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Mass spectrometry imaging of
Arabidopsis thaliana with in vivo
D2O labeling
Sumin Na and Young Jin Lee*

Department of Chemistry, Iowa State University, Ames, IA, United States
The commonly used analytical tools for metabolomics cannot directly probe

metabolic activities or distinguish metabolite differences between cells and

suborgans in multicellular organisms. These issues can be addressed by in-

vivo isotope labeling and mass spectrometry imaging (MSI), respectively, but

the combination of the two, a newly emerging technology we call MSIi, has

been rarely applied to plant systems. In this study, we explored MSIi of

Arabidopsis thaliana with D2O labeling to study and visualize D-labeling in

three classes of lipids: arabidopsides, chloroplast lipids, and epicuticular

wax. Similar to other stress responses, D2O-induced stress increased

arabidopsides in an hour, but it was relatively minor for matured plants and

reverted to the normal level in a few hours. The D-labeling isotopologue

patterns of arabidopsides matched with those of galactolipid precursors,

supporting the currently accepted biosynthesis mechanism. Matrix-assisted

laser desorption/ionization (MALDI)-MSI was used to visualize the

spatiotemporal distribution of deuterated chloroplast lipids, pheophytin a,

MGDGs, and DGDGs, after growing day-after-sowing (DAS) 28 plants in D2O

condition for 3–12 days. There was a gradual change of deuteration amount

along the leaf tissues and with a longer labeling time, which was attributed to

slow respiration leading to low D2O concentration in the tissues. Finally,

deuterium incorporation in epicuticular wax was visualized on the surfaces of

the stem and flower. The conversion efficiency of newly synthesized C30

aldehyde to C29 ketone was very low in the lower stem but very high at the

top of the stem near the flower or on the flower carpel. This study successfully

demonstrated that MSIi can unveil spatiotemporal metabolic activities in

various tissues of A. thaliana.
KEYWORDS

Arabidopsis thaliana, in vivo isotope labeling, mass spectrometry imaging, matrix-
assisted laser desorption/ionization, arabidopsides, chloroplast lipids, epicuticular wax
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1 Introduction
Metabolomics is one of the key “omics” technologies to bridge the

gap between phenotype and genotype (Matsuda et al., 2012). It has

been used to investigate the metabolic responses of plants to biotic

and abiotic stresses or annotate gene functions (Alseekh and Fernie,

2018). A popular tool of choice for metabolomics analysis is mass

spectrometry (MS) with chromatographic separation, allowing for

the detection and quantification of hundreds or thousands of

chemical species present in biological systems. The current MS-

based metabolomics analysis has two critical limitations. One is in

typical sample preparation extracting metabolites from homogenized

tissue samples in which the metabolite differences between different

cells and suborgans are often ignored. The other is the fact that it

provides only metabolite concentration information, not the actual

metabolic activities. The former is addressed by mass spectrometry

imaging (MSI) technique by micron-size direct sampling of

metabolites from the tissue sections and visualizing metabolites at

cellular resolution (Lee et al., 2010). The latter is addressed by

introducing precursors with stable isotopes and tracing labeled

metabolites (Jang et al., 2018). However, there has been very

limited study of combining the two, MSI with in-vivo isotope

labeling here referred to as MSIi, in plant systems.

In this study, we adopt deuterium oxide (D2O) labeling to

explore the utility of MSIi in several tissues of Arabidopsis thaliana.

Other stable isotope precursors previously utilized for MSIi include
15N-ammonium in maize root imaging (O’Neill and Lee, 2020) and

[U-13C]glucose in phosphatidylcholine (PC) imaging in Brassica

seeds (Romsdahl et al., 2021). Compared to other isotope labeling,

D2O labeling has an advantage in plants as a global labeling agent

because all hydrogens originate from water (Nett et al., 2018). All

hydrogen atoms are fixed via photosynthesis and converted to

nicotinamide adenine dinucleotide phosphate, a key biosynthetic

intermediate from which all carbon-bound hydrogen atoms are

derived. It has previously proven effective in the studies of protein

turnover rate (Yang et al., 2010), tracing hormone metabolites

(Åstot et al., 2000) in A. thaliana, and D-labeling of annual

ryegrass (Evans et al., 2014) and switchgrass (Evans et al., 2015).

D2O labeling, however, has not been used for MSIi other than our

recent application to duckweed imaging (Tat and Lee, 2024) and

cancer tissue imaging in mouse by the Northern group (Louie

et al., 2013).

Because D2O labeling is commonly used in tracing fatty acid

biosynthesis (Lee et al., 1994), lipids were the major metabolites of

interest in our study, as they are also readily detected in matrix-

assisted laser desorption/ionization (MALDI)-MSI. First, we

investigated the effect of D2O on arabidopsides. The oxylipid

arabidopsides are produced by the enzymatic oxidation of

chloroplast galactolipids under a wide range of stress conditions

(Vu et al., 2012; Genva et al., 2019). We have previously reported that

arabidopsides are highly enriched in feronia, a mutant deficient in

FERONIA, a receptor-like kinase in A. thaliana that functions

broadly throughout plant development (Hansen et al., 2019b). We

tried to test two hypotheses: one, whether D2O-induced stress

increases arabidopsides as abiotic stress; two, whether the D-
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labeling isotopologue pattern matches that of galactolipid

precursor. Second, D-labeled chloroplast lipids were visualized on

leaves, specifically monogalactosyldiacylglycerol (MGDG),

digalactosyldiacylglycerols (DGDGs), and chlorophyll a. Deuterium

incorporation into these chloroplast lipids changed dramatically

across the leaf development and D2O labeling time. Finally, D-

labeled epicuticular wax, especially C29 ketone and C30 aldehyde,

was visualized on the surface of the flower and stem. The conversion

efficiency of the newly synthesized C30 aldehyde to C29 ketone

provided insights into their biosynthesis rate throughout the plant.
2 Materials and methods

