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Plants have evolved distinct defense strategies in response to a diverse range of

chewing and sucking insect herbivory. While chewing insect herbivores,

exemplified by caterpillars and beetles, cause visible tissue damage and induce

jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids

and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-

mediated defense responses. This review aims to highlight the specificity of

defense strategies in Brassica plants and associated underlying molecular

mechanisms when challenged by herbivorous insects from different feeding

guilds (i.e., chewing and sucking insects). To establish such an understanding in

Brassica plants, the typical defense responses were categorized into physical,

chemical, and metabolic adjustments. Further, the impact of contrasting feeding

patterns on Brassica is discussed in context to unique biochemical andmolecular

modus operandi that governs the resistance against chewing and sucking insect

pests. Grasping these interactions is crucial to developing innovative and

targeted pest management approaches to ensure ecosystem sustainability and

Brassica productivity.
KEYWORDS

herbivore feeding pattern, defense responses, Brassica, chewing herbivores,
sap-sucking
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1 Introduction

The co-evolutionary arms race between plants and herbivorous

insects has shaped the fascinating diversity of defense strategies

observed in nature (Kareiva, 1999; Fürstenberg-Hägg et al., 2013).

Plants have developed sophisticated defense responses to counter

insect attacks, adapting to different herbivore feeding guilds. These

defense responses are intricately connected to signaling pathways

such as Jasmonic acid (JA), Salicylic Acid (SA), and Ethylene (ET)

(War et al., 2012). These signaling pathways can regulate direct and

indirect plant defense strategies that effectively deter, repel, and

combat herbivorous insects (Kunkel and Brooks, 2002; Bari and

Jones, 2009; Checker et al., 2018). The coordination of these defense

pathways enables plants to deploy tailored and multifaceted

responses, enhancing their ability to withstand and adapt to

herbivores attack (Rejeb et al., 2014; Checker et al., 2018; Aftab

and Roychoudhury, 2021).

Brassica, globally recognized as the second largest oilseed crop

after soybean, holds a prominent position in the agricultural

landscape (Attia et al., 2021). With an annual global production

of around 72 million metric tons, this versatile crop plays a pivotal

role in addressing food security, owing to its diverse uses, including

oil extraction and as a crucial component in human diets (Mabry

et al., 2021; Chen et al., 2023). However, Brassica crops face

significant annual losses due to biotic stressors, particularly insect

pests (Warwick, 2011; Baldwin et al., 2021). Approximately, 50-60%

of Brassica crop production is believed to be susceptible to losses

caused by insects and mites (Poveda et al., 2020). The worldwide

pest management of crop plants including Brassica plants highly

relies on insecticides which poses great environmental risks

(Warwick, 2011). The susceptibility of Brassica crops to a

multitude of insect pests and concerns regarding insecticide

treatments underscore the pressing need for comprehensive

understanding and the development of effective and sustainable

control strategies to mitigate yield losses and safeguard its

economic significance.

The plant immune system plays a pivotal role in shaping the

dynamic interplay between plants and insect herbivores (Zhou and

Zhang, 2020). As plants have evolved diverse defense strategies in

response to varied feeding patterns of chewing and sucking insects,

the importance of understanding these intricate molecular

mechanisms requires specific attention (War et al., 2018). The

ability of plants to discern and mount tailored defense responses,

such as JA-mediated defenses against chewing insects and SA-

mediated defenses against sucking insects, showcases the

sophistication of their immune system (Nguyen et al., 2016;

Stroud et al., 2022). Recognizing the specificity of these defense

strategies is not only essential for comprehending plant-insect

interactions but also holds immense significance for devising

targeted pest management strategies (Vega-Álvarez et al., 2023).

In the context of Brassica plants, where distinct physical, chemical,

and metabolic adjustments contribute to defense (Ahuja et al.,

2011), unravelling the intricacies of the plant immune system is

key to developing innovative approaches that enhance ecosystem

sustainability and ensure the productivity of Brassica crops.
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This review primarily focuses on the interactions between

herbivorous insects and plants belonging to the Brassica genus.

Focusing on Brassica, we aim to provide a comprehensive synthesis

of how chewing and sucking behaviors influence the activation of

defense strategies mainly relying on involvement of JA and SA, the

underlying molecular mechanisms (a specific focus on SA-JA

crosstalk), and the impact on physical defense traits. Investigating

Brassica’s responses, we highlight valuable insights into the broader

mechanisms governing plant-insect interactions and defense

strategies. In summary, this review will delve into the intricate

interplay between herbivore feeding guilds and plant defense

responses, with a specific emphasis on the unique attributes

observed in Brassica species. By shedding light on the

evolutionary trajectories of defense strategies, this study seeks to

contribute to our understanding of the dynamic interactions

between insects and plants in shaping the ecological landscape.
2 Defense responses and their mode
of expression in Brassica against
herbivorous insects

Plants have been coexisting with and facing endless challenges

from herbivorous insects for hundreds of millions of years. Plants,

including Brassica species, have evolved an arsenal of defense

strategies to combat herbivore attack (Gatehouse, 2002; Ahuja

et al., 2010). Plant defenses are broadly classified as direct and

indirect defenses. Direct defenses are plant traits (e.g., trichomes,

secondary metabolites) that reduce their susceptibility to insect

herbivores or negatively affect insect biology or behavior (Chen,

2008; War et al., 2012). Indirect defenses are traits (e.g., herbivore-

induced plant volatiles (HIPVs), extrafloral nectaries) that promote

the attraction or efficacy of natural enemies of herbivorous insects

such as predators and parasitoids (Heil, 2008; Aljbory and Chen,

2018). Both direct and indirect defenses can be expressed

constitutively (i.e., always present in plants) or induced following

insect attack. The metabolic costs of induced defenses are considered

to be lower than constitutive defenses, particularly when insect

pressure is sporadic (Karban, 2011), and there could be a trade-off

between constitutive and induced defense responses (Zhang et al.,

2008). Plant phytohormone signaling networks, particularly JA and

SA signaling pathways play crucial roles in optimizing plant defenses

against insect herbivores (Verma et al., 2016). In particular, the JA

signaling cascade is considered a master regulator of induced plant

responses to insect attack (Erb et al., 2012).

Brassica plants show a diverse array of direct physical and

chemical defenses against herbivorous insects (Figure 1). Among

physical defenses, epicuticular wax and trichomes account for one of

the first lines of defenses against herbivores. For example, the

presence of epicuticular wax was found to enhance Brassica

oleracea resistance to the diamondback moth (Plutella xylostella),

flea beetles (Phyllotreta spp.), and cabbage stink bugs (Eurydema

spp.) (Bohinc et al., 2014; Silva et al., 2017). Although such

morphological structures are constitutive defenses in Brassica

plants, trichome density and epicuticular wax composition can be
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induced when challenged by insect herbivores (Traw and Dawson,

2002; Blenn et al., 2012).

The primary direct chemical defense in Brassica is the

production of nitrogen- and sulfur-containing secondary

metabolites known as glucosinolates (GS) that negatively affect

insect herbivores (Hopkins et al., 2009; Jeschke et al., 2021),

specifically generalist insects such as Spodoptera littoralis and

Mamestra brassicae (Jeschke et al., 2017). GS are diverse in their

structures (i.e., more than 130 known compounds) and are

expressed constitutively in Brassica (Hopkins et al., 2009;

Agerbirk and Olsen, 2012). The composition of GS in the family

Brassicaceae varies depending on plant species, plant organs,

ontogenetic stages, agricultural practices, and environmental

conditions (Textor and Gershenzon, 2009; Ahuja et al., 2010).

