

Compared with the photos collected under sufficient lighting

conditions, whose illuminance is 10826 lux, the remote sensing

images of diseased trees collected under insufficient lighting

conditions contain a large amount of noise. The visibility of

objects such as diseased trees, houses, and roads is poor, resulting

in blurred targets and severe distortion of details (Zuky et al., 2013).
2.2 Experimental environment
configuration and training
parameter settings

The YOLO v4 and its improved diseased tree detection

algorithm run on the Windows 10.0 system with 32 GB of

memory. This experiment uses an NVIDIA GeForce RTX 3080 Ti

graphics card with 12 GB of memory and an 8-core 11th Gen Intel

Core i7–11700KF CPU. The central frequency of the CPU is 3.6

GHz. Adopting an object detection algorithm based on PyTorch,

the code runs in Python 3.7 environment. The object detection

network is built using the Python language. In addition, third-party

library packages such as numpy, opencv, and panda. Pytorch are

Python-based machine learning libraries that can achieve powerful

GPU acceleration.

The model parameters of YOLO v4 are set as shown (Table 1).

The input image size is 416×416, the optimizer uses Adam, a total of

50 epochs are trained, the threshold of the prior box is set to 0.5, and
B C

D

A

FIGURE 1

Geographical location diagram of UAV images acquisition. (A) Geographical location map of the research area (B) UAV orthophoto map (C) Drone
appearance diagram (D) Single UAV aerial photo.
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the loss function is cross-entropy loss. The model’s training process

is divided into two stages: frozen training and unfrozen training

(Liu et al., 2020). During the firm training process, the pretraining

weights of the backbone network do not need to be trained, which

can improve the training efficiency of the networks, and addicts

were also used. Usually, an increase in detection accuracy leads to

an increase in the complexity of the model, but due to the

limitations of computer arithmetic thus leading to slow

computation. Therefore, the use of higher computing power

computers or multi-CPU parallel computing can improve the

detection time and accuracy, but it is a challenge to balance the

model size and cost control.
2.3 YOLO v4 network structure and
detection process

YOLO v4 is an improvement on YOLO v3, retaining most of the

structure of the YOLO v3. The improved parts of the network

architecture include the input part, the leading feature extraction

network, the neck network, and the head network (Bochkovskiy

et al., 2020). Unlike YOLO v3, the feature extraction network of

YOLO v4 is replaced by CSPDarknet53. The main feature

extraction network comprises CSPDarknet53, and Cross Stage

Partial (CSP) can effectively enhance the feature extraction ability

of the convolutional network (Hui et al., 2021; Deng et al., 2022).

The feature extraction network used by YOLO v4 is CSPDarknet,
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composed of the CSPX and CBM modules arranged alternately

(Jiang et al., 2013). The structure of CSPX is shown in (Acharya,

2014; Fan et al., 2022).

First, visible light images of PWD trees collected by drones are

annotated with the Labeling tool to save the detection box position

and category information as an XML file. The training set images

are rotated at different angles and input into YOLO v4 for training

to increase the diversity of training samples. The trained model

outputs detection boxes for the test set images (Figure 2).

In order to increase the detection accuracy of the model, this

study modified the structure of the YOLO v4 model. By embedding

attention mechanism and feature enhancement module in the YOLO

v4 model improves the model’s feature extraction ability. Determine

the optimal model structure through ablation experiments.
3 Model improvement
and methodology

3.1 Data enhancement and attention
mechanism test

To increase the diversity of training samples, prevent over fitting

during model training, and improve the accuracy of model detection.

A widespread way to enhance image data is to perform geometric

transformation, such as cropping, rotating, translating, and adjusting

the image’s brightness (Kim and Seo, 2018). This study used the

rotation method to perform data augmentation on the training set

samples. Five different angles, 15°, 60°, 195°, 240°, and 285°, were used

to rotate the training set images, corresponding to Figures 3B–F,

respectively. And the original image is showed in Fiqure 3A.