2.1 Hydroponic growing conditions

Hydroponic culture of Arabidopsis was performed by modifying

the method of Van Delden et al. (2020). Arabidopsis thaliana (Col-

0) wild-type seeds were washed in a 1-mL centrifuge tube with 20%

Tween 20, 70% ethanol, and 100% ethanol in sequence. Each cycle

was repeated three times, with each treatment lasting 5 min. Then,

the seeds were transferred to 0.5× Hoagland medium (HM) in a 1-

mL centrifuge tube and stored at 4°C in the dark for stratification.

Three days later, the seeds were sown on agar-filled 200 mL PCR

tubes that were precut at the bottom. Germination was allowed to

occur by placing ~50 PCR agar holders on a 200-mL pipette tip

holder in a 2-L beaker with 120 mL of 0.5× HM. The beaker was

covered with transparent plastic wrap. The air vent was made by

making small holes in the plastic wrap on day-after-sowing (DAS)

7–9, and the plastic wrap was removed on DAS 10. The plants were

transferred to 15-mL centrifuge tubes on DAS 14 filled with 0.5×

HM by placing the PCR tubes into the hole made in the centrifuge

tube cap. Either a small plant growth tent (2 ft × 2 ft × 4 ft) or a plant

growth chamber (AR-36L2; Percival, Perry, IA, USA) was used to

grow the plants. For the tent, a dimmable 600-W LED grow light

(VA600; ViparSpectra, Richmond, CA, USA) and a humidifier with

a humidity controller were used to provide the light and humidity,

respectively. For both conditions, the light intensity was ~160

mmol·cm−2·s−1, and the temperature and humidity were

maintained at 21°C–24°C and 60%, respectively. The small plant

growth tent was set up for a short-day condition (8 h light/16 h

dark) for vegetative growth, and the plant growth chamber was set

up for a long-day condition (16 h light/8 h dark) for flowering. The

growth medium was replaced by a new medium once a week, and

0.5–1 mL of medium was added to 15-mL centrifuge tubes each day

to supplement the water loss.
2.2 Sample preparation to
measure arabidopsides

For the arabidopside experiment, the plants were transferred to

new 15-mL centrifuge tubes filled with 35% D2O with 0.5× HM on

DAS 28 and incubated for 30, 60, 180, and 540 min. The lipid

extraction procedure utilized was based on a well-established

method (Vu et al., 2012) with a minor modification. Up to eight
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leaves were harvested, cut into pieces, and quickly immersed in 3

mL 75°C isopropanol with 0.01% butylated hydroxytoluene (BHT)

for 15 min. Then, 1.5 mL of chloroform and 0.6 mL of H2O were

added and agitated for 1 h. The lipid extract was transferred to a

new glass tube using a glass pipette. Four milliliters of chloroform:

methanol (2:1, v/v) with 0.01% BHT was added to the sample, and

the lipid extract was combined with the first extract after shaken for

30 min. This step was repeated three times and the final solution

was stored at −80°C until direct infusion electrospray ionization

(ESI)-MS analysis.

For the wounding experiments, the plants were grown until

DAS 28, and the leaves were wounded by crimping with a tweezer

three or four times across the midvein of the leaf (Hansen et al.,

2019b) and harvested 15 min after the wounding. The lipid extracts

were analyzed by the direct infusion ESI-MS method.

For the MS measurement of deuterated arabidopsides, the fer

mutants were obtained from Hongqing Guo from the Department

of Genetics, Development, and Cell Biology, Iowa State University.

The plants were grown in the same way as the wild type in 0.5× HM

until DAS 28 and incubated in 35% D2O medium for 12 days. The

leaves were wounded as above and harvested for direct infusion ESI-

MS for the lipid extract.
2.3 Sample preparation for MSI of
chloroplast lipids in the leaves

For MALDI-MSI of chloroplast lipids, A. thaliana were

transferred to new 15-mL centrifuge tubes filled with 35% D2O

medium on DAS 28 and harvested after 3, 6, and 12 days. The

fourth true leaf of each plant was selected and fractured to expose

the middle layer of the leaf as described elsewhere (Klein et al.,

2015). Briefly, the leaf was washed in H2O for 10 s, attached to a

packing tape, dried in a vacuum for 2 h, enclosed the tape to attach

both sides of the leaf to the tape, and passed through a rolling mill to

make mechanical damage to the internal tissues. Then, the packing

tape was pulled over to produce two separated half-leaves exposing

the internal mesophyll layers. The top half layer (adaxial side) was

attached to a microscope slide using a double-sided tape, followed

by gold sputtering for 20 s at 40 mA (Cressington 108; Ted Pella,

Redding, CA, USA) to provide conductivity to the surface and also

as a MALDI matrix (Hansen et al., 2019a). Tissue samples were

either analyzed immediately or stored at −80°C until the analysis.
2.4 Sample preparation for MSI of
epicuticular wax on flower and stem

For MALDI-MSI of epicuticular wax, A. thaliana were grown in

the plant growth chamber for a long-day condition and transferred to

15-mL centrifuge tubes filled with 35% D2O medium on DAS 14.

