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GRIK phosphorylates and
activates KIN10 which also
promotes its degradation
Jing Sun †, Hui Liu , Jantana K. Blanford , Yingqi Cai †,
Zhiyang Zhai * and John Shanklin *

Biology Department, Brookhaven National Laboratory, Upton, NY, United States
The sensor kinase Sucrose Non-fermenting-1-Related Kinase 1 (SnRK1) plays a

central role in energy and metabolic homeostasis. KIN10 is a major catalytic (a)
kinase subunit of SnRK1 regulated by transcription, posttranslational

modification, targeted protein degradation, and its subcellular localization.

Geminivirus Rep Interacting Kinase 1 and 2 (GRIK1 and 2) are immediate

upstream kinases of KIN10. In the transient protein expression assays carried

out in Nicotiana benthamiana (N. benthamiana) leaves, GRIK1 not only

phosphorylates KIN10 but also simultaneously initiates its degradation.

Posttranslational GRIK-mediated KIN10 degradation is dependent on both

GRIK kinase activity and phosphorylation of the KIN10 T-loop. KIN10 proteins

are significantly enriched in the grik1-1 grik2-1 double mutant, consistent with

the transient assays in N. benthamiana. Interestingly. Among the enriched KIN10

proteins from grik1-1 grik2-1, is a longer isoform, putatively derived by alternative

splicing which is barely detectable in wild-type plants. The reduced stability of

KIN10 upon phosphorylation and activation by GRIK represents a mechanism

that enables the KIN10 activity to be rapidly reduced when the levels of

intracellular sugar/energy are restored to their set point, representing an

important homeostatic control that prevents a metabolic overreaction to low-

sugar conditions. Since GRIKs are activating kinases of KIN10, KIN10s in the grik1

grik2 double null mutant background remain un-phosphorylated, with only their

basal level of activity, are more stable, and therefore increase in abundance,

which also explains the longer isoform KIN10L which is a minor isoform in wild

type is clearly detected in the grik1 grik2 double mutant.
KEYWORDS
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Introduction

Plant Sucrose Non-fermenting-1-Related Kinase 1 (SnRK1) belongs to a family of

Ca2+-independent serine/threonine protein kinases that are related to the Sucrose Non-

Fermenting 1 (SNF1) kinase found in fungi, and the AMP-activated protein kinase

(AMPK) in animals (Broeckx et al., 2016). In plants, SnRK1 functions as an important
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metabolic sensor kinase that is activated under low carbon/energy

conditions. Activated SnRK1 phosphorylates a constellation of

target proteins including key transcription factors and metabolic

enzymes that results in a broad reprogramming of metabolism

(Sugden et al., 1999; Baena-González et al., 2007; Tsai and

Gazzarrini, 2012; Mair et al., 2015; Zhai et al., 2017). SnRK1 is a

heterotrimeric complex composed of a catalytic a subunit (encoded

by KIN10 and KIN11, also known as SnRK1a1, and SnRK1a2,
respectively) in Arabidopsis and regulatory subunits: b and bg
(Ramon et al., 2013; Emanuelle et al., 2015; Peixoto and Baena-

González, 2022). KIN10 is also capable of activity independent of its

regulatory subunits (Ramon et al., 2019). KIN10 is broadly

expressed while KIN11 expression is restricted to specific tissues

and developmental stages (Williams et al., 2014). Alternate splicing

of KIN10 results in two KIN10 protein isoforms. The long KIN10

isoform (referred to as KIN10L herein) has a 23 residue N-terminal

extension relative to the short KIN10 (referred to as KIN10). KIN10

appears to be the major KIN10 form in planta because the

transcript levels of KIN10 in multiple tissues under laboratory

growth conditions are reported to be much higher than those of

KIN10L (Williams et al., 2014). In terms of physiological functions,

overexpression of KIN10 leads to hypersensitivity to glucose and

abscisic acid (ABA) (Jossier et al., 2009). It also increases leaf soluble

sugar (i.e., glucose, Fructose, and sucrose) content (Jossier et al.,

2009; Wang et al., 2019). Significant amounts of starch are detected

in the kin10 kin11 double mutant at the end of the dark period

suggesting that KIN10 and KIN11 are involved in mobilizing starch

during darkness (Baena-González et al., 2007). While the functions

of KIN10 and KIN11 largely overlap, some differences have been

noted, for instance, KIN10 overexpression delayed flowering while

KIN11 overexpression promoted flowering (Baena-González et al.,

2007; Tsai and Gazzarrini, 2012; Williams et al., 2014; Wang et al.,

2019). KIN10 was reported to positively regulate stomatal

development under high sucrose conditions. Both kin10 and

kin11 single mutants showed lower stomatal index relative to wild

type (Han et al., 2020). For a broader description of the functions of

KIN10 and KIN11, please refer to the following reviews (Crepin and

Rolland, 2019; Margalha et al., 2019; Baena-González and Lunn,

2020; Peixoto and Baena-González, 2022).