Convolutional neural networks contain the invariance property,

which allows the network to preserve invariance to images under

changing illuminations, sizes, and views. As a result, by rotating the

acquired drone diseased tree photographs from various angles, the

neural network will recognize these images as distinct (Moeskops
FIGURE 2

Disease tree target detection process for YOLO v4.
TABLE 1 Model training parameter settings.

Parameter
Name

Freeze
Training Phase

Unfreezing
Training Stage

Epoch 1–25 25–50

Learning rate 0.001 0.0001

Batch size 4 4
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et al., 2016). Due to the limited number of diseased tree images, a

large sample set was added by augmenting the images through

rotation at different angles. Five different angles were used to rotate

the images, and five different images were obtained. The schematic

diagram of the diseased tree images before and after sample

augmentation is shown in the figure, and the number of images

obtained after image transformation reached 7218, with 515 images

in the test set. The above method was used to augment the sample

data in the training set. The initial data in the training set was 1203

images, which was expanded six-fold. After rotating the images, the

sample data set was expanded, and the expanded data was divided

into a training set and a validation set. The training set contains

5052 images, the validation set contains 2166 images, and the test

set contains 515 images.

The recognition results on the diseased pine tree dataset are

compared (Table 2). It can be seen from the table that before data

augmentation, the mean average precision (mAP) of the diseased

pine tree detection was 77.45%. After data augmentation, the

detection accuracy of the diseased pine tree was slightly

improved, with an mAP of 77.81%, an increase of 0.36%. The

accuracy increased by 0.22%, the specificity increased by 0.01, the

recall increased by 2.22%, and precision decreased slightly. Overall,

the detection accuracy of the diseased pine tree was improved. Data

analysis shows that data augmentation can improve the detection

effect of the diseased pine tree.
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3.2 Attention mechanism addition
position test

To determine the appropriate position for adding the attention

mechanism, the detection performance of two different positions

with the attention mechanism added in the YOLO v4 network

structure was compared. Position 1 added the attention mechanism

after the last three feature layers of the backbone feature network,

before the feature pyramid network. In contract, position 2 added

the attention mechanism before the three YOLO detection

heads (Figure 4).

The detection accuracy of the attention mechanism at different

positions is shown in Table 3. When the Squeeze-and-Excitation

Networks (SENet) attention mechanism was added at position 1, the

mAP of the test set was 79.29%. When the SENet attention

mechanism was added at position 2, the mAP of the test set was

78.09%. The accuracy and recall in position 1 were higher than in

position 2, with an increase of 0.42% and 1.76%, respectively,

indicating that adding the attention mechanism at position 1

achieved higher detection accuracy and better detection performance.

Figure 5 shows the loss curves of the attention mechanism

SENet at different embedding positions. The loss curves indicate

that all three models can converge quickly during training. The loss

in the test set decreases rapidly before 20 epochs and slows down

when trained to 40 epochs. After 40 epochs, the loss value tends to
TABLE 2 Data enhancement effect.

mAP/% F1 Accuracy/% Precision/% Recall/%

Before augmentation 77.45 0.73 84.91 83.38 65.25

After augmentation 77.81 0.74 85.13 81.74 67.47
B C

D E F

A

FIGURE 3

The diagram of data enhancement. (A) Original image (B) Rotate 15° (C) Rotate 60° (D) Rotate 195° (E) Rotate 240° (F) Rotate 285°.
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stabilize. However, the loss curve of the YOLO v4 model fluctuates

more. After convergence, the model with attention mechanism

SENet embedded in position 1 has a lower loss value. Therefore,

the feature extraction effect of the attention mechanism SENet

embedded in position 1 is better.
3.3 Attention mechanism type test

Channel attention module SENet includes squeeze, excitation,

and weight calibration operations (Hu et al., 2018). The channel

attention module SENet can learn feature weights based on the loss

function and then re-calculate the weights for each feature channel so

that the object detection model places more attention on the features,

thereby improving the object detection accuracy (Figure 6).