After 3 days of labeling, the plants that had entered flower

developmental stage C were selectively harvested. Stem samples

were taken from three regions: bottom (near to root), middle, and

top stem (near to flower). The flower and stem samples were attached

to stainless steel target plates using conductive double-sided carbon
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tape (Nisshin EM, Tokyo, Japan). Forceps were used to attach the

sample tissues onto the plate while minimizing contact with forceps

to avoid physical damage. All samples were dried in a vacuum (~400

mTorr) for 75 min. An in-house ESI sprayer (Paulson et al., 2023)

was attached to a TM sprayer nozzle (HTX Technologies, Chapel

Hill, NC, USA) and used for spraying colloidal silver as a matrix after

4:1 dilution (v/v) with methanol. The distance was kept at 3 cm

between the tip of the ESI sprayer and the sample plate. The following

conditions were used for the automatic ESI spray: ESI voltage, +7 kV;

sheath gas, 25 psi N2; matrix flow rate, 0.03 mL/min; and robotic arm

movement, eight passes at 1,200 mm/min. Colloidal silver (99.99%

pure silver, 0.65 nm; 20 ppm) was purchased from Purest Colloids,

Inc. (Westampton, NJ, USA).
2.5 Mass spectrometry analysis and
data processing

All mass spectrometry analysis was conducted using a Q-

Exactive HF Orbitrap MS (Thermo Scientific, San Jose, CA, USA)

with a MALDI/ESI dual source (Spectroglyph, Kennewick, WA,

USA) equipped with a 349-nm laser (Explorer One; Spectra Physics,

Milpitas, CA, USA). For the direct infusion ESI-MS analysis of

arabidopsides, samples were diluted to 1:10 (v/v) using an ESI

solvent of chloroform:methanol (3:2, v/v) with 0.1% acetic acid and

analyzed in positive mode ESI at +3 kV. Ten microliters of the

sample was injected through a loop injection at a flow rate of 10

mL·min−1 using the ESI solvent. Data were collected for the m/z

range of 600–1,100 with a mass resolution of 120,000 at m/z 200.

MS/MS analysis was performed for structural analysis under the

same condition as direct infusion ESI-MS using extracts prepared as

indicated above. The isolation window was 0.4 Da and collision

energies were optimized for each metabolite. For the MALDI-MSI

of chloroplast lipids and epicuticular wax, tissue samples were

analyzed in positive mode with a mass resolution of 120,000 at

m/z 200 and raster steps of 30–50 mm. Data were collected for the

m/z range of 750–1,100 for chloroplast lipids and 300–600 for

epicuticular wax, respectively.

Raw data were converted to imzML files using Image Insight

(Spectroglyph) and loaded into the MSiReader (North Carolina

State University; Raleigh, NC, USA) software (Robichaud et al.,

2013). The average spectrum was obtained for the entire data using

XCalibur (Thermo Scientific) or for the specific region of interest

(ROI) using MSiReader and was used for the subsequent abundance

or isotopologue analysis. For the visualization of the fractional

abundance of deuterium, the m/z abundance and position data

(X, Y) were exported into an Excel file using the MSiExport tool of

MSiReader. This file was then imported into MATLAB

(MathWorks, Natick, MA), and the fractional abundance of

deuterium was visualized. ElemCor was used to deconvolute

natural isotope contribution and obtain pure D-labeling

isotopologue distributions (Du et al., 2019). A mass tolerance of 2

ppm was used to identify the monoisotope peaks, and MS images

were produced with ±2.5 ppm, except for 3-day MS images, in

which ±5 ppm was used due to highly abundant 13C isotopes.
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3 Results

3.1 The effects of D2O on arabidopsides

Arabidopsis thaliana plants were hydroponically grown in 0.5×

HM until DAS 28 and transferred to new 0.5× HM with or without

35% D2O. The plants were harvested after four incubation times

(30, 60, 180, and 540 min) to monitor the abundance changes in

arabidopsides. The identity of these lipids was confirmed with MS/

MS as shown in Supplementary Figure S1 for arabidopside A,

arabidopside B, and MGDG 34:6, matching with the literature

(Hu et al., 2012; Hansen et al., 2019b). The direct infusion ESI-
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MS results are shown in Figures 1A, B for the relative abundance of

arabidopside A and arabidopside B, respectively, the two most

abundant arabidopsides known for significant increase upon

wounding (Stelmach et al., 2001; Buseman et al., 2006; Vu et al.,

2012; Hansen et al., 2019b). The abundance of arabidopsides A and

B was normalized by their precursors, MGDG 34:6 and MGDG

36:6, respectively. Upon transferring to new media, arabidopsides A

and B were slightly increased in both H2O and D2O media, peaking

at 30 min and 60 min, respectively. While the change in the H2O

medium was completely insignificant (p = 0.44 and 0.84 for

arabidopsides A and B, respectively, at 60 min), the change in

D2O showed a minute difference (p = 0.17 and 0.19 for
A

B

C

FIGURE 1

Change in the relative abundances of (A) arabidopside A and (B) arabidopside B in Arabidopsis thaliana after moving to H2O or 35% D2O medium
(n = 3). (C) Comparison of the relative abundances of arabidopsides 1 h after moving to new media vs. 15 min after wounding (n = 7). All the
abundances of arabidopsides A and B were normalized by their precursors, MGDG 34:6 and MGDG 36:6, respectively. Arabidopsides and MGDGs
were all detected as Na+ adduct.
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arabidopsides A and B, respectively, at 60 min) compared to time 0.

