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Platostoma palustre (Blume) A. J. Paton is an important edible and medicinal

plant. To gain a comprehensive and clear understanding of the variation patterns

of metabolites in P. palustre, we employed the UPLC-MS platform along with

widely targeted metabolomics techniques to analyze the metabolites in the

stems and leaves of P. palustre at different stages. Our results revealed a total of

1228 detected metabolites, including 241 phenolic acids, 203 flavonoids, 152

lipids, 128 terpenes, 106 amino acids, 79 organic acids, 74 saccharides, 66

alkaloids, 44 lignans, etc. As the growth time increased, the differential

metabolites (DAMs) mainly enriched in P. palustre leaves were terpenoids,

phenolic acids, and lipids, while the DAMs primarily enriched in stems were

terpenoids. Compared to stems, there weremore differential flavonoids in leaves,

and saccharides and flavonoids were significantly enriched in leaves during the S1

and S2 stages. Additionally, we identified 13, 10, and 23 potential markers in leaf,

stem, and leaf vs. stem comparison groups. KEGG enrichment analysis revealed

that arginine biosynthesis was the common differential metabolic pathway in

different growth stages and tissues. Overall, this study comprehensively analyzed

the metabolic profile information of P. palustre, serving as a solid foundation for

its further development and utilization.
KEYWORDS
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Introduction

Platostoma palustre (Blume) A. J. Paton, also known as

“Xiancao” or “Liangfencao” in Chinese, belongs to the Platostoma

genus of Lamiaceae family and is an annual and perennial herbal

plant (Tang et al., 2021). P. palustre is mainly distributed in

Guangdong, Guangxi, Fujian, Taiwan, Zhejiang, Jiangxi, and

Yunnan provinces (regions) in China, as well as in Southeast

Asian countries such as Vietnam, Malaysia, India, and Indonesia

(Wang and Qin, 2014; Tang et al., 2022a, 2022b). China is the

world’s leading producer of P. palustre, a traditional medicinal and

edible plant resource with high medical and nutritional value (Lin

et al., 2013). Modern studies have shown that P. palustre possesses

multiple biological activities, including antioxidation (Yen and

Hung, 2000; Chen et al., 2022), antibiosis (Liu and Feng, 2008a),

hypolipidemic effects (Li et al., 2010), antihypertensive effects (Yeha

et al., 2009), liver injury alleviation (Hong et al., 2022), etc.

Moreover, P. palustre has edible properties and is commonly used

as bean jelly and herbal tea (Tang et al., 2023).

P. palustre contains various chemical components including

carbohydrates, proteins, amino acids, fats, vitamins, pigments,

calcium, zinc, iron, manganese, potassium, polysaccharides,

phenols, triterpenoids, flavonoids, and so on (Liu and Chen, 2004).

Xiancao gum is a polysaccharide with gelatinous properties found in

P. palustre and serves as an important indicator of the quality of this

Chinese herbal medicine (Lin et al., 2013). Xiancao gum is derived

from the leaves, stems, and roots of P. palustre and is extracted using

hot water or alkaline solution; Its active ingredients are similar to

those found in P. palustre, with polysaccharide being the main

constituent. Xiancao gum also contains functional components

such as polyphenols, flavonoids, and terpenoids (Li J. et al., 2019).

The polysaccharide content varies in different parts of P. palustre,

with the highest content in the leaves, followed by roots, and the

lowest content in the stem (Liu and Feng, 2008b). However, during

the harvest period, the stem weight of the dried medicinal herbs of P.

palustre accounts for the largest proportion of the total whole weight,

followed by leaves, while the root weight is almost negligible.

Metabolomic analysis can be conducted to identify the types and

quantities of metabolites based on different varieties, growth stages,

tissue parts, processing methods, and compound materials (Liang

et al., 2023). Metabolomics profiling is a crucial strategy for analyzing

chemical components at the molecular level (Yang et al., 2021).

Various modern analytical techniques, such as mass spectrometry

(MS), nuclear magnetic resonance (NMR), and chromatography, are

widely applied in the quantitative and qualitative evaluation of plant

metabolites due to their high accuracy and sensitivity when coupled

with effective chromatographic techniques that allow separation and

characterization of the diversity of phytoconstituents present in

medicinal plants (Li et al., 2021a). These techniques include liquid

chromatography-mass spectrometry (LC-MS), gas chromatography-

mass spectrometry (GC-MS), high-performance thin-layer

chromatography (HPTLC), capillary electrophoresis-mass

spectrometry (CE-MS), which are the most accurate techniques

used for metabolites analysis and quality control of medicinal
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plants (Jorge et al., 2016). Currently, an ultra-performance liquid

chromatography-tandem mass spectrometry (UPLC–MS/MS)-based

widely targeted metabolomics analysis has been successfully used for

the detection of a vast number of metabolites in many plant species,

such as sweet sorghum (Zhou et al., 2020), sesame (Dossou et al.,

2022), wine grape (Yu et al., 2022), Lycium barbarum (Wang et al.,

2020) and so on. However, there has been limited research on the

metabolic profiles of P. palustre and there are only a few reports on P.

palustre using the LC-MS technique (Tang et al., 2021, 2023). It is

worth noting that the application of UPLC–MS/MS-based widely

targeted metabolomics in P. palustre has not been reported.

In this study, to have a comprehensive understanding of the

phytoconstituents of P. palustre, we collected the leaves and stem

segments of P. palustre at three growth and development stages and

systematically investigated the spatiotemporal differences of

metabolites in different tissues at different growth stages using

a UPLC–MS/MS-based widely targeted metabolomics.