The information propagation in the network structure follows the

order of input feature map, global pooling layer, feature matrix with a

size of 1×1×C, one-dimensional convolution structure with a

convolution kernel size of k, and output feature map. The forward

propagation process outputs channel weight parameters, which are

then loaded into the input feature matrix using matrix multiplication.

The core idea of efficient channel attention network (ECA-Net) is to

introduce channel attention after the convolutional layer to

dynamically adjust the response of different channels (Xue et al., 2022).
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The convolutional block attention module (CBAM) feature

module is composed of a channel attention feature module and a

spatial attention feature module (Woo et al., 2018). The channel

attention feature module performs global max pooling and global

average pooling operations on the input feature map to obtain two

feature maps, which are then input into a multi-layer perceptron

network (Selvaraju et al., 2020). The multi-layer perceptron

network sums the two feature maps obtained and inputs them

into a sigmoid activation function to obtain the channel attention

feature weights (Figure 7). Finally, the weights are multiplied by the

input feature map to obtain the intermediate feature map.

To improve the accuracy of the YOLO v4 object detection

model, this work introduced three attention mechanisms to the

feature pyramid of the YOLO v4 model for feature extraction. Three

types of attention mechanisms include SENet, ECA and

CBAM (Figure 8).

The accuracy and detection speed of the model before and after

improvement were tested in Table 4.

The mAP of the YOLO v4 model on the test set was 77.81%,

with a recall of 65.25%, precision of 83.38%, and accuracy of

85.13%. After adding attention mechanisms, the detection

accuracy of the model was improved to varying degrees. Among

them, the addition of the SENet attention mechanism achieved the

most significant improvement in detection accuracy, with an
TABLE 3 Evaluation indicators for detection accuracy of different addition positions in attention mechanisms.

mAP/% Accuracy/% Precision/% Recall/% F1 FPS/(sheets/s)

Position 1 79.29 91.57 83.74 69.95 0.76 49.78

Position 2 78.09 91.15 83.84 67.19 0.75 50.24
FIGURE 4

Different locations for adding attention mechanisms.
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increase in mAP from 77.81% to 79.29%, an increase of 1.48%

compared to the YOLO v4 model, and an increase in accuracy from

85.13% to 91.57%. FPS was used to assess the running speed of the

four models. The running speed of the YOLO v4 model was 52.53

frames per second (fps), while the speed of the SENet-YOLO v4

model was slower, with an FPS of 49.78, a decrease of 2.75 fps

compared to the original YOLO v4 model, indicating that the

processing speed of the model decreased after adding SENet.

Although the running speed of the model decreased, the added

SENet showed an accuracy improvement of over 1% on the diseased

pine tree dataset, indicating the effectiveness of the model

improvement. Based on the evaluation of the four models’ test

accuracy and speed, the SENet-YOLO v4 model had the best testing

performance. The accuracy of this model was the best, with an mAP

of 79.29% on the test set, an increase of 1.48% compared to the

YOLO v4 model. At the same time, among the four models, the

CBAM-YOLO v4 model had the fastest processing speed, with an

FPS of 57.32 on the test set, an increase of 0.9 fps compared to the

YOLO v4 model. These show that the YOLO v4 model embedded

with the SENet module can extract target features in more detail,

which is beneficial for target classification. Although the detection
Frontiers in Plant Science 07
speed decreased, the test accuracy was improved, and the model

performance was optimized.
4 Model improvement
and methodology

4.1 Ablation test

Three groups of ablation experiments were conducted to

demonstrate the effectiveness of each improvement method used

in the YOLO v4 network, including feature enhancement modules,

feature fusion modules, and attention mechanisms. All parameters

except for the testing module were kept consistent during the

ablation experiments.