Two Arabidopsis SnRK1 activating kinases, SnAK1 and SnAK2,

also widely referred to as GRIK2 and GRIK1(Geminivirus Rep

Interacting Kinase 1 and 2) respectively, are upstream activating

kinases of KIN10 and KIN11. They activate KIN10 or KIN11 by

phosphorylating T175 in KIN10 activation loop (T-loop) or T176 in

KIN11 T-loop. The phosphorylation activates their in vitro activity

(Shen and Hanley-Bowdoin, 2006; Hey et al., 2007; Shen et al.,

2009). Consequently, in the grik1-1 grik2-1 double mutant, T-loop

phosphorylation is not observed (Glab et al., 2017). The grik1-1

grik2-1 double mutant displays a dwarfed growth habit and is

infertile (Glab et al., 2017), phenocopying the kin10 kin11 double

mutant (Baena-González et al., 2007), consistent with essential in

vivo roles of GRIKs in the activation of SnRK1. It has also been

reported that activated KIN10 can phosphorylate and inhibit the

activity of GRIKs in vitro, providing evidence for negative feedback

regulation of KIN10 activation (Crozet et al., 2010).
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The phosphorylated disaccharide trehalose 6-phosphate (T6P)

acts as a signal of intracellular sucrose availability connecting plant

growth and development to its metabolic status (Schluepmann

et al., 2003; Lunn et al., 2006; Yadav et al., 2014; Figueroa and

Lunn, 2016). We recently reported that at physiologically relevant

levels, T6P directly binds to KIN10 weakening the affinity of GRIK1

for KIN10, thereby reducing the phosphorylation of KIN10’s T-

loop, KIN10 activation and SnRK1 activity (Zhai et al., 2018).

Besides activation of KIN10/11 by its upstream kinases,

selective degradation of KIN10/11 is a mechanism that attenuates

SnRK1 signaling and prevents detrimental hyperactivation during

responses to stresses. KIN10 can interact with Pleiotropic

Regulatory Locus 1 (PRL1) (Bhalerao et al., 1999) and KIN10

degradation is mediated by the DDB1-CUL4-ROC1-PRL1 E3

ubiquitin ligase, via its interaction with the KIN10-PRL1 complex

(Lee et al., 2008). Under low-nutrient conditions, myoinositol

polyphosphate 5-phosphatase 13 (5PTase13) is required to

stabilize KIN10 and slow its degradation by the 26S proteasomal

pathway (Ananieva et al., 2008). It has been demonstrated that

application of ABA to wheat roots can result in a dramatic

reduction of KIN10 (Coello et al., 2012). KIN10 degradation is

reported to be strictly dependent on its kinase activity because two

KIN10 kinase mutants: T175A and K48M (impaired in their

phosphotransferase activity) accumulate to higher levels than wild

type KIN10 due to its reduced degradation (Baena-González et al.,

2007; Crozet et al., 2016). In other studies, KIN10/11 were also

found to be SUMOylated by SIZ1 (E3 Small Ubiquitin-like Modifier

(SUMO) ligase), marking them for proteasomal degradation

(Crozet et al., 2016).

Based on the observations that GRIK is the major kinase that

phosphorylates and activates KIN10 at its T-loop and that a KIN10

T-loop mutant [KIN10 (T175A)] shows increased stability relative

to KIN10, we tested whether GRIK is directly involved in

KIN10 degradation.

Here, we report that transient co-expression of KIN10 with

GRIK1 in Nicotiana benthamiana (N. benthamiana) leaves results

in significant degradation of KIN10 and that the GRIK1-dependent

KIN10 degradation is contingent on the kinase activity of GRIK1 in

phosphorylating the KIN10 T-loop.