The significance of this study was to reveal the metabolic

characteristics and the changing law of metabolites in different

growth stages and tissues of P. palustre, so as to provide theoretical

support for the study of medicinal, edible, and ecological values of

P. palustre, and lay the foundation for further development and

utilization of P. palustre.
Materials and methods

Sample preparation

The cutting seedlings of P. palustre with a height of 15–20 cm

were transplanted to the field on April 10, 2022, and thereafter

followed normal field management. We conducted the first

sampling on June 10, 2022, taking the 3rd-4th stem segments from

top to bottom and the leaves with the corresponding stem node

position, while marking this position on the other branches with a

rope. Subsequently, samples were taken every 2 weeks, a total of

three times. We named the leaves and stem segments in

chronological order as LS1, LS2, and LS3, and SS1, SS2, and SS3,

respectively. All samples were immediately placed into liquid

nitrogen for widely targeted metabolomic analysis, which was

conducted in METWARE Biotechnology Co., Ltd (Wuhan, China).
Sample preparation and extraction

The biological samples were freeze-dried with a vacuum freeze-

dryer (Scientz-100F). The freeze-dried samples were crushed using

a mixer mill (MM 400, Retsch) with a zirconia bead for 1.5 min at

30 Hz. Dissolve 50 mg of lyophilized powder with 1.2 mL 70%

methanol solution, vortex 30 seconds every 30 minutes for 6 times

in total. Following centrifugation at 12000 rpm for 3 min, the

extracts were filtrated (SCAA-104, 0.22 mm pore size; ANPEL,

Shanghai, China, http://www.anpel.com.cn/) before UPLC-MS/

MS analysis.
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UPLC Conditions

The sample extracts were analyzed using a UPLC-ESI-MS/MS

system (UPLC, SCIEX, ExionLC™ AD, Shanghai ABSciex

Analytical Instrument Trading Co., Ltd, Shanghai, China; MS,

SCIEX, Applied Biosystems 4500 Q TRAP, Shanghai ABSciex

Analytical Instrument Trading Co., Ltd, Shanghai, China). The

analytical conditions were as follows, UPLC: column, Agilent SB-

C18 (1.8 µm, 2.1 mm * 100 mm); The mobile phase consisted of

solvent A, pure water with 0.1% formic acid, and solvent B,

acetonitrile with 0.1% formic acid. Sample measurements were

performed with a gradient program that employed the starting

conditions of 95% A, 5% B. Within 9 min, a linear gradient to 5% A,

95% B was programmed, and a composition of 5% A, 95% B was

kept for 1 min. Subsequently, a composition of 95% A and 5.0% B

was adjusted within 1.1 min and kept for 2.9 min. The flow velocity

was set as 0.35 mL per minute; The column oven was set to 40°C;

The injection volume was 4 mL. The effluent was alternatively

connected to an ESI-triple quadrupole-linear ion trap

(QTRAP)-MS.
ESI-Q TRAP-MS/MS

The ESI source operation parameters were as follows: source

temperature 550°C; ion spray voltage (IS) 5500 V (positive ion

mode)/-4500 V (negative ion mode); ion source gas I (GSI), gas II

(GSII), curtain gas (CUR) were set at 50, 60, and 25 psi, respectively;

the collision-activated dissociation (CAD) was high. QQQ scans

were acquired as MRM experiments with collision gas (nitrogen) set

to medium. DP (declustering potential) and CE (collision energy)

for individual MRM transitions were done with further DP and CE

optimization. A specific set of MRM transitions was monitored for

each period according to the metabolites eluted within this period.
Principal component analysis

Principal component analysis (PCA) was performed using the

built-in statistical function prcomp of the R software (https://

www.r-project.org/), and the parameter of the prcomp function

was set to scale=True, indicating that the data were subjected to UV

(unit variance scaling).
Hierarchical cluster analysis and Pearson
correlation coefficients

The hierarchical cluster analysis (HCA) results of samples and

metabolites were presented as heatmaps with dendrograms, while the

Pearson correlation coefficients (PCC) between samples were

calculated by the cor function in R and presented as only

heatmaps. Both HCA and PCC were carried out by R package

ComplexHeatmap. For HCA, normalized signal intensities of

metabolites (unit variance scaling) are visualized as a color spectrum.
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Differential metabolites selection

For two-group analysis, differential metabolites were

determined by Variable importance in projection (VIP) ≥ 1 and

absolute |Log2Fold change (FC)| ≥ 1.0. VIP values were extracted

from the OPLS-DA (OrthogonalPart ialLeast Squares-

DiscriminantAnalysis) results, which also contained score plots

and permutation plots, and were generated using the R package

MetaboAnalystR. The data was log transform (Log2) and mean

centering before OPLS-DA. In order to avoid overfitting, a

permutation test (200 permutations) was conducted.
KEGG annotation and enrichment analysis

The identified metabolites were annotated using the KEGG

Compound database (http://www.kegg.jp/kegg/compound/), and

the annotated metabolites were then mapped to the KEGG

Pathway database (http://www.kegg.jp/kegg/pathway.html).

Pathways with significantly regulated metabolites mapped were

then fed into MSEA (metabolite sets enrichment analysis), their

significance was determined by hypergeometric tests p-values.
Data analysis

In all the analysis contents of metabolomics in this study, UV

(unit variance scaling) and Zero-centered (Ctr) were taken to

process the data during the analysis. In addition, GraphPad Prism

7 and WPS software were employed for data processing and

graph analysis.
Results

Qualitative and quantitative analysis of
metabolites in P. palustre

In this study, to obtain a comprehensive and clear

understanding of the variation patterns of metabolites in P.

palustre, we employed the UPLC-MS platform together with

widely targeted metabolomics techniques to identify and analyze

the metabolites in the stems and leaves of P. palustre at different

growth stages. The results showed that a total of 1228 metabolites

were detected, including 241 phenolic acids, 203 flavonoids, 152

lipids, 128 terpenes, 66 alkaloids, 79 organic acids, 44 lignans, 9

quinones, 106 amino acids, 68 nucleotide derivatives, 74

saccharides, 1 tannin and so on (Figure 1A). Among these,

1220, 1220, and 1216 metabolites were detected in the stems at

three growth stages (SS1, SS2, SS3), while 1224, 1220, and 1225

metabolites were identified in the leaves at three growth stages

(LS1, LS2, LS3), respectively. These results indicated that the types

and quantities of metabolites in the stems and leaves of

P. palustre at different growth stages were generally similar

(Supplementary Table 1).
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Principal component analysis of all samples

The PCA results in this study revealed samples from the same

group clustering together, with a distinct separation trend observed

between samples from different groups. These findings indicated

high reproducibility of the samples and significant differences in

metabolite features across groups. The PCA model analysis yielded

a total explanation rate of 60.37% for the samples (Figure 1B).