However, the difference was not significant, and the arabidopside

abundance was reverted to initial levels in a few hours. This suggests

that the observed changes may be partially attributed to a stress

response from the transfer procedure, and the effect of D2O stress

was rather minor to arabidopsides.

For further verification, we performed another experiment

comparing the D2O stress response and the wounding response.

Figure 1C shows the arabidopside abundance 15 min after

wounding compared to 60 min after transferring to H2O or D2O

medium. With the increase in sample size (n = 7), the abundance

differences in arabidopsides A and B were now slightly significant

(p< 0.01 and 0.05, respectively) when comparing 35% D2O and

H2O. However, the abundance increase was much smaller than the

increase of arabidopsides after wounding. We concluded that the

D2O stress response was relatively minor compared to other abiotic

stress such as wounding. A similar trend was observed for

arabidopside D when comparing 60 min D2O incubation with

time 0 or wounding response (Supplementary Figure S2). In

contrast to arabidopsides A and B, however, arabidopside D had

a higher abundance up to 180 min in both H2O and D2O. It should

be noted that direct infusion ESI-MS is expected to be sufficient for

the current purpose considering that the high mass resolution used
Frontiers in Plant Science 05
in this study should be able to distinguish most interferences for

these lipids, but further verification might be necessary with LC-MS

to confirm the observed trend.

We also sought to observe deuterated arabidopsides, but there

were not enough signals detected for D-labeling within a few hours

or even after a few days. This is attributed to the dilution of already

low arabidopside signals into multiple isotopologues. After multiple

trials, we could detect deuterated arabidopsides after wounding fer

mutant with multiple days of labeling (Figure 2). We have

previously reported that arabidopsides are highly enriched in fer

mutant and increased further with wounding (Hansen et al., 2019b).

After growing fermutants in 0.5× HM until DAS 28, these mutants

were incubated in 35% D2O medium for 12 days. The lipid extract

from the leaves harvested after 15 min of wounding was subject to

direct infusion ESI-MS analysis. When the isotopologue profiles

were compared between the two arabidopsides and their MGDG

precursors, they were very closely matched, showing a similar D-

incorporation pattern (Figure 2). There was a slightly lower relative

abundance for arabidopsides than that of precursors in high

deuteration (e.g., D15 or higher), which is expected considering

that arabidopsides have four fewer carbon-bound hydrogens than

the precursors as can be seen in the binomial distribution

simulation (Supplementary Figure S3).
A

B

FIGURE 2

Comparison of deuterium incorporation in arabidopsides and their MGDG precursors in the fer mutant, which was incubated in 35% D2O medium
for 12 days, after 15 min of wounding. (A) arabidopside A and MGDG 34:6 and (B) arabidopside B and MGDG 36:6. Arabidopsides were detected as
Na+ adduct and MGDGs were detected as K+ adduct. ElemCor was used to deconvolute natural 13C isotopes.
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3.2 Mass spectrometry imaging of
D-labeled chloroplast lipids

Similar to the MSIi of duckweed with D2O labeling (Tat and

Lee, 2024), we performed MSIi of A. thaliana with D2O labeling to

visualize the chloroplast lipids on the leaves, specifically chlorophyll

a, MGDGs, and DGDGs. The aim was to elucidate the spatial

differences in their biosynthesis within the leaf tissues by

monitoring deuterium incorporation into these lipids. Arabidopsis

thaliana were grown in 0.5× HM until DAS 28, then transferred to

35% D2O medium for 3–12 days before being subjected to MALDI-

MSI with the fracturing method (Klein et al., 2015). The fracturing

method allows to split a leaf tissue into two halves across the

longitudinal direction so that the internal mesophyll layers are

exposed for interrogation by laser in MALDI-MSI. While tissue

damage is unavoidable in this sample preparation, structural

integrity was reported to have been mostly maintained at least at

a resolution of ~10 μm in the SEM images. As shown in

Supplementary Figure S4, a shift of mass spectral features was

observed for the major lipids due to deuterium incorporation.