Although GSs per se could be toxic to insects (Kim et al., 2008),

they become highly toxic when hydrolyzed by a specific enzyme

called myrosinase and converted to toxic compounds such as

isothiocyanates and nitriles (Agrawal and Kurashige, 2003;

Wittstock et al., 2016). Both GSs and myrosinase are stored in

adjacent but separate cells and GSs only encounter the enzyme

when plant tissues are mechanically damaged by insect feeding

(Hopkins et al., 2009).

Even though Brassicaceous plants possess GSs constitutively,

their levels, particularly that of indole GSs, in tissues can be induced

rapidly and substantially following shoot or root herbivory by

insects (van Dam and Raaijmakers, 2006; Travers-Martin and

Müller, 2007; Textor and Gershenzon, 2009). Insect attack can

cause a redistribution of GSs in different organs or de novo synthesis

of GSs in both attacked (i.e., local induction) and non-attacked (i.e.,

systemic induction) tissues (Hopkins et al., 2009; Touw et al., 2020).

Likewise, the levels of myrosinase enzyme in plant tissues might

increase upon insect feeding in some cases (Pontoppidan et al.,
Frontiers in Plant Science
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2003; Travers-Martin and Müller, 2007; Cachapa et al., 2021),

although the impacts of such induction on plant defenses remain

uncertain (Textor and Gershenzon, 2009).

Considering that some specialist herbivores such as Pieris rapae

and P. xylostella can neutralize GS (Ratzka et al., 2002; Wittstock

et al., 2004), other secondary metabolites such as phenolic

compounds (e.g., flavonoids) and terpenoids (e.g., saponins) can

confer direct resistance to specialist insects (Badenes-Perez et al.,

2014; Ibrahim et al., 2018; Kovalikova et al., 2019). Moreover,

cultivated Brassica plants can produce antioxidant defense

enzymes such as polyphenol oxidase (PPO) and peroxidase

(POD) and defensive proteins such as trypsin proteinase

inhibitors (TPI) to defend specialist insects (Khattab, 2007;

Ahmed et al., 2022). All these secondary metabolites and

antioxidant enzymes can be present in Brassica constitutively or

induced following insect attack, or both (Ibrahim et al., 2018;

Kovalikova et al., 2019).

Brassicaceous plants produce herbivore-induced plant volatiles

(HIPVs) when attacked by pest herbivores (Figure 1), including

glucosinolate breakdown products such as nitriles and

isothiocyanates (Uefune et al., 2012; Mathur et al., 2013c; Zhou

and Jander, 2022). The emission of HIPVs can deter insect

herbivores (Verheggen et al., 2013) and attract their natural

enemies, thus facilitating the top-down control of herbivorous

insects (Puente et al., 2008; Mathur et al., 2013c) Furthermore,

Brassica juncea can produce extrafloral nectaries as an indirect

defense, which can be present in plants constitutively, but the

amount of nectar production could be induced following insect

feeding (Figure 1) (Mathur et al., 2013a). The possession and

induction of such nectaries could support natural enemies of

herbivores by providing alternative foods (Jamont et al., 2013;

Mathur et al., 2013a).
FIGURE 1

Outline of Brassica defenses against herbivorous insects. Both direct and indirect defenses can be expressed constitutively or induced following
insect attack, or both. While physical defenses are typically expressed constitutively, certain physical defense structures such as trichomes and
epicuticular wax could be induced in response to insect attack.
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3 Impacts of herbivore feeding
patterns on Brassica
defense mechanisms

3.1 Jasmonic acid-mediated defenses in
response to chewing insects

The majority of all known herbivorous insects belong to the

orders, Coleoptera and Lepidoptera, that physically consume the

plant tissues with their mouth parts evolved for chewing

(Schoonhoven et al., 2005). For example, caterpillars follow a

special pattern when feeding, removing uniform pieces of leaf

tissue in a highly choreographed and predictable manner (Howe

and Jander, 2008). Plants have developed various intricated

mechanisms to perceive and respond to damage caused by

chewing insects. The direct attack by chewing insects orchestrates

a prompt and targeted host plant response, commencing a cascade

of molecular events that yields in activation of JA-mediated plant

defenses (Walling, 2000; Bari and Jones, 2009). Upon detection of

chewing damage, plants release specific signals, such as damage-

associated molecular patterns (DAMPs) and herbivore-associated

molecular patterns (HAMPs) (Mithofer and Boland, 2008; Stahl

et al., 2018; Uemura and Arimura, 2019). These signals are

perceived by the plant receptors, triggering a signaling cascade

that ultimately leads to the synthesis and accumulation of

JA signaling.

As the core signaling pathway, JA is activated in response to

herbivore chewing and wounding damage. The biosynthesis and

signaling of JA have been reviewed elsewhere in detail (Hou and

Tsuda, 2022; Kundu et al., 2023). Briefly, JA biosynthesis exist in

various cellular compartments, primarily in the chloroplasts,

peroxisomes, and cytosol (Staswick and Tiryaki, 2004; Erb et al.,

2012; Wasternack and Hause, 2013). The precursor of JA

biosynthesis is the unsaturated fatty acid linolenic acid (LA)

which is derived from membrane phospholipids. Lipoxygenase

(LOX) oxidize LA to 13-hydroperoxylinolenic acid (13-HPOT)

which is afterward converted to 12-oxophytodienoic acid (OPDA)

following two oxidation phases, allene oxide synthase (AOS) and

allene oxide cyclase (AOC) (Ruan et al., 2019). Following the

transportation of OPDA from chloroplast to the peroxisome,

enzymatic reactions finally yield JA and its derivatives in cytosol

(Erb et al., 2012; Ruan et al., 2019).

JA is perceived by F-box protein coronatine insensitive1 (COI1)

which forms the SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase

complex, SCFCOI1 (Yan et al., 2013). When JA is absent, jasmonate

zim-domain (JAZ) proteins interact with transcription factors (TFs),

repressing their activity (Katsir et al., 2008). For example, JAZ

deficient mutants lead to increased expression of diverse transcript

factors that yielded elevated resistance against the chewing insect

Trichoplusia ni (Guo et al., 2018). JA-Ile binding to COI1 triggers the

degradation of JAZ through the 26S proteasome (Ruan et al., 2019).

This molecular cascade facilitates the activation of the transcription

factor MYC2 and its homologs, culminating in the induction of JA-

responsive genes harboring the G-box motif (CACATG) (Schweizer

et al., 2013). Noteworthy participants in this regulatory network
Frontiers in Plant Science 04
include auxiliary factors, exemplified by the mediator subunit

MED25. Another significant transcription factor that is regulated

by JAZ, Ethylene Insensitive 3 (EIN3) induces expression of ethylene-

responsive TFs (ERFs) such as Octadecanoid-responsive AP2/ERF

domain protein 59 (ORA59) (Vos et al., 2013). The MYCs constitute

a significant group of TFs in response to chewing insects since they

construct a mechanism that prioritize the responses to chewing

damage and associated cues (Erb et al., 2012). The evidence clearly

suggested that chewing insect feeding causes overexpression ofMYC2

branch of JA pathway that activates JA-responsive genes, such as

Vegetative Storage Protein 2 (VSP2) (Sheard et al., 2010).