Consistently, KIN10 protein levels are significantly elevated in

the grik1-1 grik2-1 double mutant. Two isoforms of KIN10 are

identified upon immunoprecipitations using KIN10 antibody from

the grik1-1 grik2-1 double mutant, among them is a long alternative

splicing isoform that is a minor isoform in wild-type plant.
Results

GRIK1 phosphorylates KIN10 promoting
its degradation

It was previously reported that KIN10 degradation is strictly

dependent on its kinase activity (Baena-González et al., 2007;

Crozet et al., 2016). Since GRIK is the major kinase that

phosphorylates and activates KIN10, we tested whether GRIK is
frontiersin.org
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involved in KIN10 degradation. GFP signal from GFP-tagged

KIN10L was monitored upon transient co-expression of KIN10L

with GRIK1 in Nicotiana benthamiana (N. benthamiana) leaves by

fluorescence microscopy (Figure 1A) and western blotting with
Frontiers in Plant Science 03
anti-GFP antibodies (Figure 1B). Previously, it was shown that

Threonine-198 (T198) in the T-loop of KIN10L (equivalent to T175

in the T-loop of KIN10) is phosphorylated by GRIK and essential

for KIN10 kinase activity (Shen et al., 2009). Consistent with
frontiersin.org
B
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FIGURE 1

Overexpression of GRIK1 results in KIN10 degradation in N. benthamiana Leaves. (A) Representative fluorescence confocal images of N.
benthamiana leaf samples 3 d after co-agroinfiltration with gene expression combinations as shown. EV, empty vector. KIN10L, long splicing protein
isoform of KIN10. KIN10L(T198A), a KIN10L mutant. Bar = 250 mm. (B) immunoblot analysis of samples in (A) shows protein levels of total GFP-
KIN10L or GRIK1-HA and respective phosphorylated (GFP-KIN10L-P) and non-phosphorylated GFP-KIN10L (Mn2+-Phos-tag is a 10% SDS-PAGE

containing 50mM of Mn2+-Phos-tag™. Ponceau S staining of Rubisco is shown as a loading control. In all figures, multiple lanes for one gene
combination or one genotype represent biological replicates. (C) Relative GFP-KIN10L protein levels in (B) quantified with GelAnalyzer2010 and
normalized against corresponding protein loading. Data shown are mean ± SD, n=3 independent immunoblots; One-way analysis of variance
(ANOVA) and Tukey-Kramer Honestly Significant Difference (P <0.05) are used to compare means. Different letters above boxes indicate a significant
difference. (D) Reverse transcription quantitative PCR (RT-qPCR) results of KIN10L and GRIK1 in (A), values are means ± SD, n=5 independent
experiments. Statistics is performed by using mean crossing point deviation analysis computed by the relative expression [REST] software algorithm.
The blue bars represents gene transcript for GFP-KIN10L and the open bars represents for gene transcript for GRIK1-HA.
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previous reports, expression of the KIN10L T198A phosphorylation

mutant resulted in increased protein accumulation relative to

KIN10L (Figures 1A–C). Co-expression of GRIK1 with KIN10L

greatly reduced KIN10L accumulation relative to the expression of

KIN10L alone (Figures 1A–C). Mn2+-Phos-tag gel electrophoresis

was used to separate phosphorylated from non-phosphorylated

proteins, revealed that most of the residual KIN10L upon its co-

transformation with GRIK1 was present in phosphorylated form

(Figure 1B). There was only a single detected band for GFP-KIN10L

(T198A) visible in the Mn2+-Phos-tag gel blot upon co-

transformation with GRIK1-HA (Figure 1B), suggesting that T198

in the T-loop is the only phosphorylation site for GRIK1. That the

T-loop phosphorylation mutant of KIN10L was strongly stabilized

relative to its parental wild-type sequence also suggests

posttranslational regulation. To confirm this, we compared the

levels of GFP-KIN10L mRNA upon its expression alone versus

upon its co-expression with GRIK1-HA. The levels of GFP-KIN10L

transcripts were equivalent for both treatments (Figure 1D),

confirming that the observed reduction in GFP-KIN10 protein

occurs at the posttranslational level.