Moreover, a clustering heat map can display the expression

abundance of metabolites in P. palustre (Figure 1C). The

clustering analysis revealed substantial differences in metabolites

among groups, which could be categorized into four clusters: one

cluster consisted of metabolite profiles from P. palustre leaves,

where LS1 formed a distinct cluster and LS2 and LS3 formed

another cluster; another cluster comprised metabolite profiles

from P. palustre stems, with SS1 forming a separate cluster and

SS2 and SS3 forming the other cluster. The three biological

replicates within each treatment group also exhibited clustering,

suggesting the high homogeneity of the data in this study. The

overlapping display analysis of the total ion flow chart from

different quality control samples demonstrated the high stability

of the instrument and the reliability of the data results, which can be

utilized for subsequent analysis (Figures 1D, E). Based on the

coefficient of variation (CV) as an indicator of data dispersion,

the results demonstrated that over 75% of substances in the QC

samples had a CV value below 0.3, suggesting the stability and

reliability of the experimental data (Figure 1F).
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OPLS-DA analysis and permutation
test analysis

We divided the samples into nine groups: SS1 vs. SS2, SS1 vs.

SS3, SS2 vs. SS3, LS1 vs. LS2, LS1 vs. LS3, LS2 vs. LS3, SS1 vs. LS1,

SS2 vs. LS2, and SS3 vs. LS3. The OPLS-DA model was subjected to

200 random permutation experiments, and both Q2 and R2Y were

greater than 0.9, indicating the stability and reliability of the model.

The OPLS-DA score plot depicted a distinct separation of P.

palustre samples, indicating significant differences in metabolic

features across different groups (Figure 2).
Identification of differential metabolites

Variable importance in projection (VIP) and fold change (FC)

were combined to further screen out differential metabolites. The

metabolites that met both VIP ≥ 1, as well as FC ≥ 2 or FC ≤ 0.5,

were considered differential metabolites, and the metabolite set

characteristics of P. palustre among different groups were analyzed

(Figure 3; Supplementary Table 2).

During different growth periods of P. palustre, the main

differential metabolites in leaf tissues were terpenoids, phenolic

acids, and lipids (Figures 3A–C). The LS1 vs. LS2 comparison group

contained a total of 418 differential metabolites, with the largest

differences observed in terpenoids (82 terpenoids: 11 accumulated

in LS1 and 71 accumulated in LS2) and phenolic acids (70 phenolic
B C

D E F

A

FIGURE 1

The metabolite class composition, PCA plot, clustering heat-map, TIC plots, and CV value distribution map in this study. (A) The circular plot of
overall metabolite class composition, with values in parentheses indicating the percentage of each categorical metabolite to the total metabolite;
(B) The PCA plot for each group of samples. (C) The cluster heatmap of the overall samples of each group. (D, E) The total ions current (TIC) plots of
mixed-sample QC samples in positive and negative ion modes, respectively, with the horizontal coordinate being the retention time (Rt) of the
metabolite assay, and the vertical coordinate being the intensity of the ion current of the ion assay (intensity in cps, count per second). (F) The CV
value distribution map for all samples, with the horizontal axis representing the CV value and the vertical axis representing the proportion of the
number of substances less than the corresponding CV value to the total number of substances. Different colors represented different grouped
samples, and QC represented quality control samples.
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acids: 19 accumulated in LS1 and 51 accumulated in LS2). The LS2

vs. LS3 comparison group consisted of 274 differential metabolites,

with the largest differences observed in terpenes (38 terpenoids: 3

accumulated in LS2 and 35 accumulated in LS3) and lipids (41

lipids: 2 accumulated in LS2 and 39 accumulated in LS3). The LS1

vs. LS3 comparison group revealed a total of 441 differential

metabolites, with the largest differences observed in terpenoids

(88 terpenoids: 5 accumulated in LS1 and 83 accumulated in

LS3), lipids (55 lipids: 10 accumulated in LS1 and 45 accumulated

in LS3), and phenolic acids (55 phenolic acids: 14 accumulated in

LS1 and 41 accumulated in LS3) (Supplementary Table 2).

Terpenoids and lipids were the primary differential metabolites

in the stem segments during different growth stages of P. palustre

(Figures 3D–F), and their accumulation significantly increased with

the prolongation of the growth time. The SS1 vs. SS2 comparison

group identified 40 terpenoids and 39 lipids among the 396

differential metabolites, with 7 terpenoids and 4 lipids

accumulated in SS1, and 33 terpenoids and 35 lipids accumulated

in SS2, respectively. The SS2 vs. SS3 comparison group revealed 36

terpenoids and 45 phenolic acids among the 263 differential

metabolites, with 2 terpenoids and 31 phenolic acids accumulated

in SS2, and 34 terpenoids and 14 phenolic acids accumulated in SS3,

respectively. In the SS1 vs. SS3 comparison group, 63 terpenoids out

of 482 differential metabolites were detected, with 7 terpenoids

accumulated in SS1, and 56 terpenoids accumulated in SS3,

respectively (Supplementary Table 2).
Frontiers in Plant Science 05
The SS1 vs. LS1, SS2 vs. LS2, and SS3 vs. LS3 comparison groups

contained 658, 612, and 643 differential metabolites, respectively.