Furthermore, other TFs such as MYC3 and 4 interact with MYC2

and activate JA-mediated plant defense mechanisms against the

damage by S. littoralis that induces JA accumulation in Arabidopsis

(Schweizer et al., 2013; Schmiesing et al., 2016).

The genetic manipulation studies have revealed that several genes

in JA signaling are overexpressed and play significant roles in

response to chewing insects. For example, several LOX genes, lox2,

3, 4, and 6, despite their distinct spatial expression, are induced upon

wound damage (Wasternack and Hause, 2013). The lox Arabidopsis

plants become severely susceptible to attack by S. littoralis feeding

and artificial wounding with varying results for combinations of lox

mutants (Glauser et al., 2008; Chauvin et al., 2013). Similarly, AOS-

deficient Arabidopsis plants are susceptible to S. littoralis while AOS-

overexpressed plants have enhanced resistance to this pest (Laudert

et al., 2000). JA-mediated plant defenses against S. littoralis are

completely impaired in coi1 Arabidopsis plants as well

(Bodenhausen and Reymond, 2007). Similarly, H. armigera feeding

was increased on myc Arabidopsis plants and decreased on MYC2-

overexpressed Arabidopsis plants (Dombrecht et al., 2007). Other

examples include the knockout of JAR and JOX genes, which results

in an impaired JA signaling pathway that could not enhance

resistance against wounding and Mamestra brassicae, respectively

(Suza and Staswick, 2008; Caarls et al., 2017).

JA-mediated chemical defenses of Brassica plants include

several classes of secondary metabolites such GSs, flavonoids,

terpenoids, alkaloids, proteinase inhibitors (Howe and Jander,

2008). GSs are the predominant secondary metabolites present in

Brassica plants, and most of the genes involved in GS biosynthesis

are JA-inducible. The expression of these genes is governed by a

functional regulatory module constituted by MYC and MYB TFs

(Erb and Reymond, 2019). For instance, Arabidopsis feeding by S.

exigua activates the JA pathway, resulting in an enhanced

accumulation of GSs (Mewis et al., 2005). Notably, the genes

participating in the biosynthetic pathway of GS are induced by

JA, facilitated by the involvement of the bHLH TFs MYC2, MYC3,

MYC4, and MYC5 (Yang et al., 2011; Schweizer et al., 2013). A

coordinated functioning of MYB TFs is responsible for distinct

branches of GSs biosynthesis, namely, methionine-derived aliphatic

GS (MYB28, MYB29, and MYB76) and tryptophan-derived indole

GS (MYB34, MYB51, and MYB122), which directly interact with

MYC TFs, conferring resistance against S. littoralis (Gigolashvili,

Berger, et al., 2007; Gigolashvili, Yatusevich, et al., 2007;

Gigolashvili et al., 2008, 2009; Schweizer et al., 2013). The

overexpression profile of MYB TFs such as MYB28 and MYB51

caused increased production of aliphatic and indole GS, respectively
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both of which adversely affected S. exigua (Gigolashvili, Berger,

et al., 2007; Gigolashvili, Yatusevich, et al., 2007). In contrast, a

double mutant myb28 myb29 lacking aliphatic GS was more

susceptible to the feeding activity by Mamestra brassicae

(Beekwilder et al., 2008).

JA-mediated expression of different transcript factors can cause

release of other secondary metabolites in addition to GSs. For

example, Arabidopsis JAZ proteins interacting with bHLH TF

MYB, regulate anthocyanin biosynthesis (Qi et al., 2011). In the

presence of JA-Ile, the JAZ proteins are degraded, leading to the

accumulation and overexpression of the WD-repeat–bHLH–MYB

complex (Goossens et al., 2017). JA and its methyl esters MeJA are

key elicitors of terpenoid indole alkaloid (TIA) biosynthesis. The

key components of JA, including the JA co-receptor Coronatine

Insensitive 1 (COI1) and the five JASMONATE ZIM-domain

proteins CrJAZ1/2/3/8/10 have been characterized for their roles

in regulating TIA biosynthesis (Patra et al., 2018). Terpenoids and

GLVs often comprise a large and diverse portion of the volatile

blends emitted by intact as well as damaged Brassica plants (van

Poecke et al., 2001; Mumm et al., 2008).

Altogether, JA mediates various plant defenses against multiple

attackers, especially herbivorous insects (Zhang et al., 2017). The

biosynthetic pathways that lead to specialized metabolites especially

secondary compounds such as terpenoids, alkaloids and GSs have

been proven to be induced by the JA signaling pathway (De Geyter

et al., 2012; Goossens et al., 2017). For example, Arabidopsis plants

lacking GS biosynthesis responsive genes are highly susceptible to a

wide range of chewing herbivores (Erb et al., 2012). Arabidopsis fah1-7

deficient in the sinapoyl malate enzyme exhibits increased

susceptibility to P. brassicae (Onkokesung et al., 2016), whereas

reduced levels of kaempferol 3,7-dihamnoside in MYB75

overexpression lines correlate with increased P. brassicae performance.

JA defends plants indirectly by attracting natural enemies of

insect pests through volatile emissions (Ozawa et al., 2008; Kappers

et al., 2010). Parasitoids exhibit a keen ability to recognize HIPVs

that are associated with their specific hosts and host plants. In

specialized parasitoids, this ability may be innate (De Moraes et al.,

1998), whereas generalist parasitoids learn to distinguish between

different HIPV blends (Cardé and Bell, 1995). Natural enemies are

responsive to common terpenoids, such as monoterpene (E)-

ocimene and the monoterpene alcohol linalool (Dicke et al., 1990;

Du et al., 1998), the methylene monoterpene (3E)-4,8-dimethyl-

1,3,7-nonatriene, the methylene sesquiterpene (3E,7E)-4,8,12-

dimethyl-1,3,7,11-tridectetraene (Dicke et al., 1990; Khan et al.,

1997) and the sesquiterpene (E)-b-caryophyllene (Flint et al., 1979;
Rasmann et al., 2005; Xiao et al., 2012). The emission levels of

HIPVs are changed by P. rapae that attract parasitic wasps Cotesia

rubecula (van Poecke et al., 2001; van Poecke and Dicke, 2002). The

parasitism of P. rapae caterpillars by C. rubecula enhances plant

fitness, increasing plant reproduction (van Loon et al., 2000). The

perception ability of natural enemies of HIPVs emitting host plants

may highly depend on survival strategy. For example, the specialist

Cotesia rubecula can discriminate between induced host plants

exposed to the damage by host larvae parasitized by conspecifics,

while the generalist C. glomerata was unable to perform such a

discrimination (Fatouros et al., 2005).
Frontiers in Plant Science 05
3.2 Salicylic acid-mediated defenses in
response to sap-sucking insects

Sap-sucking insects encompassing a diverse array of pests,

including aphids, whiteflies, thrips and so on, have a pivotal

position in the functioning network of tropic levels. Sap-sucking

insects exhibit distinct mouthpart morphology that are evolved

based on their survival strategies. Several groups including aphids,

mealybugs, psyllids and whiteflies search for a feeding site in the

phloem veins, extending their stylets through cuticle, epidermis,

and mesophyll (Walling, 2008). Thrips and mites suck the

epidermal and mesophyll cell contents, puncturing using tube-like

mouthparts while leafhoppers feed both on phloem and xylem

contents (Mewis et al., 2005; Walling, 2008). The sap-sucking

mouth parts do not cause a great damage on plant tissues by

individual sap-suckers when compared with chewing insects while

the sap-sucking damage may still have importance for plant

immune system, especially when attacked by a settled population

(Schoonhoven et al., 2005; Zhao et al., 2009). The significance of

sap-sucking insects to plant immunity is not limited to tissue

damage since an array of elicitors may accompany these pests

while invading the host plants. Salivary, gut and honeydew

endosymbiotic bacteria, salivary and ovipositional components,

and associated plant pathogens such viruses may be involved in

their attack on host plants (Wari et al., 2019). Once sap-sucking

insects launch an attack on plant vascular tissues, plants induce SA-

mediated defense responses.