Supplementary Figures S5D–F show a series of MS images with

various deuterium incorporation for MGDG 36:6, DGDG 36:6, and

pheophytin a (chlorophyll a after losing Mg2+ during MALDI-MS)

on the fourth true leaf of A. thaliana incubated in 35% D2O for 6

days. Interestingly, depending on the number of deuteration, there

was a gradual change in localization from the tip of the leaf toward

the base. In both galactolipids and pheophytin a, unlabeled

monoisotope peaks (M0) were localized mostly at the tip of the

leaf. As the number of deuteration increases, the distribution slowly

propagates throughout the blades, with more or less even

distribution for M6 or M7, then more localized toward the base
Frontiers in Plant Science 06
for M12. MS images obtained after 12 days of D2O labeling showed

similar patterns but with many more deuterations, with M10 or

M11 being the most abundant (Supplementary Figures S5G–I). A

similar behavior was observed for MS images obtained after 3 days

of D2O labeling, although it was not as clear due to much less D-

labeling and highly abundant unlabeled monoisotope (M0) and its
13C isotope (M1, M2) throughout the leaf (Supplementary Figures

S5A–C). A similar trend was observed for other galactolipids,

MGDG 34:6 and DGDG 34:6 (not shown).

To ensure theMS images of D-labeling are not artifacts due to the

different levels of cell development in each cell, the fractional

abundance of deuterium, FD-label, was calculated at each spot and

visualized as shown in Figure 3 for the 6-day D-labeling data. FD-label
can be calculated by the following equation and represents howmuch

fraction of hydrogen is labeled out of the total hydrogens including

those from the pre-existing unlabeled molecules (Larson et al., 2022).

FD−label   =
(MWD2O −MWH2O)=(mD −mH)

(number of Hc−bound)� (D2O   conc : )
� 100   ( % )

where MWD2O and MWH2O represent the average molecular

weights of the lipid species in D2O and H2O, respectively, and mD −

 mH is the mass difference between a deuterium and a hydrogen atom,

1.00627 Da. The number of Hc−bound refers to the number of hydrogen

atoms bound to carbon within the lipid molecule that is available to be

labeled by deuterium. Here, we considered only carbon-bound

hydrogens because the washing step during the fracturing will

provide the back exchange of exchangeable hydrogens (e.g., –OH).

D2O conc. represents the concentration of D2O in the experiment,

which is 35% in our experiment. The images of the FD-label showed

similar patterns for all three lipid species. FD-label was close to 1.5% at

the tip of the leaf but gradually increasing toward the base with ~32% at
A B C

FIGURE 3

Visualization of the fractional abundance of deuterium, FD-label, for (A) MGDG 36:6, DGDG 36:6, (B) DGDG 36:6 and (C) pheophytin a on the fourth
true leaf of A. thaliana incubated in 35% D2O for 6 days. All detected as K+ adduct.
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the very end of the base. This visualization removes the apparent cell-

to-cell variation in raw signals, such as high abundance of galactolipids

or low abundance of pheophytin a on the mid-vein (Supplementary

Figures S5D–F). Almost no labeling at the leaf tip and the highest

labeling at the leaf base coincide with the fact that the leaf base is the cell

proliferation zone with active cell growth while the leaf tip is the

matured zone with almost no new cells.

As D-labeling was most active at the leaf base, we calculated the

D-labeling efficiency offive major lipids for 3, 6, and 12 days of D2O

labeling with the base of the leaf as the region of interest (ROI), as

indicated in Supplementary Figure S6. It is similar to FD-label but

excluding pre-existing unlabeled molecules and can be calculated

using the following equation (Larson et al., 2022):

D − Labeling efficiency  

=
Average number of D

(number of Hc−bound)� (D2O   conc : )
� 100   ( % )

D-labeling efficiency is calculated using a fraction showing the

average number of deuterium that can be labeled compared to the

quantity that is theoretically possible. One technical consideration is

the fact that there are significant 13C1- and 13C2-natural isotope

contributions that cannot be separated from D1- and D2-labeling

with the mass resolution used in this study. The ElemCor software

(Du et al., 2019) was used to deconvolute this natural isotope

abundance and obtain pure D-labeling efficiencies. As shown in

Figure 4, pheophytin a had a D-labeling efficiency of 14% on day 3,

which increased to 31% on day 6 and increased further to 52% on

day 12. In contrast, D-labeling efficiency was much lower than that

of pheophytin a for all galactolipids on day 3, 7%–10%, but it

increased to a similar level with pheophytin a by day 6 and after.
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3.3 D-labeling on epicuticular wax in the
flower development

As a last example, we applied D2O labeling to the epicuticular

wax on the flower and various parts of the stem. In the long-day

condition, A. thaliana were transferred to 35% D2O medium on

DAS 14 approximately 3 days before flowering. After 3 days of

labeling, the plants were harvested that had entered flower

developmental stage C, where emerging petals are perpendicular

to the flower axis, resulting in a clear physical separation from the

adjacent tissues. As we have demonstrated previously (Jun et al.,

2010), the use of colloidal silver as a matrix can ionize hydrophobic

epicuticular wax as silver ion adducts and visualize their localization

across the flower surface with MALDI-MSI. The mass spectra of D-

labeled C29 alkane and C29 ketone are shown in Supplementary

Figure S7. Figure 5 shows the MS images of D3-labeled C30

aldehyde, C29 alkane, and C29 ketone on A. thaliana flower.