To further understand GRIK-mediated KIN10 degradation we

engineered a GRIK1 mutant, K137A. K137 is a key residue in the

ATP binding domain of GRIK1 reported to be essential for its

kinase activity (Shen et al., 2009). Co-transformation of KIN10 with
Frontiers in Plant Science 04
GRIK1(K137A) did not result in substantial KIN10 degradation,

confirming that GRIK1-mediated KIN10L degradation is

dependent on the kinase activity of GRIK1 (Figures 1A, B, 2A, B).
The KIN10 long splicing isoform is
enriched in a grik null mutant

To substantiate GRIK1-mediated KIN10 degradation we

observed in transient N. benthamiana leaf assays, KIN10 protein

levels were quantified in two Arabidopsis grik double mutants:

grik1-2 grik2-1 containing the weaker grik1-2 allele and grik1-1

grik2-1 containing the stronger grik1-1 allele of GRIK1. Consistent

with published results (Glab et al., 2017), phosphorylated KIN10

was observed in the grik1-2 grik2-1 line, but not in grik1-1 grik2-1,

as evidenced by probing with the phosphorylated KIN10-specific

antibody. This confirms that GRIK1 and GRIK2 are major

activating kinases of KIN10 in vivo (Figure 3A). Immunoblot

assays probed with the KIN10-specific antibody showed that two

distinct forms of KIN10 are detected in WT and the grik mutants

but no KIN10 immunoreactive species are visible in the kin10

mutant. The higher molecular mass KIN10 form was significantly

more abundant in grik1-1 grik2-1 than in either WT or grik1-2

grik2-1 (Figure 3A). Since KIN10 has two alternative splicing
B

A

FIGURE 2

GRIK1 mediated KIN10 degradation is dependent on GRIK1 kinase activity. (A) Representative fluorescence confocal images of N. benthamiana leaf
samples 3 d after co-agroinfiltration with gene expression combinations as shown. GRIK1(K137A) and GRIK1 (S261A) are GRIK1 mutants. Bar = 250
mm. (B) immunoblot analysis of samples in (A) shows protein levels of total GFP-KIN10 or GRIK1-HA and respective phosphorylated (GFP-KIN10-P)
and non-phosphorylated GFP-KIN10 (Mn2+-Phos-tag). Ponceau S staining of Rubisco is shown as a loading control.
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isoforms (i.e., KIN10L and KIN10) (Figure 3B), we hypothesize that

the large and small KIN10s detected in grik1-1 grik2-1 are KIN10L

and KIN10, respectively.

The individual coding sequence (CDS) corresponding to

KIN10L or KIN10 was transiently expressed in N. benthamiana

leaves. Three days after agroinfiltration, protein samples were

extracted and separated along with protein samples from the

grik1-1 grik2-1 double mutant and subjected to immunoblotting.

Transiently expressed KIN10L and KIN10 polypeptides in N.

benthamiana showed similar SDS-PAGE mobilities to those of

the putative KIN10L and KIN10 products in grik1-1 grik2-1

respectively (Supplementary Figure 1). To further confirm the

identity of two sizes of KIN10 detected in the grik1-1 grik2-1

double mutant, KIN10s were immunoprecipitated with anti-

KIN10 antibody from grik1-1 grik2-1 and separated by SDS-

PAGE. The two protein bands were excised and analyzed with

the use of tandem mass spectrometry. The faster migrating protein

was confirmed to be KIN10. The slower migrating protein was

identified as the KIN10L isoform (Supplementary Figure 2). These

data show that KIN10L, a minor KIN10 isoform in WT, is enriched

in the grik1-1 grik2-1 double mutant background due to the

increased protein stability of its unphosphorylated form in grik1-1

grik2-1.
KIN10L accumulates to higher levels than
KIN10 when transiently expressed in N.
benthamiana leaves

To evaluate whether there are differences between KIN10L and

KIN10, GFP-KIN10L or GFP-KIN10 were transiently co-expressed

for 3 days in N. benthamiana leaves with either GRIK1 or an empty
Frontiers in Plant Science 05
vector. As shown in Figure 4, compared with GFP-KIN10, more

intense GFP fluorescence corresponding to GFP-KIN10L was

observed as the puncta in the cytosol, consistent with reports by

Williams (Williams et al., 2014) (Figure 4A). Immunoblot assays

showed the levels of GFP-KIN10L were significantly higher than

GFP-KIN10 (Figure 4B) upon co-expression with EV. Co-

expression with GRIK1 dramatically reduced both KIN10L and

KIN10 protein levels (Figure 4B). The accumulation of KIN10L

seems related to its subcellular localization because a putative

nuclear localization signal mutant of KIN10L (K250A, K251A,

K253A) in the sequence LFKKIKG which is a match to

monopartite nuclear localization signal K·(K/R) ·X·(K/R) (Chelsky

et al., 1989), accumulated to higher levels than native KIN10L.