Flavonoids were the most abundant and exhibited the most

pronounced trend of change among these metabolites, with 152,

147, and 155 flavonoids accounting for 23.10%, 24.02%, and 24.11%

of the total differential metabolites in the SS1 vs. LS1, SS2 vs. LS2,

and SS3 vs. LS3 comparison groups, respectively (Figures 3G–I;

Supplementary Table 2).
Metabolic characteristics of different
tissues and growth stages of P. palustre

To visually illustrate the enrichment characteristics of various

metabolites in P. palustre, we displayed the metabolites that showed

the most pronounced enrichment trends in the three growth stages.

In the S1 stage, the leaves exhibited higher enrichment of organic

acids, nucleotides and their derivatives, and saccharides, while the

stem segments showed higher enrichment of lipids and phenolic

acids (Figure 4A). In the S2 stage, leaves showed high levels of

enrichment in flavonoids, lignans, and coumarins (Figure 4B). In

the S3 stage, leaves exhibited a higher enrichment of alkaloids and

terpenoids, while stem segments showed a higher enrichment of

quinones, amino acids and their derivatives (Figure 4C). The

clustered heat map of the total metabolite content in each sample

was shown in Figure 4D. It is worth mentioning that flavonoids
B1

C1

A1

B3

C3

A3

B4

C4

A4

B5

C5

A5

B2

C2

A2

B6

C6

A6

FIGURE 2

The OPLS-DA score plot and OPLS-DA model validation. (A1–A3) The OPLS-DA score plot of SL1 vs. SL2, SL2 vs. SL3, SL1 vs. SL3. (B1–B3) The
OPLS-DA score plot of SS1 vs. SS2, SS2 vs. SS3, SS1 vs. SS3. (C1–C3) The OPLS-DA score plot of SS1 vs. SL1, SS2 vs. SL2, SS3 vs. SL3. (A4–A6) The
OPLS-DA model validation of SL1 vs. SL2, SL2 vs. SL3, SL1 vs. SL3. (B4–B6) The OPLS-DA model validation of SS1 vs. SS2, SS2 vs. SS3, SS1 vs. SS3.
(C4–C6) The OPLS-DA model validation of SS1 vs. SL1, SS2 vs. SL2, SS3 vs. SL3. The horizontal axis represented the R2Y and Q2 values of the model,
while the vertical axis represented the frequency of model classification effects in 200 randomly arranged combination experiments. In the figure,
orange represented the random grouping model R2Y, purple represented the random grouping model Q2, and the black arrow represented the R2X,
R2Y, and Q2 values of the original model.
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showed significant enrichment in leaf tissues throughout the growth

stages of P. palustre, compared to stem segments.

In addition, polysaccharides (composed of different

monosaccharides) and flavonoids were the primary chemical

components of P. palustre, and they directly influenced its quality

and efficacy. We further analyzed the metabolic characteristics of

these two types of compounds in different tissues and growth stages

of P. palustre. The results indicated that monosaccharides were

primarily enriched in the leaf tissue of P. palustre. Among them, the

D-arabinose, D-ribose, and L-xylose were predominantly enriched

in the leaf tissue during the S1 stage. In the leaf tissue during the S2

stage, there was a high enrichment of D-glucose, D-galactose, D-

glucuronic acid, and D-galactonic acid. Additionally, D-arabinose,

D-ribose, and L-xylose exhibited a certain level of enrichment in the

stem tissue during the S2 stage (Figure 4E). Flavonoids were

primarily enriched in the leaf tissue compared to the stem tissue,

with astragalin, isoquercitrin, quercitrin, baimaside, and rutin

exhibiting the most significant enrichment trend during the S2

stage. In contrast, quercetin showed high enrichment in the stem

tissue during the S2 stage (Figure 4E).
Frontiers in Plant Science 06
Screening for potential markers

To identify the metabolites that contributed the most to the

differences between the comparison groups, we considered the

metabolites with the top 10 positive and negative Log2 FC values

(Figure 5) and the top 20 VIP values (Figure 6) as potential markers.

These potential markers were identified based on the nine

comparison groups (Figures 4F–N; Supplementary Table 3).

In the LS1 vs. LS2 group, 7 potential markers were found,

including Isochlorogenic acid C (Phenolic acids, Log2 FC=15.6), 2-

Oxoheptanedionic acid (Organic acids, Log2 FC=14.42), Creatine

(Organic acids, Log2 FC=13.7), D-Arabinose (Saccharides, Log2
FC=-20.71), 2,3,19,23-Tetrahydroxyurs-12-en-28-oic acid

(Terpenoids, Log2 FC=-16.46), Isovanillic acid (Phenolic acids,

Log2 FC=-13.61), and Anthranilic acid (Phenolic acids, Log2 FC=-

14.14) (Figure 4F). In the LS2 vs. LS3 group, 6 potential markers

were identified, including 2,3,19,23-Tetrahydroxyurs-12-en-28-oic

acid (Terpenoids, Log2 FC=16.74), Benzyl-(2’’-O-glucosyl)

glucoside (Phenolic acids, Log2 FC=12.88), Isochlorogenic acid B

(Phenolic acids, Log2 FC=12.97), Isochlorogenic acid C (Phenolic
B C

D E F

G H I

A

FIGURE 3

Cluster heatmaps of differential metabolites in different tissues at different growth stages. (A–C) Cluster heatmaps of differential metabolites in leaves
between different comparison groups. (D–F) Cluster heatmaps of differential metabolites in stems between different comparison groups. (G–I) Cluster
heatmaps of differential metabolites between leaves and stems at the same growth stages.
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acids, Log2 FC=-15.6), Furanofructosyl-a-D-(6-mustard acyl)

glucoside (Phenolic acids, Log2 FC=-11.51), and N-Alpha-Acetyl-

L-Asparagine (Phenolic acids, Log2 FC=-5.51) (Figure 4G). 6

potential markers were found in LS1 vs. LS3, such as Creatine

(Organic acids, Log2 FC=13.47), 2-Oxoheptanedionic acid (Organic

acids, Log2 FC=14.73), Demethyl coniferin (Phenolic acids, Log2
FC=-12.32), and 2-Isopropylmalic Acid (Organic acids, Log2 FC=-

4.69) (Figure 4H).