As different layers contain significantly different information, it

is necessary to improve the adaptability of the feature layers to the

target and the stability of the model for targets of different sizes. The

working principle of this module is to perform three different

operations on the input feature map (Figure 9). The second

operation uses a 3x3 convolution operation, followed by the

ReLU activation function, and ends with a 1x1 convolution

operation. The third operation is the same as the second

operation but with different padding for the 3x3 convolution. The

three operations are then combined, and the enhanced feature map

is output to improve the network’s feature extraction ability further

and acquire adequate information about the target in the feature

map, acting as a feature enhancement (Liang et al., 2021).

In the YOLO v4 backbone feature extraction network, there are

differences in the information contained in the feature maps of

different layers (Sun et al., 2021). Deep feature maps contain rich

semantic information, but small targets have less information and

are usually used to detect large targets. Low-feature maps contain

much detailed information but lack rich semantic information for

detecting small targets. In order to better extract the feature

information of diseased pine trees, a feature fusion module is

designed, as shown in the Figure 9. This module adds three layers

of feature maps to obtain the context information of diseased pine

trees fully and then adds the outputs of three branches to achieve

feature fusion (Sun et al., 2005). Three different scales of the

backbone feature extraction network in the YOLO v4 model. The
FIGURE 6

SENet channel attention mechanism.
FIGURE 5

Loss curve of test set with different addition positions in
attention mechanisms.
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working principle of this module is: three feature maps of different

sizes are used as inputs for the three branches, and the input feature

maps of the middle branch are enlarged to adjust the size of the

feature maps, and then 3×3 to extract the features of the input

feature map, and finally use the Activation function rectified linear

unit (ReLU). The operation process of the input feature map for

branch 3 is the same as that for branch 2. Due to the difference in

size between the input feature maps of the third branch and the

input feature maps of the second branch, there is a difference in

magnification between the input feature maps of the third branch

and the second branch. The feature maps are processed by the first

branch, and the other two branches are added and fused. The fused

feature map is further divided into three branches for processing,

and the feature map of the first branch is processed through three

steps. After the convolution operation of 3×3, use the Activation

function ReLU to process, and output the feature map (Figure 10).

The difference between the other two branches is that before
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activating the operation, the maximum pooling operation is used

to adjust the size of the feature map to match the input feature map

size of the corresponding branch. By fusing feature maps from

adjacent layers through the feature fusion module, the semantic

differences between different feature channel layers are further

reduced. This module can be used to collect contextual

information of different scales and improve detection accuracy

(Wu et al., 2021).

The effectiveness of the target detection network improvement

methods was evaluated using the mAP evaluation metric, and the

impact of each module on the overall network performance was

analyzed. The “√” in the table indicates that the corresponding

module was added to the original YOLO v4 network, while the

absence of “√” indicates that the corresponding module was not

added. The specific experimental results are shown in the table. The

comparison of the results of the ablation experiments is shown

in Table 5.
FIGURE 8

The addition positions of different attention mechanisms.
FIGURE 7

Schematic diagram of CBAM module.
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The study’s results on the effectiveness of the feature

enhancement module, feature fusion module, and attention

mechanism SENet show that the mAP of the basic network on

the diseased pine tree dataset is 77.81%. After adding the feature

enhancement module, the mAP increased to 78.61%, resulting in a

0.8% improvement. The reason is that introducing the feature

enhancement module can enhance the weight information of the

target object and extract features more comprehensively and

accurately. After adding the attention mechanism to the primary

network, the mAP increased to 79.29%, resulting in a 1.48%

improvement. As shown by the results of experiments 1 and 3,

not all modules can improve the detection performance of the

model. The mAP of the test set fell after adding the feature fusion

module, indicating that the feature fusion module’s results were

unstable and unsuitable for implementation in the YOLO v4

network. The mAP climbed to 79.91% after adding the feature

enhancement module and attention mechanism to the original

YOLO v4 network, representing a 2.1% improvement. The

combination of the feature improvement module and the

attention mechanism SENet was chosen to be the best network

model after screening. Thus, added the SENet attention mechanism

and the feature improvement module after the last three feature

layers of the YOLO v4 backbone feature network, the accuracy of

YOLO v4 disease tree detection has been improved 2.1%. The

improvement of detection performance is related to the feature

extraction ability of the feature enhancement module. The feature

enhancement module is self-designed, which can adapt to different

lighting changes.
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4.2 Feature visualization analysis