Successful deuterium incorporation in just 3 days of labeling

indicates that these surface lipids are synthesized rapidly during

the flower developmental stage. D-labeled metabolites on each

tissue of the flower showed unique distribution. C29 alkane was

the most abundant on the petal and stamen and widely distributed

among the tissues. In contrast, C29 ketone and C30 aldehyde were

localized on the carpel of the flower. It is consistent with the

previous report except for C30 aldehyde, which was not detected

in the previous work due to the low mass resolution (Jun et al.,

2010). In a similar experiment for Figure 6, various parts of the stem

(bottom, middle, near the flower) as well as the flower were

harvested to interrogate with MALDI-MSI. Supplementary Figure

S8 shows the MS images of C29 ketone with various amounts of

deuteration on the flower and the middle section of the stem. In

both the flower and mid-stem, up to six or seven deuterations could

be observed, but three D-labeling (M3) was the most abundant in

the flower, but unlabeled C29 ketone (M0) was the most abundant

in the mid-stem, which is not surprising considering that there must

be a significant amount of pre-existing epicuticular wax in the stem

before being transferred to the D2O medium. Figures 6A, B show

the isotopologue patterns of C29 ketone and C30 aldehyde (a

precursor of C29 ketone) on various parts of the stem and the

carpel of the flower. Overall, there was a high level of deuterium

incorporation into C30 aldehyde in most tissues, but there was no

or very little deuterium incorporation into C29 ketone in the mid or

bottom part of the stem. This dramatic change between the lower

parts of the stem vs. near or on the flower can be more

quantitatively compared using the FD-label, shown in Figure 6C.

FD-label for C30 aldehyde was already ~12% in the bottom and mid

stem after 3 days of D2O labeling, slightly lower than the top part of

the stem and the flower, 16%–17%. However, there was only 0%–

3% of FD-label for C29 ketone in the lower stem, but ~10% and ~15%

on the top part of the stem and flower, respectively. In other words,

the conversion ratio of C30 aldehyde to C29 ketone was ~20% or

less on the lower stem but 60% to 90% on the top part of the stem

and flower.
FIGURE 4

The comparison of D-labeling efficiency of pheophytin a, MGDGs,
and DGDGs in the leaf base after 3–12 days of D2O labeling (n = 3).
All detected as K+ adduct. Contribution from the natural 13C isotope
was deconvoluted using ElemCor.
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4 Discussion

4.1 Hydroponic culture with 35% D2O
provides significant but minor stress
to Arabidopsis

For the first time, D2O labeling was successfully applied to the

MSIi of A. thaliana, a terrestrial plant, using a hydroponic culture.

Although unnatural for terrestrial plants, hydroponic culture is

commonly used for D2O labeling of A. thaliana to precisely control

isotope concentrations (Åstot et al., 2000; Yang et al., 2010). Van

Delden and coworkers performed a systematic investigation on the

effect of nutrient solutions in the hydroponic culture of A. thaliana

(Van Delden et al., 2020). Nutrients with too high salt

concentrations, such as in Murashige and Skoog, resulted in low

biomass on DAS 48. Among the best performing nutrients they

reported, we adopted 0.5× HM for hydroponic culture in this study.

High D2O concentration is toxic to any biological organisms and

gradually inhibits the root development of Arabidopsis as the D2O

concentration increases from 0% to 40% (Yang et al., 2010). A

concentration of 30% D2O significantly altered the gene expression

in the short term (4 h) compared to the long term (7 days),

indicating an adaptation to D2O-induced stress (Evans and Shah,

2015). To avoid the adverse effect in root development by D2O-

induced stress, A. thaliana was grown to DAS 14 or 28 in

hydroponic culture before transferring to 35% D2O medium in

this study.

Before we performed MSIi, we first studied the effect of D2O on

arabidopsides. A D2O concentration of 35% was used in all the

experiments to maximize D-labeling, but it may induce abiotic

stress. Mostly known as a wounding response, previous studies have

reported that various stresses resulted in the accumulation of

arabidopsides in A. thaliana in less than 1 h (Stelmach et al.,

2001; Buseman et al., 2006; Vu et al., 2012). Another study reported

that A. thaliana in 30% D2O altered gene expression related to

wounding, with 16 genes upregulated and one gene downregulated

after 4 h of growth (Yang et al., 2010). It is not previously known,

however, whether D2O would increase arabidopsides as abiotic
Frontiers in Plant Science 08
stress. Considering previous reports, we hypothesized that D2O-

induced stress response may result in an increase of arabidopsides.

Albeit slight, arabidopsides A and B were increased initially,

supporting our hypothesis, but reverted to the normal level

within a few hours (Figure 1). The maximum increase after

60 min in the D2O medium was twice less than the increase

induced by the wounding response, suggesting that D2O-induced

stress might be relatively minor and may not have serious long-term

consequences. In fact, there was no apparent difference between

non-labeled vs. labeled plants even after 12 days of labeling.

We tried all our efforts to visualize deuterated arabidopsides,

but unfortunately, the amount of arabidopsides was so low that they

were not detected by MALDI-MSI. It is a downside of MSIi with

D2O labeling because D-labeled metabolites can often be detected

only for major species because the binomial distribution of H- vs.

D-labeling results in the dilution of D-labeled metabolites to a wide

isotopologue distribution with multiple deuterations. Deuterated

arabidopsides could be finally detected by combining multiple

strategies without visualization, including 1) direct infusion ESI-

MS, 2) 12 days of D2O labeling, 3) use of fer mutant, 4) wounding,

and 5) combining multiple leaves. When deuterium isotopologue

distributions were compared, deuteration patterns were very closely

matching between arabidopsides and their precursors (i.e., MGDG

34:6 vs. arabidopside A, MGDG 36:6 vs. arabidopside B) (Figure 2).