SA is produced via two different signaling pathways; the

isochorismate (IC) pathway, located in the chloroplast of plant cells

and mediated by IC-synthase (ICS), and the phenylalanine

ammonium (PA)-mediated by PA-lyase (PAL) pathways both of

which are derived from chorismate (Dempsey et al., 2011). The core

metabolite required for both signaling pathways is chorismate which is

the main source of SA production in Arabidopsis (Wildermuth et al.,

2001). Arabidopsis plants possess two ICS promoters, ICS1 and ICS2

which govern the chorismate-isochorismate conversion (Macaulay

et al., 2017). The ICS1 promoter have WRKY and MYB TF binding

sites which play roles in plant response against herbivores. These ICS

enzymes individually or in combination can yield isochorismate

(Strawn et al., 2007). IC amino acid conjugation producing

isochorismate-9-glutamate, results in SA accumulation via avrPphB

Susceptible3 (PBS3), a process exclusively characterized in

Arabidopsis, followed either by spontaneous decomposition or

enzymatic conversion via Enhanced Pseudomonas Susceptibility 1

(EPS1) (Jagadeeswaran et al., 2007; Nobuta et al., 2007; Rekhter et al.,

2019; Torrens-Spence et al., 2019). The transportation of IC from

chloroplast to cytosol requires Enhanced Disease Susceptibility 5

(EDS5) protein, a MATE transporter (Nawrath and Métraux, 1999;

Nawrath et al., 2002). The studies with ICS mutants clearly revealed

that SA can still be synthesized and accumulated. Further assessments

including PAL-deficient plants have demonstrated that this SA

biosynthesis in Arabidopsis continues via PAL pathway (Mauch-

Mani and Slusarenko, 1996; Hu et al., 2010). However, there is a

possible interplay between ICS- and PAL-mediated SA accumulation

since a significant reduction was observed in ICS-mediated SA

accumulation, when Arabidopsis plants lacked PAL activity. In PAL
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-mediated SA pathway, chorismate is converted to Phenylalanine that

derivates Trans-cinnamic acid (t-CA) and then produces SA via

benzoic acid (BA) via Abnormal Inflorescence Meristem 1 (AIM1)

functioning (Dempsey et al., 2011).

The involvement of SA signaling in plant defense systems could

be either independent of or dependent on NPR1, a master regulator

of plant defense mechanisms. In an NPR1-dependent manner,

redox signals influence the activity of NPR1. For example,

activated THIOREDOXIN h5 can reduce disulfide bonds in

NPR1, causing monomerization and nuclear translocation of

NPR1 (Figure 2) (Spoel et al., 2009). The NPR1 was first

identified in a screening of Arabidopsis mutants that were unable

to activate the expression of PR genes or disease resistance (Cao

et al., 1994; Delaney et al., 1994; Shah et al., 1997). The promoter

region of the NPR1 gene involves W-box sequences, which function

as binding sites for WRKY family proteins. The mutations in the

W-box sequences impair the expression levels of NPR1 which

underscores the significance of WRKY TFs in regulation of SA-

NPR1 signaling (Yu et al., 2001). NPR1 functions in two places

namely the cytoplasm and the nucleus. The cytosolic NPR1

functioning is more related to its interplay with JA-responsive

TFs, that finally yields their SA-JA crosstalk (Figure 2A), while

nuclear NPR1 is responsible for resistance development in response

to stress factors. NPR1 directly interacts with TGA TFs and NIMIN

proteins. The TGA TFs directly interact with PR-1 gene through

binding to the activation sequence-1 (as-1) in its promoter region

(Lebel et al., 1998). The requirement of SA for interactions between

NPR1 and TGA TFs is highly TGA factor-specific. Interestingly, the

presence of SA may also induce the expression of NIMIN1,

NIMIN2, and NIMIN3 genes while NIMIN1 adversely affects SA-

NPR1 signaling (Weigel et al., 2001, 2005). NIMIN1 overexpression

has a significant role which causes induction of ETI and SAR, while

its reduced regulation enhances the induction of PR-1 gene by SA.

NPR1 is not always required for plant defenses. Transcription of

several genes such as PR may require NPR1-independent SA

signaling. The TFs responsible for SA-dependent and NPR1-

independent resistance cover WHIRLY (WIH) and MYB genes.

For example, SA can induce the single-stranded DNA binding

activity of WHY, in an NPR1-independent manner (Desveaux

et al., 2004). Furthermore, MYB30 positively regulates the

pathogen-induced HR in an SA-dependent, NPR1-independent

manner (Raffaele et al., 2006).

SA-mediated defense networks are interconnected, and the

expression of certain genes, such as ACD6, ALD1, PAD4, EDS1,

EDS5, EPS1, ICS1/2, AIM1 PAL and PBS3/WIN3, is inducible by

SA, suggesting a mechanism of signal amplification involving both

upstream and downstream components in the SA pathway. For

example, feeding by M. persicae on Arabidopsis rosette leaves

significantly induced the overexpression profiles of two genes:

NPR1-dependent SA-associated genes PR-1 and BGL2 (Moran

and Thompson, 2001). Bemisia tabaci feeding on Arabidopsis

plants induced both local (PR1, BGL2, PR5, SID2, EDS5, PAD4)

and systemic (PR1, BGL2, PR5) gene induction (Zarate et al., 2007).

The main secondary metabolite group in Brassica plants consists

of GSs even when attacked by sap-sucking insects. For example, M.

persicae-infested Arabidopsis plants release elevated levels of
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phenylpropanoid and isochorismate (van Poecke, 2007; Louis et al.,

2012), which are highly dependent on and sensitive to the genes

involved in SA biosynthesis. Furthermore, aphid infestation on

Arabidopsis causes volatile derivatives of indolyl-GS and

isothiocyanates (Mewis et al., 2005, 2006). Furthermore, feeding

activity by M. persicae can cause Arabidopsis plants to release

several terpenoids and the green leaf volatile, methyl salicylate

(MESA) (Aharoni et al., 2003; van Poecke, 2007; Tholl and Lee, 2011).