There were 6, 3, and 5 potential markers in SS1 vs. SS2

[Furanofructosyl-a-D-(6-mustard acyl) glucoside (Phenolic acids,

Log2 FC=10.78), Dicaffeoylspermine (Alkaloids, Log2 FC=-12.72),

Luteolin-7,3’-di-O-glucoside (Flavonoids, Log2 FC=-13.55),

Hesperetin-6-C-glucoside-7-O-glucoside (Flavonoids, Log2 FC=-

13.41), 1,5,7-trihydroxy-6-methoxy-2-methoxymethylanthraquinone

(Anthraquinone, Log2 FC=5.57), and LysoPG 16:1 (Lipids, Log2
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FC=-8.31)], SS2 vs. SS3 [Nepetoidin B (Phenolic acids, Log2
FC=3.74), Isochlorogenic acid C (Phenolic acids, Log2 FC=-15.43),

and 4-Acetamidobutyric acid (Organic acids, Log2 FC=-4.46)], and SS1

vs. SS3 [Furanofructosyl-a-D-(6-mustard acyl) glucoside (Phenolic

acids, Log2 FC=11.15), Isochlorogenic acid C (Phenolic acids, Log2
FC=-15 .32) , Hesperet in-6-C-g lucos ide-7-O-g lucos ide

(Flavonoids, Log2 FC=-13.41), 1,5,7-trihydroxy-6-methoxy-2-

methoxymethylanthraquinone (Anthraquinone, Log2 FC=9.01), and

LysoPG 16:1 (Lipids, Log2 FC=-8.31)], respectively (Figures 4I–K).

In SS1 vs. LS1, a total of 11 potential markers, including

Eriodictyol-7-O-(6’’-O-p-coumaroyl) glucoside (Flavonoids, Log2
FC=15.18), Gallocatechin-(4a→8)-catechin (Flavonoids, Log2
FC=12.88), Kaempferol-3-O-robinoside-7-O-rhamnoside (Robinin)

(Flavonoids, Log2 FC=14.97), Kaempferol-3-O-(6’’-p-Coumaroyl)

glucoside (Tiliroside) (Flavonoids, Log2 FC=8.95), Farrerol-5,7-di-
B C
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FIGURE 4

The main metabolites and heatmaps of potential markers in different tissues and growth stages of P. palustre. (A–C) The enrichment of different
kinds of metabolites at different growth stages of P. palustre (The values in parentheses represent the standardized relative content of metabolites,
and the magnitude of the values represents the relative content); (D) The distribution heatmap of various metabolites in different tissues and growth
stages of P. palustre; (E) The cluster heatmaps of the main monosaccharides and flavonoids in different tissues and growth stages of P. palustre.
(F–N) The cluster heatmaps of the potential biomarkers in different comparison groups.
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FIGURE 5

Dynamic distribution of metabolite content differences in different comparison groups. (A–C) Dynamic distribution map of differential metabolites in
LS1 _ VS _ LS2, LS2 _ VS _ LS3, and LS1 _ VS _ LS3 comparison groups, respectively. (D–F) Dynamic distribution map of differential metabolites in
SS1 _ VS _ SS2, SS2 _ VS _ SS3, and SS1 _ VS _ SS3 comparison groups, respectively. (G–I) Dynamic distribution map of differential metabolites in
LS1 _ VS _ SS1, LS2 _ VS _ SS2, and LS3 _ VS _ SS3 comparison groups, respectively. The horizontal coordinate of the graph represented the
cumulative number of substances in order of FC from smallest to largest, and the vertical coordinate represented the logarithmic value of FC with 2
as the base, and each point represented a substance. Green points represented the top 10 substances in down-regulation, and the red points
represented the top 10 substances in up-regulation.
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O-glucoside (Flavonoids, Log2 FC=13.23), Lithospermoside

(Alkaloids, Log2 FC=12.52), 2-O-Salicyl-6-O-Galloyl-D-Glucose

(Phenolic acids, Log2 FC=13.37), Argininosuccinic acid (Organic

acids, Log2 FC=12.48), Creatine (Organic acids, Log2 FC=-12.53),

Fraxetin-7,8-di-O-glucoside (Lignans and Coumarins, Log2 FC=-

13.02), and Isochlorogenic acid C (Phenolic acids, Log2 FC=-15.32)
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were identified (Figure 4L). In SS2 vs. LS2, there were 9 potential

markers, like Luteolin-7,3’-di-O-glucoside (Flavonoids, Log2
FC=19.85), Kaempferol-3-O-robinoside-7-O-rhamnoside (Robinin)

(Flavonoids, Log2 FC=15.24), Lithospermoside (Alkaloids, Log2
FC=13.02), Argininosuccinic acid (Organic acids, Log2 FC=11.3), 2-

O-Salicyl-6-O-Galloyl-D-Glucose (Phenolic acids, Log2 FC=14.01),
B C
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FIGURE 6