Conversely, fusing KIN10L with the SV40 NLS resulted in almost

complete retention of KIN10L within the nucleus and promoted its

degradation (Supplementary Figure 3).
Kinase activity of KIN10L is equivalent to
that of KIN10

Next, we tested whether the kinase activity of KIN10L is

equivalent to that of KIN10 i.e., whether the extra 23AA at the

N-terminus of KIN10L has any effect on its in vitro kinase assay. A

His-trigger factor (TF) followed by a factor Xa protease cleavage site

domain was fused to the N-termini of KIN10L or KIN10. The

constructs were expressed in E. coli and the resulting protein

products were purified with the use of Ni-NTA chromatography.

KIN10L or KIN10 were recovered after factor Xa protease digestion

to remove the affinity tag, yielding proteins with equivalent, i.e.,

approximately 95% purity as assessed by SDS-PAGE and

Coomassie Brilliant blue staining (Supplementary Figure 4). For
B

A

FIGURE 3

KIN10 protein levels are significantly higher in the grik1-1grik2-1 double knockout mutant seedlings than that in wild type Arabidopsis.
(A) immunoblot analysis of proteins extracted from 10-day-old of seedlings of WT, grik1-2grik2-1 (a weak grik1grik2 double mutant), grik1-1grik2-1 (a
strong grik1grik2 double mutant) and kin10 respectively. KIN10 or P-AMPK a-1 (Thr-172) antibody was used to detect KIN10 or phosphorylated
KIN10 respectively. Ponceau S staining of Rubisco is shown as a loading control. (B) Protein sequence alignment of long (KIN10L) and short (KIN10)
alternative splicing isoforms of KIN10 shows 23 more amino acid residues on N terminus of KIN10L than KIN10.
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the kinase assays, a recombinant KIN10 kinase domain (KIN10KD)

and GRIK1 were used as a positive kinase control and activator,

respectively. The expected low i.e., basal levels of phosphorylation

activity were observed in for KIN10L or KIN10 in the absence of

GRIK1 activation, although KIN10KD showed higher activity than

either isoform. Upon GRIK1 activation, the kinase activities of both

KIN10L and KIN10 were elevated dramatically during a 10-minute

time course during which no significant differences in kinase

activity were detected between KIN10L and KIN10 (Figure 5).
Discussion

SnRK1 is an evolutionarily conserved sensor kinase that plays

critical roles in plant stress responses and development by

regulating gene expression and enzyme activities. As a major

kinase subunit of SnRK1, KIN10 is regulated by transcription,

posttranscriptional modification, targeted protein degradation and

subcellular localization. Among these regulatory mechanisms,
Frontiers in Plant Science 06
targeted protein degradation of KIN10 is crucial for rapid SnRK1-

regulated plant responses to ever-changing energy stress conditions.

Since KIN10 kinase mutants such KIN10 (T175A) and KIN10

(K48A) were previously shown to be more stable and GRIKs are

major kinases that activate KIN10, in this research we focused on

the regulatory role of GRIK1 on KIN10 stability. The results from

both protein transient expression assays in N. benthamiana leaves

and the characterization of grik mutants supports the hypothesis

that GRIK not only phosphorylates and activates KIN10 but also

promotes its degradation. For GRIK1-mediated KIN10

degradation, we reason that the reduced stability of KIN10 upon

phosphorylation and activation by GRIK represents a mechanism

that enables the KIN10 activity to be rapidly reduced when the

levels of intracellular sugar/energy are restored to their set point,

representing an important level of homeostatic control that

prevents a metabolic overreaction to low sugar conditions. Since

GRIKs are activating kinases of KIN10, KIN10s in the grik1 grik2

double null mutant background remain un-phosphorylated, with

only their basal level of activity, are more stable, and therefore
B

A

FIGURE 4

The long KIN10 isoform (KIN10L) accumulates to higher levels than KIN10 when transiently expressed in N. benthamiana leaves. (A) Representative
fluorescence confocal images of N. benthamiana leaf samples 3 d after co-agroinfiltration with gene expression combinations as shown. Bar = 250
mm. Fluorescence signal in nucleus is marked by white arrowhead. (B) immunoblot analysis of samples in (A) shows protein levels of GFP-KIN10L or
GFP-KIN10 or GRIK1-HA. Ponceau S staining of Rubisco is shown as a loading control.
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increase in cellular abundance, which also explains why the longer

isoform KIN10L which is a minor isoform in wild type plant can be

clearly detected in the grik1 grik2 double mutant.