The Gradient-weighted Class Activation Mapping (Grad-CAM)

tool was used to analyze the feature extraction process of the

network, extract heat maps after embedding the improvement

modules, and analyze the impact of the improvement modules on

target feature extraction. The brightest point at the center is the

position of the center point, and the closer the position is to the vital

point of the target, the larger the activation function value

(Figure 11). The darker the color of the center point, the more

obvious the feature. Before embedding the improvement modules,

the YOLO v4 network randomly extracted the features of diseased

trees and did not pay enough attention to the features of the

diseased tree location. After embedding the improvement

modules, the critical feature channels accounted for a more

significant proportion, the network obtained a larger receptive

field, and the improved YOLO v4 network could more effectively

extract the feature information of diseased trees, making it easier to

distinguish the location of diseased trees from the image. The

improved YOLO v4 model performs better in detecting diseased

trees, not only recognizing a larger number of diseased trees, but

also improving the model’s ability to recognize green backgrounds

as yellow diseased trees. The improved YOLO v4 model can extract

more feature information about disease trees and improve the

detection performance of disease trees under complex lighting

conditions. In order to better achieve lightweight deployment of

models, future research focuses on reducing model volume and

improving detection speed while minimizing model accuracy loss.
FIGURE 9

Feature enhancement module.
TABLE 4 Evaluation of detection accuracy for different attention mechanisms.

mAP/% Accuracy/% Precision/% Recall/% FPS/(sheets/s)

YOLO v4 77.81 85.13 83.38 65.25 52.53

ECA-YOLO v4 79.00 91.33 83.75 68.26 51.98

SENet-YOLO v4 79.29 91.57 83.74 69.95 49.78

CBAM-YOLO v4 79.07 91.15 85.22 65.91 53.1
frontiersin.org

https://doi.org/10.3389/fpls.2024.1381367
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1381367
4.3 Visualization of prediction results

The test set images were used to analyze and evaluate the results

of diseased tree recognition. A total of 515 test set images were

selected to evaluate the model’s prediction results, and the

prediction results of two models in robust light environments are

shown (Figure 12).

It can be seen that after the model was improved, it could

detect the specific location of the diseased tree, and the confidence

values were all increased (Figure 12B). In the predicted images,

there were fifteen diseased trees of different colors with strong

light, and some of the diseased tree crowns had small contours and
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colors similar to those of surrounding trees, as well as overlapping

crowns. In this complex image background, both models could

identify the location of the diseased trees accurately. Among them,

the YOLO v4 model identified ten diseased trees, and three were

not correctly identified, with false positives (Figure 12A). After

adding the channel attention mechanism SENet and feature

enhancement module, the improved YOLO v4 model correctly

identified thirteen diseased trees, three more than the YOLO v4

model. The reason why the YOLO v4 model failed to detect the

one missed diseased tree correctly may be due to the obstruction

of other healthy trees in the crown, which affected the feature

extraction of the model.
FIGURE 10

Feature fusion module.
TABLE 5 Comparison of ablation experiment effects.

Number Feature
Enhancement

Module

Feature
Fusion Module

Attention Mechanism mAP/%

1 77.81

2 √ 78.61

3 √ 77.57

4 √ 79.29

5 √ √ 79.14

6 √ √ 78.76

7 √ √ 79.91

8 √ √ √ 79.39
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4.4 Comparative experiments with other
object detection models

To compare the comprehensive performance of the improved

YOLO v4 model in this study, Single Shot Multibox Detector (SSD),

Faster RCNN, YOLO v3, and YOLO v5 were compared, showing

the effectiveness of the model in detecting diseased pine trees, as

shown in Table 6.
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The improved YOLO v4 model has the highest parameters,

which are increased by 230.535 M, 228.545 M, and 194.871 M

compared to SSD, Faster RCNN, and YOLO v3, respectively. This is

due to the addition of the SENet module and feature enhancement

module to the YOLO v4 network.