The VIP score plots of differential metabolites in different comparison groups. (A–C) VIP score plots of differential metabolites in LS1 _ VS _ LS2, LS2
_ VS _ LS3, and LS1 _ VS _ LS3 comparison groups, respectively. (D–F) VIP score plots of differential metabolites in SS1 _ VS _ SS2, SS2 _ VS _ SS3,
and SS1 _ VS _ SS3 comparison groups, respectively. (G–I) VIP score plots of differential metabolites in LS1 _ VS _ SS1, LS2 _ VS _ SS2, and LS3 _ VS
_ SS3 comparison groups, respectively. The horizontal coordinate represented the VIP value, and the vertical coordinate represented the differential
metabolites. Red dots represented the up-regulated differential metabolites, green dots represented the down-regulated differential metabolites, and
yellow dots represented the metabolites that had significant differences in three or more different comparison groups.
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Isochlorogenic acid B (Phenolic acids, Log2 FC=-12.65), 3-Hydroxy-

4-methoxybenzoic acid (Isovanillic Acid) (Phenolic acids, Log2 FC=-

17.23), Anthranilic Acid (Phenolic acids, Log2 FC=-14.05), and

2,3,19,23-Tetrahydroxyurs-12-en-28-oic acid (Terpenoids, Log2

FC=-14.55) (Figure 4M). Moreover, in SS3 vs. LS3, 11 potential

markers were found, containing Eriodictyol-7-O-(6’’-O-p-

coumaroyl) glucoside (Flavonoids, Log2 FC=14.44), Luteolin-7,3’-

di-O-glucoside (Flavonoids, Log2 FC=19.45), Luteolin-7-O-

neohesperidoside (Lonicerin) (Flavonoids, Log2 FC=19.69),

Kaempferol-3-O-glucorhamnoside (Flavonoids, Log2 FC=19.69),

Luteolin-7-O-(2’’-O-rhamnosyl) rutinoside (Flavonoids, Log2
FC=14.82), Kaempferol-3-O-robinoside-7-O-rhamnoside (Robinin)

(Flavonoids, Log2 FC=14.9), Hesperetin-6-C-glucoside-7-O-

glucoside (Flavonoids, Log2 FC=17.69), Kaempferol-3-O-

neohesperidoside (Flavonoids, Log2 FC=19.68), Lithospermoside
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(Alkaloids, Log2 FC=13.37), 2-O-Salicyl-6-O-Galloyl-D-Glucose

(Phenolic acids, Log2 FC=14.3), and Demethyl coniferin (Phenolic

acids, Log2 FC=-14.02) (Figure 4N).
KEGG enrichment analysis

In this study, we identified the pathways with p < 0.05 as

significantly enriched. We analyzed the overall changes in

differential metabolites within the pathways using the differential

abundance score (DA Score). In the LS1 vs. LS2 comparison, we

observed five significantly enriched pathways: up-regulation of the

tryptophan metabolism pathway, down-regulation of arginine

biosynthesis, alpha-linolenic acid metabolism, citrate cycle (TCA

cycle), and biosynthesis of amino acids pathways (Figure 7A). In the
B C

D E F

G H I

A

FIGURE 7

KEGG enrichment analysis in different comparison groups. (A–C) KEGG enrichment analysis of differential metabolites in LS1 _ VS _ LS2, LS2 _ VS _
LS3, and LS1 _ VS _ LS3 comparison groups, respectively. (D–F) KEGG enrichment analysis of differential metabolites in SS1 _ VS _ SS2, SS2 _ VS _
SS3, and SS1 _ VS _ SS3 comparison groups, respectively. (G–I) KEGG enrichment analysis of differential metabolites in LS1 _ VS _ SS1, LS2 _ VS _
SS2, and LS3 _ VS _ SS3 comparison groups, respectively. DA Score value greater than zero indicated that the metabolites in the pathway were
generally up-regulated, and less than zero indicated that the metabolites in the pathway were generally down-regulated. The dots at the end of the
line segment represented the number of metabolites.
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LS2 vs. LS3 comparison, we observed seven significantly enriched

pathways: up-regulation of nucleotide metabolism and purine

metabolism, down-regulation of galactose metabolism, starch and

sucrose metabolism, and arginine biosynthesis. The metabolic

pathways and ABC transporters showed a similar trend in

differential abundance (Figure 7B). As expected, we identified 15

significantly enriched pathways in the LS1 vs. LS3 comparison, with

a significant down-regulation in differential abundance. These

pathways mainly included biosynthesis of amino acids, flavonoid

biosynthesis, carbon metabolism, and others (Figure 7C).

The SS1 vs. SS2, SS2 vs. SS3, and SS1 vs. SS3 comparison groups

exhibited 2, 8, and 6 significantly enriched pathways, respectively
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(Figures 7D–F). In the SS1 vs. SS2 comparison group, purine

metabolism and nucleotide metabolism were down-regulated,

while tryptophan metabolism, biosynthesis of amino acids,

biosynthesis of various alkaloids, aminoacyl-tRNA biosynthesis,

and 2-oxocarboxylic acid metabolism were up-regulated. In the

SS2 vs. SS3 comparison group, phenylalanine metabolism was

down-regulated, showing similar trends in differential abundance

as arginine biosynthesis and plant hormone signal transduction.

Furthermore, in the SS1 vs. SS3 comparison group, tryptophan

metabolism and biosynthesis of various alkaloids were up-

regulated, whereas purine metabolism, nucleotide metabolism,

and phenylalanine metabolism were down-regulated.
FIGURE 8

Metabolic maps of the important metabolic pathways in this study. The red font represents differential metabolites, while the framed font represents
monosaccharides and important flavonoids in P. palustre, as well as important metabolites in the arginine and tryptophan metabolic pathways.
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In the SS1 vs. LS1 comparison group, there were two significantly

enriched pathways: flavone and flavonol biosynthesis and flavonoid

biosynthesis showed up-regulation. In the SS2 vs. LS2 comparison

group, there were five significantly enriched pathways: flavone and

flavonol biosynthesis and tryptophan metabolism showed up-

regulation, while arginine biosynthesis showed down-regulation.