Several recent reports showed nuclear translocation of KIN10

plays an important regulatory contribution with respect to SnRK1

downstream regulation (Ramon et al., 2019; Belda-Palazón et al.,

2022; Shi et al., 2022). For example, abscisic acid (ABA) exposure

triggers rapid subcellular re-localization of KIN10 from the nucleus

to the cytoplasm and this is accompanied by the inhibition of the

target of rapamycin (TOR) sensor kinase (Belda-Palazón et al.,

2022), implying that the subcellular re-localization of KIN10 likely

exposes it to a different set of phosphorylation targets. In this study,

characterizations of KIN10L and KIN10 show that although

recombinant KIN10L and KIN10 demonstrate similar kinase

activities with respect to in vitro kinase assay, KIN10L tends to

accumulate to higher levels than KIN10 upon transient expression

in N. benthamiana. Together with our observation that a putative

subcellular localization mutant accumulates to different levels,

implies that insufficient SnRK1 activity in vivo may activate a

feedback mechanism to regulate the alternative splicing of KIN10.

Future research on this feedback regulatory mechanism will likely

provide additional insights into the complexity of SnRK1 signaling.
Frontiers in Plant Science 07
Experimental procedures

Plant materials and growth conditions

grik mutants: grik1-2 grik2-1 and grik1-1 (+/−) grik2-1 (−/−)

were obtained from Nathalie Glab (Institute of Plant Sciences Paris-

Saclay, France) (Glab et al., 2017). Other mutants are used in this

research including: grik1-1 (CS2103211 or GK-713C09), grik1-2

(SALK_142938), grik2-1 (SALK_015230), kin10-2 (SALK_093965).

For experiments with the grik1-1 grik2-1 double mutants, double

homozygous null individuals grik1-1(−/−) grik2-1(−/−) were

selected from the progeny of the grik1-1(+/−) grik2-1(−/−) sesqui

parental line by genotyping with primers listed in Supplementary

Table S1. For Arabidopsis, seeds were surface sterilized with 70%

ethanol, then with 30% bleach (Clorox®) containing 0.01%

Tween20 for 15min. Seeds were rinsed five times with sterile

water before planted on the half strength of Murashige and Skoog

(MS) medium supplemented with 1% of sucrose and 0.7% of agar.

After stratified at 4°C in dark for 3 days, seeds were germinated and

cultured in Percival® plant tissue culture chamber. 10-day-old

seedlings then were transplanted onto moist BM2 potting soil

(Berger) and grown on the shelf of a walk-in growth chamber.

Plants were grown with a light/dark cycle of 18h/6h at 23°C,

photosynthetic photon flux density of 250 mmol m−2 s−1, and 75%

relative humidity. Nicotiana benthamiana (N. benthamiana seeds)

were directly germinated on BM2 potting soil (Berger). 4-week-old

N. benthamiana plants were used for transient gene expression

by agroinfiltration.
Genetic constructs

KIN10 refers to AT3G01090. Coding sequences (CDS) of

KIN10L, KIN10, GRIK1 were amplified by PCR from cDNAs

using primers listed in Supplementary Table S1. CDS of KIN10L

(T198A), KIN10L (K250A, K251A, K253A), GRIK (S261A), GRIK1

(K137A) and SV40-KIN10L-SV40 were generated by overlapping

PCR with primers listed in Supplementary Table S1.