Moreover, the improved YOLO v4 model has the highest mAP,

which is increased by 68.2%, 62.49%, 54.68%, and 1.22% compared

to SSD, Faster RCNN, YOLO v3, and YOLO v5, respectively. The
B CA

FIGURE 11

Thermal diagram before and after embedding the improved module. (A) Network Input Diagram. (B) The diagram before the improvement module is
embedded. (C) The diagram after the improvement module is embedded.
BA

FIGURE 12

Remote sensing image recognition results under strong light environment. * white circles indicate correct detections, black circles indicate missed
detections, yellow circles indicate misdetections. (A) YOLO v4 detection results (B) Improved YOLO v4 detection results.
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model’s precision is also the highest, which has increased by

21.69%, 64.94%, 2.36%, and 4.73% compared to SSD, Faster

RCNN, YOLO v3, and YOLO v5, respectively. Although, the

improved YOLO v4 model has the highest parameters and

requires more computation, its performance is the best, as its

mAP is 79.91%, the highest among the five models, indicating

that the improved YOLO v4 model has higher detection accuracy.

Therefore, the model improvement in this study is effective.
5 Conclusion and discussion

Since the changes in lighting conditions can lead to a decrease in

image quality during unmanned aerial vehicle detection of pine wilt

disease, this study used unmanned aerial vehicles to create a sample

set of diseased trees at different time periods, making the deep

learning model trained more generalizable and improving the

performance of object recognition. The application of the YOLO v4

algorithm in the field of diseased tree object detection was studied,

and the CSPDarknet53 network structure was used to complete the

feature extraction process. In contrast, the feature pyramid network

structure was used to enhance the feature extraction capability of the

convolutional neural network. The mAP of the YOLO v4 model was

77.81%. By comparing experiments, the type of attention mechanism

and its addition position in the YOLO v4 network were determined,

and the detection effect was best when the attention mechanism

module SENet was added before the feature pyramid network

structure. The ablation experiment found that the optimal

combination was the object detection model that combined the

channel attention mechanism SENet and feature enhancement

module. The mAP of the model was 79.91%, an increase of 2.1%

after improvement, indicating that the channel attention mechanism

SENet combined with feature enhancement module can effectively

enhance the ability to recognize detection targets. Under the same

conditions, the mAP of the improved YOLO v4 model was increased

by 68.2%, 62.49%, 54.68%, and 1.22% compared to SSD, Faster

RCNN, YOLO v3, and YOLO v5, respectively, indicating that the

model can achieve high-precision detection of diseased trees caused

by PWD under changing light conditions. In 2021, Wu estimated the

power of the hyperspectral method, LiDAR and their combination to

predict the infection stages of PWD using the random forest (RF)

algorithm. The results showed that the combination of hyperspectral
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method and LiDAR had the best accuracies (Yu et al., 2021). The

improved YOLO v4 model has a high recognition accuracy for

diseased trees, which can achieve precise positioning and

recognition of pine wilt disease trees under changing light

conditions. This is critical in guiding the prevention and control of

pine wilt disease.

The ablation experimental results have demonstrated the

optimization effect of the improved module on the YOLOv4

detection network. Although the improved YOLOv4 algorithm

performs well in the target detection task of diseased tree images

captured by drones, there is still room for improvement in detection

accuracy and speed. The current challenge is how to count the

number of diseased trees in the image, which requires post-

processing of the model but increases its complexity. Following

that, there is a goal to do research on lightweight models and build

software and hardware implementation of a real-time target

detection system suited for drones to detect disease trees.

Moreover, the system provides ideas for lychee disease detection

in lychee gardens.
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