The SA-mediated plant defenses are known to negatively affect

the sap-sucking attackers while providing significant cues for

foraging natural enemies. Methyl salicylate (MeSA), a volatile

analogue of SA, attracts Coccinella septempunctata L. after

infestation by the soybean aphid, Aphis glycines Matsumura (Zhu

and Park, 2005). Salicylic acid analog, BTH (benzo-(1,2,3)-

thiadiazole-7-carbothioic-acid S-methyl ester) enhances the

suppression of A. gossypii without negative effects on the

predatory larva C. carnea (Moreno-Delafuente et al., 2020).
3.3 The evolution of SA-JA crosstalk in
response to herbivore feeding guilds

The induction of plant defense mechanisms commences upon

perceiving the herbivore feeding and oviposition associated specific

cues including DAMPs and MAMPs (Acevedo et al., 2015). Plants,

upon recognition of these patterns, activate several intriguing

signaling networks, including mitogen-activated protein kinase

(MAPK) such as wound-induced protein kinase (WIPK), SA-

induced protein kinase (SIPK) signaling cascades (Seo et al., 1995;

Nürnberger and Scheel, 2001; Bonaventure, 2012; Acevedo et al.,

2015). These signals are known to both positively or negatively

regulate the defense-responsive phytohormones, JA and SA

signaling pathways and corresponding downstream transcriptional

responses (Jagodzik et al., 2018). These two signaling pathways are

among the most significant pathways that are induced following

herbivore attack and may frequently crosstalk.

The JA-SA crosstalk is reciprocally antagonistic in which the

activation of one signaling pathway inhibits the counterpart (Thaler

et al., 2012). This crosstalk is governed by the specific genes

inherent to respective pathway that strategically disables the

antagonist (Hickman et al., 2019). The crosstalk, as a clear

advantage for plants, enhances the strategy of optimal energy and

resource allocation for the most effective defense response,

therefore, potentially plays a central role in the evolutionary

regulation of plant defense mechanisms (Thaler et al., 2012).

Therefore, plants have to first perceive the herbivores and

associated cues and, afterward, develop the most suitable defense

mechanism which are generally subject to crosstalks.

The establishment of defensive plant responses against insects

highly depends on the phytohormonal signaling pathway and the

regulative involvement of TFs that are central to crosstalks. The

most commonly studied TFs involved in plant–insect interactions

are MYCs, ERFs, MYBs, and WRKYs (Figure 2A). A growing body

of evidence has demonstrated a clear suppression of both MYC and

ERF branches of JA in SA-JA crosstalk. The well-known direct

targets of JAZ repressors are closely related to bHLH factors,MYC2,
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MYC3, and MYC4 (Fernández-Calvo et al., 2011). AtMYC2, for

example, was reported to act downstream of JA and to regulate JA-

dependent herbivore resistance (Dombrecht et al., 2007). These

three MYCs, interacting with MYB proteins, regulate defense

against insect herbivory by binding to a G-box motif found in the

promoter of GS biosynthesis genes (Schweizer et al., 2013). The

feeding damage of P. rapae on Arabidopsis plants induced JA

pathway through the activation of the transcript factor, MYC2

and JA-responsive marker gene, VSP2 expression (Figure 2B) (De
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Vos et al., 2005; Verhage et al., 2011; Vos et al., 2015). Furthermore,

the feeding of P. rapae on Arabidopsis strongly inhibited the other

TFs of JA pathway, ERF-branch which includes the marker gene

PDF1.2 (Verhage et al., 2011). The MYC2-branch including VSP2

marker gene is known to regulate the defenses in response to

wounding and chewing damage by insects while ERF-branch that

covers high expression levels of PDF1.2 contributes plant defense in

response to sucking insects (Figure 2B) (De Vos et al., 2005). In

Arabidopsis, both of the JA-responsive genes PDF1.2 and VSP2 are
FIGURE 2

A schematic representation of SA-JA crosstalks in response to herbivory: (A) An overview of SA and JA induction in response to different feeding
guilds depicting that chewing insects are more prone to induce JA-responsive plant defenses and sucking insects exhibits the tendency to trigger
SA-responsive plant defenses. The overview of SA-JA cross-talk that is represented by red lines demonstrating the orientation of reciprocal
suppression by respective transcription factors (TFs). The proposed models suggest two (cytosolic and nuclear) crosstalks steps between SA and JA
via activated NPR1 (carrying a star). NPR1 activation occurs through the induction of a transition from an oligomeric state (NPR without star) to a
monomeric state (with star), a prerequisite for its effective functioning. The activated NPR1 may participate directly in crosstalk, either within the
cytoplasm or following translocation into the nucleus. The molecular consequences of possible crosstalk models as a function of reciprocal
suppression effects of respective TFs. The side by side panels, (B–F) are consisted of three steps, first box showing the basal level of two TFs (boxes
with two squares) which means plants are not under attack and the defense mechanisms are not induced, the second box showing the induced TF
upon herbivory and the third box showing the suppressive effect of the antagonistic TFs. (B) indicates the suppression of MYC TFs by NPR1 that
refers to SA-dependent plant responses are in control. (C) shows the suppression of ERF TFs by NPR1 that refers to SA-dependent plant responses
are in control. (D) depicts the suppression of NPR1 by ERF1 and MYC, respectively, that refers to JA-dependent plant responses are in control.
(E) shows the suppression of NPR1 by ERF1 and MYC, respectively, that refers to JA-dependent plant responses are in control. (F) depicts the
crosstalk within JA signaling pathway which results in suppression of ERF1 by MYC. The arrows in (B–F) panels indicate the direction of working
scheme of crosstalks between TFs. The circles in each box (under (B–F) panels) depicts the induction of respective TF while a single circle of
suppressed TF is intentionally left in each crosstalk final to show the suppressive effect of the suppressor TF. The colors of squares and circles in
(B–F) are based on the colors of TFs (NPR1, MYCs and ERF1 and respective genes) in panels (A) and (B) The background of panels (B–F) are based
on SA and JA signaling pathways.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1376917
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2024.1376917
highly sensitive to suppression by SA. Therefore, SA-dependent

plant defense mechanisms suppresses both MYC and ERF branches

of JA pathway (Figures 2A, B). WRKY TFs are considered to be

responsible for the regulation of expression of NPR1 and,

accordingly, SA-dependent defenses (Bakshi and Oelmüller,

2014). For example, the overexpression of WRKY70 enhances the

expression of SA-responsive PR genes which plays suppressive roles

against JA-responsive PDF1.2, the complete mechanism of which is

NPR1-dependent (Li et al., 2004). Furthermore, the antagonistic

effect of SA on JA signaling was shown to be controlled by NPR1

functioning in the cytosol (Spoel et al., 2003; Pieterse and Van Loon,

2004), with very recent findings indicating that NPR1 physically

interacts with MYCs for suppression of JA-responsive genes

(Figure 2A) (Nomoto et al., 2021). The cytosolic NPR1 suppresses

JA signaling in cooperation with other cytosolic factors such as

MPK4 and PAD4 while nuclear NPR1 suppressesMYC2 (Figure 2B)

(Pieterse et al., 2009; Nomoto et al., 2021).

The chewing insects have to overcome and manipulate the host

plant for their own benefit so that they employ some other cues by

activating the antagonistic signaling pathway of SA against JA. The

compounds in salivary excretion of S. exigua namely, glucose

oxidase (GOX), causes suppression of JA-regulated plant defense

in Arabidopsis by activation of systemic acquired resistance (Weech

et al., 2008). Furthermore, SA inhibited induced resistance of

Arabidopsis in response to S. exigua through alteration of JA-

dependent defense mechanisms such as defense protein activity

and GS induction (Cipollini et al., 2004). Foliar treatment of

Arabidopsis plants with egg extracts of two chewing herbivores, P.

brassicae and S. littoralis significantly reduced the activation of

several JA-responsive marker genes, the majority of which consists

of MYC branch, and the employment of SA-deficient sid2-1 plants

confirmed this suppression was controlled by SA (Figure 2B)

(Bruessow et al., 2010). In comparison with chewing or wounding

damage by P. brassicae and S. littoralis that induce accumulation of

JA (Bruessow et al., 2010; Onkokesung et al., 2016), the involvement

of egg-derived elicitors can cause a reversed induction of plant

defenses through SA-JA crosstalk (Bruessow et al., 2010).