Biosynthesis of secondary metabolites and Vitamin B6 metabolism

showed no change. In the SS3 vs. LS3 comparison group, there were

four significantly enriched pathways: flavone and flavonol

biosynthesis showed up-regulation, while arginine biosynthesis

showed down-regulation. Biosynthesis of secondary metabolites

and Galactose metabolism showed no change (Figures 7G–I).
The metabolic map of the key metabolic
pathways in this study

According to the KEGG enrichment analysis results, arginine

biosynthesis was a common differential pathway between leaf

comparison groups at different stages, while tryptophan

metabolism was a common differential pathway between stem

comparison groups at different stages. In addition, tryptophan

metabolism and arginine biosynthesis were metabolic pathways

with significant differences between the stem-leaf comparison

groups, and flavone and flavonol biosynthesis was also the most

significant common differential pathway between the stem vs. leaf

comparison groups. Therefore, these three metabolic pathways

(arginine biosynthesis, tryptophan metabolism, and flavone and

flavonol biosynthesis) were the representative metabolic pathways

in the growth and development of P. palustre, and were of great

significance for the overall growth and development of P. palustre. It

was especially worth mentioning that polysaccharides and

flavonoids were the main chemical constituents of P. palustre,

which directly affected the quality and efficacy of P. palustre, so

the analysis of the synthesis pathways of polysaccharides and

flavonoids was of great value. Overall, based on the KEGG

database information, a metabolic pathway map of seven crucial

pathways, including tryptophan metabolism, arginine biosynthesis,

flavone and flavonol biosynthesis, flavonoid biosynthesis, starch

and sucrose metabolism, amino sugar and nucleotide sugar

metabolism, galactose metabolism in different tissues and growth

stages of P. palustre was established in this study (Figure 8).
Discussion

The technological advantage of widely
targeted metabolomics

Platostoma palustre (Blume) A. J. Paton is an important edible and

medicinal plant in China, as well as in Southeast Asian countries such

as Vietnam, Malaysia, India, and Indonesia (Wang and Qin, 2014;

Tang et al., 2022a, 2022b). As previously mentioned, metabolomics

profiling is an important strategy for analyzing the chemical

components of medicinal plants at the molecular level (Yang et al.,

2021) and it can be used to identify the types and quantities of

metabolites based on different varieties, growth stages, tissue parts,
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processing methods, and compound materials (Liang et al., 2023).

Widely targeted metabolomics has been widely recognized for

accurately characterizing metabolites with high throughput, high

sensitivity, and broad coverage (Sawada et al., 2009). As an emerging

technology combining both non-targeted and targeted metabolomics

techniques, widely targeted metabolomics has the advantages of

broader coverage and higher sensitivity compared with traditional

metabolomics techniques (Chen et al., 2013). Using non-targeted

metabolomics, a total of 174 (Tang et al., 2023), 184 (Tang et al.,

2021), and 177 (Chen et al., 2024) metabolites were identified in

different treatments in P. palustre. However, in this study, we identified

1228 metabolites using widely targeted metabolomics. This indicated

that more accurate metabolite information was captured by widely

targeted metabolomics. As a result, this technique is more conducive to

the analysis of chemical composition in medicinal plants, although it is

currently a bit expensive.
Distribution and enrichment characteristics
of polysaccharides in P. palustre

Most medicinal plants are rich in polysaccharides, and

their pharmacological properties can be summarized as

immunomodulatory, antitumor, anti-inflammatory, antihypertensive

and antihyperlipidemic, antioxidant, and antimicrobial properties,

which have been shown to have the effects of enhancing the immune

system, preventing cancer, inflammation, and infection (Taoerdahong

et al., 2023). P. palustre polysaccharides have a variety of functional

activities, including antioxidant, regulation of intestinal flora,

hypoglycemic, hypolipidemic, hepatoprotective, immunomodulatory,

and so on (Tang et al., 2023). In addition, the polysaccharides are also

the main components of the gum of P. palustre, which is an important

indicator of the quality of P. palustre (Lin et al., 2013). P. palustre

polysaccharides consist of eight monosaccharides, including

galacturonic acid, glucose, galactose, xylose, mannose, rhamnose,

ribose, and glucuronic acid, with molar percentages of 28.4, 26.5,

16.4, 10.6, 7.4, 5.7, 4.2, and 0.9%, respectively (Lin et al., 2013; Zhang

et al., 2013). In this study, the results showed that the monosaccharide

compounds were mainly enriched in the leaf tissues of P. palustre (D-

arabinose, D-ribose, and L-xylose were highly enriched at the S1 stage,

and D-glucose, D-galactose, D-glucoronic acid, and D-galacturonic

acid were highly enriched at the S2 stage) (Figure 4E). Among them, D-

glucose, D-galactose, D-glucoronic acid, and D-galacturonic acid had

the highest percentage of content, accounting for about 80% of the total

polysaccharide content. These four monosaccharides accumulated the

highest in LS2, therefore, when considering polysaccharides as a

harvesting index, the S2 stage might be an optimal harvesting time.