These data support a previous report that lipoxygenase oxidizes

both fatty acid chains in MGDGs to form arabidopsides after

wounding (Stelmach et al., 2001).
4.2 D-labeling of chloroplast lipids shows
gradual deuteration from the leaf tip to
the base

In the second set of experiments, D-labeled chloroplast lipids

were successfully visualized in MSIi with D2O labeling for 3, 6, and

12 days. To our surprise, the MS images of MGDG, DGDG, and

pheophytin a showed gradual changes across the leaf tissues

depending on the fractional abundance of deuterium (Figure 3)
A B

FIGURE 5

(A) Optical and (B) MALDI-MS images of Arabidopsis thaliana flower after 3 days of D2O labeling on DAS 14. MS images were obtained on the
surface of the flower as silver ion adducts, [M+107Ag]+.
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or the number of deuterations (Supplementary Figure S5).

Furthermore, their D-labeling efficiencies at the leaf base

increased slowly from day 3 to days 6 and 12 of D2O labeling

(Figure 4). To explain the gradual spatiotemporal change in D-

labeling of the chloroplast lipids, we hypothesize that 1) the internal

D2O concentration changes very slowly over many days and 2)

there is a D2O concentration gradient across the entire plant. Water

is a precious resource to terrestrial plants, and it is released mostly

through the stomata with a tight regulation. Epicuticular wax covers

all the air-exposed plant surfaces, protecting water evaporation in

other places. The transpiration rate seemed to be very low in the
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given condition because we had to supplement only 0.5–1.0 mL of

medium per day. As a result, its internal D2O concentration would

not change immediately when the plants were transferred to 35%

D2O medium but increased slowly over many days with a gradient

across the entire plant. Accordingly, the amount of D-labeling in the

chloroplast lipids would be subject to available D2O concentration

at a given cell at the time of their synthesis. The low D-labeling at

the leaf tip is attributed to 1) the lower D2O concentration than that

at the leaf base and 2) being mostly “old tissues” synthesized when

the D2O concentration was even lower. Another explanation is a

higher flux of these lipids at the leaf base than at the leaf tip, which is
A

B

C

FIGURE 6

Isotopologue distributions of deuterated (A) C30 aldehyde and (B) C29 ketone and (C) their fractional abundance of deuterium, FD-label, in various
parts of Arabidopsis thaliana after 3 days of D2O labeling (n = 3). All detected as 107Ag+ adduct. Contribution from the natural 13C isotope was
deconvoluted using ElemCor.
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supported by the fact that the leaf base is a proliferation zone with

active cell growth. While it can explain the gradual change of D-

labeling across the leaf tissues, it cannot explain the increase of D-

labeling efficiency over time, suggesting that the D2O concentration

gradient might be the main reason for the spatiotemporal change in

D-labeling.

The gradual change of D-labeling across the leaf tissues is in

contrast to our recent work in D2O labeling of duckweeds (Lamna

minor) (Tat and Lee, 2024), in which three distinct isotopologue

groups of galactolipids were found for the first few days of labeling

due to the partial D-labeling of structural moieties. Their MS

images, however, were essentially identical for the same

isotopologue groups, localized to parent frond tissues for

galactose-only D-labeling, intermediate tissues for galactose and a

fatty acyl chain D-labeling, and newly grown daughter frond tissues

for the D-labeling of the entire molecule. It is because L. minor, as

an aqua plant, has its fronds fully in contact with water on the

abaxial side and, thus, has the same D2O concentration across its

fronds. Unlike the D2O labeling of duckweeds, we could not observe

the separation of each isotopologue group in the D2O labeling of

Arabidopsis, which is attributed to the combination of low signals, a

lower D2O concentration (35% vs. 50%), and a lower D-labeling

efficiency (~50% vs. ~97%).

Another interesting observation is that pheophytin a had a

higher D-labeling efficiency than galactolipids on day 3, but similar

on days 6 and 12 (Figure 4), although not significant (p = 0.08~0.13)

except for DGDG 36:6 (p = 0.04) due to the low sampling size (n =

3). In our previous D2O labeling experiments of duckweeds (Tat

and Lee, 2024), pheophytin a showed only one isotopologue pattern

corresponding to the D-labeling of the entire molecule even in the

very early days of labeling unlike galactolipids, which was attributed

to the fast biosynthesis of pheophytin a. Similar to duckweed, we

expect that pheophytin a would be fully labeled by day 3 in A.

thaliana due to its fast biosynthesis, only limited by the low cellular

D2O concentration, but newly synthesized galactolipids might be a

mixture of partial and entire molecule labeling on day 3, although

there is no clear separation among isotopologue groups, resulting in

a low apparent D-labeling efficiency when averaged together.
4.3 D-labeling of epicuticular wax shows
tissue-specific metabolic
conversion difference

As a last example, D-labeled epicuticular wax was imaged on the

stage C flower and several different locations of the stems (Figure 5,

Supplementary Figure S8). These lipids with very long-chain fatty

acids (VLCFAs) have a crucial role in forming the barrier on the

outer plant surface (Yeats and Rose, 2013) and change dynamically

during the flower’s developmental stages (Alexander et al., 2021).