Interesting host manipulative engagements by insect pests with

different feeding guilds covers a reversed version of crosstalk when

compared to the case with chewing insects. These manipulative

engagements suggest that JA-SA crosstalk may stem from the

suppression of SA-responsive WRKY TFs by MYC branch of JA.

For example, a previous study revealed the increased B. brassicae

density with simultaneous P. xylostella infestation lowered the

expression profile of WRKY and increased the expression profile

of MYC2 (Figures 2A, B) (Kroes et al., 2015). Furthermore, the

infestation of Brassica napus plants with B. brassicae, exhibiting

similar effects with JA treatments, had negative effects on the

growth and development of the chewing pest, P. xylostella

(Nouri-Ganbalani et al., 2018). The removal of the COI1 receptor

and MYC branch of JA resulted in a high-level accumulation of SA

(Spoel and Dong, 2008). This manipulation is apparently not only

for the benefit of the first attacker but also for the plant itself since

they experience more intriguing defense responses. This seems

quite phenomenal since a general understanding has suggested

that JA mediates plant defenses upon feeding damage by chewing
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herbivores or artificial wounding and induces direct and indirect

responses against the attacker and its natural enemies (Titarenko

et al., 1997; Bruinsma et al., 2009).

In contrast to chewing insects, sap-sucking insect-induced plant

defenses that are highly dependent on the attacker and feeding

damage. For example, sap-sucking insect species associated with

higher cell damage are more prone to induce JA-dependent plant

responses while those with lower cell damage can induce SA

dependent responses. For example, the higher level of JA-

responsive marker gene, PDF1.2 and respective plant defense

mechanisms of Arabidopsis in response to B. brassicae and F.

occidentalis when compared with M. persicae is likely

corresponded to relatively greater cell damage during the process

of reaching the phloem as a function of distinct probing behavior

(Cole, 1997; Moran et al., 2002; De Vos et al., 2005). For aphid

species, M. persicae, the crosstalk seems more complex as such SA

dependent plant responses with PR-1 and BGL-2 and JA-dependent

responses with PDF1.2 and LOX2 constitute a simultaneous

expression for both pathways while SA-responsive expression was

dominative over JA-responsive marker genes (Moran and

Thompson, 2001). However, further factors rather than cell

damage can interfere with plant defense responses to sap-sucking

insects. In Arabidopsis plants that suffered Eurydema oleracea

feeding activity, PDF1.2 gene expression was suppressed by the

activation of PR1a and ICS1 (Ederli et al., 2020). Therefore, an

attack by E. oleracea clearly activates SA pathway and suppresses JA

defenses (Costarelli et al., 2020). Similarly, in response to B. tabaci,

the gene transcripts responsive to SA (PR1, BGL2, PR5, SID2, EDS5,

PAD4) were activated while those responsive to both MYC2 and

ERF branches of JA (PDF1.2, VSP1, FAD2, FAD3, FAD7, THI2.1,

COI1) were either suppressed or non-respondent (Kempema et al.,

2007; Zarate et al., 2007; Zhang et al., 2013).

In general, one signaling pathway is expected to suppress the

other since a crosstalk between JA and SA prioritizes one signaling

defense pathway over the other in response to herbivore attack. The

expression of marker genes of both signaling pathway may be due to

a concentration-dependent degree of crosstalk (Moran and

Thompson, 2001; Mur et al., 2006; Spoel et al., 2007).

Insect attack could induce plant defense mechanisms other than

JA and SA. For instance, P. brassicae egg deposition in Arabidopsis

plants has been shown to cause localized cell death, callose

accumulation, and the production of reactive oxygen species (Little

et al., 2007). The induction of these defense mechanisms in response

to oviposition-associated cues canmanipulate host plants defenses for

the benefit of the ovipositing pest, preventing other attackers

(Orlovskis and Reymond, 2020). Plants facing antagonistic

attackers may develop intricate defense systems that hinder their

ability to respond effectively to secondary attackers. This complexity

arises from the activation of signaling pathways by the primary

attackers, rendering it challenging for plants to reversely crosstalk,

while protecting the balance of resource allocation, and thereby

rendering them more susceptible to subsequent assaults from

secondary attackers (Vos et al., 2015). Whether this is the case

depends highly on the concentrations and combinations of

activated defensive proteins and VOCs upon triggered signaling

pathway (Smith and Boyko, 2007; Howe and Jander, 2008).
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3.4 Glucosinolate biosynthesis and
regulation in Brassica

Glucosinolates are pivotal plant defense compounds in Brassica,

exhibiting structural and ecological diversity (Hopkins et al., 2009).

The intricate regulatory network governing GS biosynthesis

dynamically responds to stress, immune triggers, and herbivory,

thereby influencing plant fitness (Zukalová and Vasak, 2002; Bruce,

2014; Mitreiter and Gigolashvili, 2021) (Figure 3). The evolutionary

significance of GSs is underscored by the interplay of genes, TFs,

and hormonal cues (Schweizer et al., 2013; Mitreiter and

Gigolashvili, 2021). Subgroup 12 R2R3 MYB TFs (e.g., MYB28,

MYB29) positively regulate GSs, forming complexes with bHLH

proteins, while Subgroup IIIe bHLHs (e.g., MYC2, MYC3)

modulate GS types in response to phytohormones like jasmonate

(Gigolashvili et al., 2008; Seo and Kim, 2017; Millard et al., 2019).

Hormonal interactions, especially the JA-SA crosstalk, highlight

nuanced control mechanisms governing plant immunity and GS

production (Tsuda et al., 2009; Guo et al., 2013). Upon plant

damage, GSs initially biologically inert, become potent through

myrosinase-driven hydrolysis, yielding compounds responsible for

toxicity and herbivore deterrence (Bones and Rossiter, 1996). Over

130 GS structures exist, predominantly within Brassica (Newton

et al., 2009; Textor and Gershenzon, 2009). Herbivory induces GS

production, with indolic GSs showing a consistent 1.2- to 20-fold

increase, irrespective of the herbivore type (Sontowski et al., 2019).