In addition, analysis of the metabolic pathways involved in

monosaccharide synthesis in P. palustre revealed that the pathways

involved in monosaccharide biosynthesis and metabolism were mainly

starch and sucrose metabolism, amino sugar and nucleotide sugar

metabolism, and galactose metabolism pathways. It was indicated that

these metabolic pathways might directly affect the synthesis and

metabolism of polysaccharides in P. palustre, leading to the

differential enrichment of polysaccharides in different tissues and the

growth and development stage of P. palustre.
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Distribution and enrichment characteristics
of flavonoids in P. palustre

Flavonoids are distributed in almost all plant tissues and have

many pharmacological activities, especially quercetin, which has

strong pharmacological activity in preventing DNA damage caused

by various cancer factors (George et al., 2017). In addition,

flavonoids have a variety of biological functions and play an

important role in regulating plant growth and development,

resisting various stresses, and regulating plant flower color (Wang

et al., 2021b; Zhuang et al., 2023). In our study, during the growth

process of P. palustre, flavonoids were enriched in both stems and

leaves with the extension of time, among which the leaves had the

most obvious enrichment of flavonoids. It was worth mentioning

that in this study, Quercetin was significantly enriched in stem

tissues at the S2 stage. This suggested that the stems of P. palustre

might also have medicinal value in preventing DNA damage.

Overall, the leaves of P. palustre might have higher medicinal

value, a conclusion that was consistent with the findings of other

research (Liu and Feng, 2008b) (Figure 4E). Ifflavonoid compounds

were used as a harvesting indicator, P. palustre harbored the most

variety and higher content of flavonoids at the S2 stage, which was

the optimal harvesting time. This stage was consistent with the

period when considering polysaccharides as a harvesting index.

Therefore, we suggested that this period (S2) be designated as the

optimal harvesting period, which would optimize the utilization

of P. palustre. In addition, analysis of the synthesis pathway of

flavonoids in P. palustre revealed that the pathways of flavone and

flavonol biosynthesis and flavonoid biosynthesis were highly up-

regulated in the leaf tissues, which might be the main reason for the

differences in flavonoids between the leaf tissues and stem tissues.
Effects of tryptophan and arginine on the
growth and development of P. palustre

Tryptophan is a precursor for the synthesis of various hormones in

plants, which not only regulates plant growth and development, tissue

regeneration, inflorescence opening, and other processes through the

synthesis of signaling molecules such as IAA and melatonin (Zhao,

2012; Back et al., 2016; Naureen et al., 2022), but also participates in

plant defense responses (Sun et al., 2015; Li B. et al., 2019). In this study,

when comparing the metabolic patterns of stems and leaves, we found

that the differential abundance of the tryptophan metabolism pathway

showed significant up-regulation in both stems and leaves with the

growth of P. palustre. Compared with the S1 stage, the accumulation

abundance of tryptophan increased in the S2 and S3 stages. Therefore,

it was speculated that tryptophan might play an important role in the

growth and development of P. palustre. Further understanding the

mechanism that tryptophan participated in the growth and

development of P. palustre would be of great significance for further

elucidating the metabolic regularity of P. palustre.

Arginine is an important nitrogen source for plants and a

precursor for the synthesis of signaling molecules in vivo (Winter

et al., 2015; Wang et al., 2021a). Arginine played an important role
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in the senescence process of Poplar and an accumulation of arginine

in stems was observed during senescence (Couturier et al., 2010). In

this study, the results showed that the differential abundance of the

arginine biosynthesis pathway was significantly up-regulated in

stem tissues with the growth of P. palustre (Figure 7). It was

consistent with the findings of Couturier et al. (2010). In

addition, arginine enhances the synthesis of soluble sugars,

flavonoids, proline, free amino acids, and phenolics in Triticum

aestivuml under normal or stressful conditions (Hussein et al.,

2022). Our results showed that monosaccharides and flavonoids

were significantly enriched during the S2 stage. It was indicated that

arginine might also have the same ability to promote the synthesis

of sugars and flavonoids in the growth and development of P.

palustre. Thus, arginine might have potential research and

application value in improving the quality of P. palustre.
Screening of potential markers based on
widely targeted metabolomics

Due to the complexity of plant chemical components, the

diversity of different origins and harvesting seasons, and the

mixture of non-medicinal components, the current quality

standards for traditional Chinese medicine still face challenges in

evaluating the overall chemical consistency of traditional Chinese

medicine. Screening potential markers and using them as quality

control indicators is of great significance for ensuring the

effectiveness and safety of drugs (Zeng et al., 2023). In addition,

using metabolites themselves as markers can often more intuitively

reflect the differences between samples. Combining plant

metabolomics with network pharmacology can also serve as an

effective and comprehensive method for discovering potential active

ingredients in traditional Chinese medicine (Liang et al., 2021; Li

et al., 2021b). In this study, the screening of potential metabolic

markers of P. palustre not only helped to reveal its metabolic

characteristics at different growth stages and among different

tissues but also laid the foundation for the search for secondary

metabolic compounds with potential utilization value as well as the

further development and utilization of P. palustre.
Conclusions

In this study, we performed widely targeted metabolomics on

stems and leaves of three stages of P. palustre based on the UPLC-

MS/MS detection platform, and a total of 1228 metabolites were

detected, including 241 phenolic acids, 203 flavonoids, 152 lipids, 128

terpenes, 66 alkaloids, 79 organic acids, 44 lignans, 9 quinones, 106

amino acids, 68 nucleotide derivatives, 74 saccharides, 1 tannin and

so on. Additionally, we identified 13, 10, and 23 potential markers in

leaf, stem, and leaf vs. stem comparison groups. Generally, the

important monosaccharides and flavonoids that composed the P.

palustre gum were enriched in the leaf tissues during the S2 stages,

suggesting that harvesting P. palustre during this stage might

maximize its yield and quality. Furthermore, significant variations
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in the expression of metabolic pathways such as tryptophan

metabolism, galactose metabolism, and arginine biosynthesis

contribute to the metabolic differences observed in the leaves. The

current study not only revealed the metabolic changes during the

growth and development of P. palustre and provided theoretical

support for its cultivation and breeding but also laid the foundation

for future research on the key medicinal components of P. palustre

and its pharmacology and pharmacodynamics.
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