The three particular lipids that are visualized, C30 aldehyde, C29

alkane, and C29 ketone, are in the same alkane-forming pathway

(Jenks et al., 2002). While C29 alkane was the most abundant

among all surface lipids in A. thaliana and could be detected as a
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silver ion adduct in MALDI-MS using colloidal silver as a matrix,

the ionization efficiency was very low and deuterated C29 alkane

could be detected only in the flower but not in the stems.

When the relative abundances of deuteration were compared

between C29 ketone (final product) and C30 aldehyde (a precursor

of C29 ketone), the conversion ratio of newly synthesized C30

aldehyde to C29 ketone was the highest on the carpel followed by

the top part of the stem near the flower, ~90% and ~60%,

respectively, but very low on the middle and low parts of the

stem, as determined by the fractional abundance of deuterium

(Figure 6). The highest conversion rate on the carpel suggests the

important role of C29 ketone in the reproduction of A. thaliana. It

is intriguing why the conversion rate is very high on the top part of

the stem, while very low in the middle or bottom part of the stem,

which is in contrast to the lignin biosynthesis on Arabidopsis stems.

Wang and coworkers reported that the incorporation of 13C6-Phe

was most active near the base of the stem than in the top when cut

stems were incubated with the medium supplemented by 13C6-Phe

(Wang et al., 2018). Our result suggests that the enzymes involved

in the conversion of C30 aldehyde to C29 ketone (aldehyde

decarbonylase, alkane hydrolase, or alcohol oxidase) may not be

strictly tissue type-specific but rather have high expression near

the flowers.
4.4 Broad implication and limitation of
this study

MSIi can elucidate the fine details of tissue-specific or cell-

specific metabolism more than MSI or isotope tracing alone can

offer. For example, by monitoring M3 vs. M6 UDP-glucose as a

marker for glycolysis vs. gluconeogenesis, differential metabolic

activity could be observed between the cortex and medulla in MSI

of mouse kidney by infusing [U-13C]glycerol or [U-13C]glucose

(Wang et al., 2022). In plants, there have been limited MSIi studies

reported so far using stable isotopes. The MSI of developing seeds of

camelina and pennycress labeled with [U-13C]glucose showed a

higher 13C-labeling in the cotyledons compared to the embryonic

axis (Romsdahl et al., 2021). They also observed a higher isotope

enrichment in PC species with more saturated and longer chain

fatty acids, which was attributed to more rapid fatty acid elongation

than desaturation. Using D4- and 13C9-Tyr, new metabolites

involved in Tyr metabolism were discovered and visualized in

Spirodela polyrhiza (Feldberg et al., 2018). Genotypic and

developmental differences in free amino acids were visualized in

MSI of maize root cross-sections (O’Neill and Lee, 2020), in which
15N-ammonium was used to differentiate between external (15N

from media) and internal (14N from seeds) nitrogens. Nitrogen-

containing specialized metabolites were visualized in Catharanthus

using 15N-labeling (Nakabayashi et al., 2017). As discussed in the

prior section, 50% D2O labeling of duckweeds showed partial

labeling of galactolipids and revealed their spatiotemporal

changes (Tat and Lee, 2024). Many more MSIi studies are
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expected in the near future to unveil plant metabolic biology in

unprecedented spatiotemporal details.

The current MSIi study of Arabidopsis confirms some of the

strengths and weaknesses of this technological platform, specifically

with D2O labeling. A low sensitivity is a critical obstacle in MSI in

general hampered by micron-size small sampling size in each pixel,

which is exacerbated in MSIi because the same metabolite is split

among isotopologues. It is particularly worse in D-labeling

compared to 13C or 15N because the maximum D2O

concentration is limited to 35%–50% due to toxicity, resulting in

a wide isotopologue distribution with various degrees of partial

labeling. D2O-induced stress is another limitation in D-labeling, as

it may lead to a potential artifact. It is virtually non-existent in 13C-

or 15N-labeling, with the minimum kinetic isotope effect for heavy

isotopes. The most benefit of D-labeling in MSIi, especially in

plants, is that D2O is the sole source of all hydrogens in plants

and is easy to incorporate in hydroponic culture. It is in contrast to
13C or 15N. A completely sealed growth chamber is required for

long-term 13CO2 labeling while [U-13C]glucose enters carbon

metabolism almost exclusively through glycolysis. 15N-labeling

should take into account a complication coming from nitrogen

fixation or transportation difference between ammonium and

nitrate and among plant species.

MSI or MSIi of primary metabolites is very difficult due to their

low ionization efficiencies and many possible structural isomers.

Instead, lipids are most commonly interrogated by MSI including

this work, thanks to their high abundance in cell membranes,

minimum loss and less diffusion during the sample preparation,

and a much smaller number of structural isomers. D2O labeling is

particularly attractive for the isotope tracing of lipids as successfully

demonstrated for Arabidopsis in this work and previously for

duckweeds. While many isomers are still possible for the lipid

species with the same molecular formulae depending on fatty acid

chain length, sn-position, and double-bond position, many

technical advancements are being made to resolve this issue

including MS/MS imaging (Sun et al., 2023), MSI with ion

mobility separation (Jiang et al., 2023), and ozone (Claes et al.,

2021) or other chemical reactions (Li et al., 2024) to determine the

double-bond position.
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