The jasmonate signaling cascade activates TFs controlling GS

biosynthesis, while the functions of myrosinase-associated

proteins remain inadequately studied.
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Insect herbivores from different feeding guilds can influence

glucosinolate biosynthesis and regulation in plants (Hopkins et al.,

2009; Textor and Gershenzon, 2009). Sucking herbivores,

exemplified by aphids, generally induce fewer changes in GSs and

associated gene expression compared to chewing insects like beetles

and caterpillars (Barth and Jander, 2006; Sato et al., 2019). This

distinction is rooted in aphids’ feeding behavior, targeting single

phloem cells and spatially separating them from myrosinase,

potentially avoiding the trigger for glucosinolate breakdown

(Barth and Jander, 2006). Despite the typically low induction of

GSs in response to sucking herbivores, recent investigations intoM.

persicae feeding on Arabidopsis revealed the induction of specific

indolic GSs, such as 4-methoxyindol-3-ylmethyl glucosinolate,

suggesting a crucial role in insect-host interactions even in the

absence of myrosinase (Agerbirk et al., 2009). Another study in

Arabidopsis showed that infestation by M. persicae and B. brassicae

induces genes associated with indole GSs synthesis (Mewis et al.,

2006; Kuśnierczyk et al., 2007), and B. brassicae infestation leads to

GSs accumulation (Nouri-Ganbalani et al., 2018). However,

contradictory results were observed in B. juncea-fruticulosa

introgression lines infested by L. erysimi, with impacts on varying

GS content (Palial et al., 2018). In B. juncea, transcripts related to

biosynthetic pathways, including GSs, were induced in response to

A. craccivora, whereas attenuated by L. erysimi infestation (Duhlian

et al., 2020). In B. rapa infested by L. erysimi, the total GS content

was enhanced, while those infested by M. persicae released lower

levels (Blande et al., 2007). Slight stress by B. brassicae also

enhanced leaf growth and increased GS emission in the bulb, the

main storage organ of B. rapa (Sotelo et al., 2014). Considering the
FIGURE 3

Salicylic acid- and jasmonic acid-mediated plant defense mechanisms are orchestrated by transcription factors (TFs). The color of each outer box
corresponds to the ellipses indicating TFs. Red fonts depict suppression of the mechanisms, whereas the black font means accumulation or
production of respective defense mechanism. The arrows indicate direct induction while inhibitory lines suggest negative crosstalks. The TFs in
ellipses induce the upregulation of the gene group (most common) attached around.
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impact of herbivory on the GS-myrosinase defense system, sucking

herbivores are known to trigger an increase in myrosinase enzyme

activity or transcript levels (Siemens and Mitchell-Olds, 1998;

Pontoppidan et al., 2005) or may have no effect (Travers-Martin

and Müller, 2007). A separate study investigating the influence of B.

brassicae infestation on the myrosinase-glucosinolate system in B.

napus has reported induction of genes associated with this defense

system (Pontoppidan et al., 2003). However, contradictory results

have also been documented; for instance, in Arabidopsis infested by

B. brassicae, a consistent decrease in myrosinase transcript levels

was observed (Kuśnierczyk et al., 2007).

Similar to sucking herbivores, chewing herbivores significantly

influence the regulation of GSs in plants. For example, generalist S.

exigua and specialist P. rapae larvae, two recognized chewing

herbivores, play a crucial role in shaping GS concentrations in

different ecotypes of Arabidopsis. The impact is observed in both

aliphatic and indole GSs, with a more pronounced effect on indole

GS, consistent with patterns seen in herbivore-attacked plants (Mewis

et al., 2006; Textor and Gershenzon, 2009; Gols et al., 2018). The

feeding activity of S. exigua and P. rapae induces similar GS profiles

after induction, demonstrating a consistent response to different

chewing herbivores (Kos et al., 2012). In B. oleracea, P. rapae

induces significant changes, leading to increased foliar

concentrations of GSs compared to undamaged plants

(Broekgaarden et al., 2007; Poelman et al., 2008). Caterpillar-

induced slight stress on young B. rapa plants enhances bulb mass

and results in a contrasting regulation of aliphatic and indolic GSs

(Sotelo et al., 2014). Chewing herbivores’ impact on GS composition

is evident in Arabidopsis, where S. exigua increases aliphatic GS

content, and P. rapae slightly induces indole GSs. Additionally, D.

radicum larval infestation upregulates indole GS synthesis genes in

both low and high GS varieties of B. rapa (Sontowski et al., 2019).

Recent studies on primary roots of B. oleracea reveal that leaf

herbivores cause an increase in the expression of the indole GS

biosynthesis gene CYP81F4, highlighting intricate regulatory

mechanisms in plant defense against chewing herbivores

(Karssemeijer et al., 2022). In summary, the intricate and varied

responses in glucosinolate regulation underscore the specificity of

plant-herbivore interactions and the adaptive strategies of Brassica

plants to different feeding behaviors of insect herbivores

(Supplementary Table 1).
3.5 Physical defenses in Brassica against
insect herbivores

Brassica plants employ an array of physical defenses to shield

themselves from herbivores and environmental challenges. These

defenses encompass various components, including trichomes

(Mathur et al., 2011; Hao et al., 2019), the cuticle (Khattab, 2007),

the leaf surface (Eigenbrode and Espelie, 1995; Ahuja et al., 2010),

and thorns or hairs (Traw, 2002) (Figure 3). It is worth noting that

predictions suggest that both physical and chemical defense traits

can be induced independently, without necessitating trade-offs.

However, it is observed that the induction of physical traits may

be comparatively weaker due to higher construction costs and time
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delays (Barton, 2016). These physical defense mechanisms, when

combined with chemical defenses enhance the capacity to deter

herbivores, form a comprehensive defense strategy for Brassica

plants against herbivory and environmental stressors (Mostafa

et al., 2022). Insect feeding patterns exert substantial influence on

the physical defense mechanisms of Brassica plants, specifically

impacting callose deposition, leaf thickness, and trichome density

(Kos et al., 2012; Mathur et al., 2013b; Will et al., 2013; Rubil et al.,

2022) (Figure 3). These responses typically manifest as alterations in

trichome density, becoming noticeable within a timeframe of days

to weeks (Dalin et al., 2008).

The impact of herbivore feeding on the physical defenses of

Brassica plants has not been extensively studied. Only a limited

number of investigations have been conducted, primarily focusing

on chewing herbivores such as the larvae of P. rapae (Agren and

Schemske, 1993; Traw, 2002; Traw and Dawson, 2002),

Trichoplusia ni (Traw and Dawson, 2002), and Spodoptera species

(Mathur et al., 2011). These studies have revealed that herbivore

infestation significantly enhances the production of trichomes as a

physical defense mechanism in Brassica plants against invading

herbivores. In contrast, transcriptomic analysis of sucking

herbivores feeding on Brassica plants revealed an induction in the

gene expressions responsible for callose deposition [Callose

synthase 1 (CALS1), vitamin C defective 2 (VTC2)], cell wall

modifications [O-methyltransferase family 2 protein, vitamin C

defective 2 (VTC2), and Xylogucan endotransglycosylase 6

(XTH6)], and trichome production [Glabrous 1 (GL1)]

(Kempema et al., 2007; Kuśnierczyk et al., 2008; Broekgaarden

et al., 2011) Supplementary Table 1.

The alteration of the cell wall, as observed in response to

sucking herbivores, could discourage aphids by strengthening the

barriers to probing (Thompson and Goggin, 2006). The host

preference of M. persicae is impacted by XTH genes in

Arabidopsis (Divol et al., 2007). Similarly, O-methyltransferase,

found within the phenylpropanoid pathway, plays a role in the

synthesis of lignin, a chemical compound known for imparting

structural integrity to the cell wall (Whetten and Sederoff, 1995;

Zhao et al., 2021). This function potentially serves as a defense

mechanism against insects.
3.6 Other secondary metabolites
in Brassica

In addition to extensively discussed compounds such as JA, SA,

GSs, and physical defense mechanisms against sucking and chewing

insect herbivores, it is crucial to acknowledge the significant

contributions of other secondary metabolites. The secondary

metabolites such as tannins, flavonoids, phenols, glycosides,

terpenes, green leaf volatiles, phytoalexins, and camalexins are

integral elements in the intricate defense strategies employed by

Brassica plants against insect pests and pathogens (Simmonds,

2003; Ahuja et al., 2010; Cartea et al., 2010; Ibrahim et al., 2018).

However, insect herbivory can alter their production and content in

the plant. Chewing insect infestations, exemplified by flea beetles

Phyllotreta nemorum and P. brassicae in B. oleracea, have been
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linked to an increase in polyphenols (Kovalikova et al., 2019).

Additionally, P. brassicae caterpillar infestation in B. oleracea

exhibited elevated levels of phenols, condensed tannins, and

flavonoids, particularly in JA-treated plants (Ibrahim et al., 2018).

The influence of P. brassicae caterpillar infestation on B. nigra

resulted in significant alterations to sugars and phenolic

compounds, with a specific impact on flavonol glucosides and

hydroxycinnamic acid derivatives (Ponzio et al., 2017). Moreover,

P. brassicae caterpillar feeding in B. nigra led to the accumulation of

TCAs and phenylpropanoids while depleting amino acids

(Papazian et al., 2019). Similarly, caterpillar infestation induces

the emission of green-leaf volatiles and isothiocyanate in B. rapa

(Verheggen et al., 2013).

Sap-sucking insect infestation also alters the secondary

metabolite profile of Brassica plants. For example, aphid

infestation in Brassica genotypes (B. fruticulosa, B. juncea, B.

rapa) consistently led to a reduction in flavonols, total sugars, and

free amino acids. Conversely, total phenols exhibited a reversed

pattern, with a significant increase in phenol content in Brassica

genotypes with minor exception for B. fruticulosa (Palial et al.,

2018). Similarly, an induction in camalexin accumulation in A.

thaliana has been recorded in response to B. brassicae infestation

(Kuśnierczyk et al., 2008). In contrast, aphid B. brassicae feeding on

B. oleracea resulted in a significant decrease in sugars, amino acids,

and total soluble protein levels, accompanied by increased lipid

peroxidation (malondialdehyde content) in infested leaves

compared to healthy plants (Khattab, 2007). Notably, another

study on B. oleracea found that aphid herbivory, induced by B.

brassicae and the generalist M. persicae, did not affect the levels of

flavonoids upon infestation (Khan et al., 2011). Additionally,

numerous studies have reported an increase in the emission of

volatile organic compounds (VOCs) from Brassica sp. plants upon

insect herbivore infestation. These emissions differ in quality and

quantity depending on the insect feeding guilds (Verheggen et al.,

2013). For instance, Brassica sp. plants infested with aphids showed

an elevated level of VOCs in blends, including terpenes

(monoterpenes and sesquiterpenes), (E)-ß-farnesene, ß-pinene,

and (E)-2-hexanol (Verheggen et al., 2013; Najar-Rodriguez et al.,

2015). In summary, sap-sucking insect infestation induces complex

changes in Brassica plants, affecting secondary metabolites and

volatile organic compounds. This nuanced interaction highlights

the diverse adaptive strategies employed by plants in response to

insect herbivores.

Orchestrating signaling pathways, TFs interplay with the

production of defensive compounds and structures in Brassica

plants, playing a pivotal role in the intricate network of defense

mechanisms against diverse insect feeding guilds. In Brassica, the

transcription factors NPR1 and ETR1 are vital for enhancing total

GS content in response to insect feeding (Mewis et al., 2005).

Moreover, MYB transcription factors, specifically MYB28,

MYB29, MYB34, and MYB122, play a pivotal role in elevating the

expression of genes within the glucosinolate biosynthetic pathway,

contributing to enhanced glucosinolate accumulation (Guo et al.,

2013). The MYB/MYC model, involving MYB28, MYB29, MYC2,

MYC3, and MYC4, influences aliphatic GS accumulation (Li et al.,

2014). MYC2, a transcriptional activator in the MYC2-branch of
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the JA pathway, contributes to the wound-response and defense

against insect herbivores (Verhage et al., 2011). Transcription

factors, including MYB, NAC, WRKY, ERF (AtERF38), and MYC

(bHLH), are pivotal in regulating secondary metabolites such as

flavonoids and terpenoids, and contribute to the synthesis of lignin

and cell wall thickening in plants (Owji et al., 2017; Wasternack and

Strnad, 2019; Huang et al., 2023). R2R3 MYB, basic helix-loop-helix

(bHLH), and WD40 proteins constitute major families regulating

flavonoid and anthocyanin biosynthesis in Brassica (Chiu et al.,

2010). Key transcription factors from the MYB and bHLH families,

such as GLABRA1 (GL1), MYB5, MYB23, GLABRA3 (GL3),

ENHANCER OF GLABRA3 (EGL3), and TRANSPARENT

TESTA 8 (TT8), play a central role in regulating trichome

development in Brassica (Chiu et al., 2010). Overexpressing NAC

transcription factors NST1 and NST2 induces secondary wall

thickening in Brassica, enhancing physical defense mechanisms

(Yang et al., 2020). In conclusion, the interplay of transcription

factors in Brassica plants, including NPR1, ETR1, MYBs, MYCs,

and others, orchestrates a sophisticated defense network against

diverse insect feeding guilds. Their regulatory roles span from

glucosinolates and other secondary metabolite biosynthesis to

different physical defense mechanisms, establishing a

comprehensive and efficient response to biotic challenges.
4 Conclusion and future prospects

In summary, this review highlights the pivotal role of distinct

defense mechanisms in Brassica plants when confronting chewing

and sucking herbivores, involving JA-mediated pathways for the

former and SA-mediated pathways for the latter. Additionally, we

discuss how these pathways cross talk under herbivores attack. This

specificity may enable the development of targeted pest

management strategies, reducing reliance on environmentally

harmful insecticides and promoting ecosystem sustainability.

Categorizing defense responses into physical, chemical, and

metabolic adjustments establishes a comprehensive framework for

enhancing resilience to herbivores. The paper underscores the

intricate interplay between herbivore feeding patterns and plant

defense responses, providing valuable insights into the co-

evolutionary dynamics between Brassica plants and insects.

Understanding the impact of insect herbivores’ diverse feeding

patterns on plants involves a complex interplay of rapid and slow

events at local and systemic levels. Recent findings by Ali et al.,

(2024), suggest that identifying these pathways enables the artificial

induction of plant defense systems through mimicking the damage

patterns caused by mechanical damage, thereby providing a

controlled and sustainable approach. Investigating cross-talk

between JA and SA pathways offers promise for developing a

unified approach, allowing for specific adjustments based on

insect feeding patterns, contributing to innovative and sustainable

pest control methods. Tailoring plant defense strategies based on

insights into insect feeding patterns can facilitate the development

of resistant cultivars, optimizing plant resistance to prevalent

herbivores in specific regions and improving crop success

compared to non-resistant varieties. Analysing the relationship
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between insect herbivore feeding guilds and glucosinolate dynamics

offers valuable genetic insights. This understanding can be leveraged

to engineer resistant plant varieties through precise genetic

modifications, such as gene knockouts or additions. These

findings not only contribute to unravelling the plasticity of plant

defenses against herbivores but also hold significance for the

strategic management of Brassica in agroecosystems.
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