For expression in plants, the PCR products were cloned into the

Invitrogen GATEWAYM pDONR/Zeo vector (Thermo Fisher

Scientific, Waltham, MA; www.thermofisher.com) using the BP

reaction and sub-cloned (LR reaction) into the plant GATEWAY™

binary vector: pGWB414 (HA-tag at C terminal) or pMDC43

(GFP-tag at N terminal) (Nakagawa et al., 2007).
Nicotiana benthamiana agroinfiltration

Transient gene express ion in N. benthamiana by

agroinfiltration was carried out according to a previous described

procedure (Schütze et al., 2009). Leaves were harvested 3 days after

agroinfiltration for imaging with a Leica SP5 confocal laser scanning

microscope or protein content analysis.
FIGURE 5

In vitro protein kinase assays of purified recombinant full length of
KIN10 or KIN10L show that two KIN10 splicing isoforms have similar
kinase activity. KIN10 activity is quantified by the incorporation
of 32P from [g-32P] ATP into the SPS peptide. Activity was measured
in a 25µL-reaction containing the different KIN10 isoforms in the
absence or presence of GRIK1 for the indicated times. KIN10 forms
include KIN10(KD), the kinase domain of KIN10. KIN10, the short
splicing isoform of KIN1. KIN10L, long splicing isoform of KIN10. The
center line of the box and whisker plot denotes the mean, the box
represents the interquartile range while the whiskers represent the
5th and 95th percentile (n = 3 or 4 independent biological
replicates). One-way analysis of variance (ANOVA) and Tukey-
Kramer Honestly Significant Difference (P <0.05) are used to
compare means. Different letters above boxes indicate a
significant difference.
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RNA isolation and RT-qPCR were conducted according to the

method described in (Zhai et al., 2021)with primers listed in

Supplementary Table S1.
Recombinant protein production and
purification from E. coli

Recombinant KIN10L, KIN10, KIN10 kinase domain and

GRIK1 proteins fused with N-terminal His-tag were expressed in

E. coli BL21 (DE3). His-tagged protein purification was performed

as previously reported (Nallamsetty and Waugh, 2007). For

production and purification of KIN10L and KIN10, CDS of

KIN10L and KIN10 were cloned into pCold-TF (Takara Bio) for

fusion with trigger factor (TF) between the NdeI and XbaI

restriction sites. Subsequently, the TF was removed from fusion

proteins in digestion with Xa factor protease.
Antibody and immunoblotting

A total of 50 mg of freshly harvested leaves tissues were ground in

liquid nitrogen and then mixed with 200 µL of preheated protein

extraction buffer (8 M urea, 2% SDS, 0.1 M DTT, 20% glycerol, 0.1 M

Tris-HCl, pH (6.8), and 0.004% Bromophenol Blue). After incubated

at 80°C for 5min, Samples were centrifuged at 17,000 g before loading

supernatants into SDS-PAGE (SurePAGE™, Bis-Tris, 4-20%, precast

gel, Genscript). Primary antibodies: anti-KIN10 1:1000 (Catalog No.

AS10919, Agrisera), anti-phosphorylated-KIN10/11 (Phospho-

AMPK alpha-1,2 (Thr183, Thr172) Polyclonal Antibody) 1:1000

(Catalog No. PA5-17831, Invitrogen), anti-GFP 1:2000 (Catalog

No. A6455, Invitrogen), and anti-HA 1:2000 (Catalog No. 71-5500,

Invitrogen). Immunoblots of targeted proteins were visualized using

HRP-conjugated secondary antibodies with 1:10000 dilution (Catalog

No. AP187P, Millipore) with SuperSignal™ West Femto Maximum

Sensitivity Substrate (Catalog No. 34095, ThermoFisher).

Immunoblot signals were detected and digitalized with Image

Quant LAS4000. Phos-tag SDS-PAGE was performed using

Acrylamide-pendant phos-tag™ according to the manual of the

Acrylamide-pendant Phos-tag™ kit obtained from Wako

Chemicals (Richmond, VA). 50mM of Mn2+-phos-tag™ SDS-

PAGE (10%) is to separate phosphorylated protein from its non-

phosphorylated form.
Kinase activity assay

For the KIN10 activity assay, 50 nM of purified KIN10 kinase

domain (KD) or KIN10 or KIN10L or GRIK1 was diluted into 25-mL
of Kinase Reaction Buffer containing 50 mM HEPES-NaOH, pH7.5,

5 mM MgCl2, 200 mM SPS peptide (RDHMPRIRSEMQIWSED), 4

mMDTT, 0.5 mM okadaic acid, 0.2 mM ATP, 12.2 kBq [g-32P] ATP
and incubated at 30°C for 5 min. The assay was stopped by

transferring 10 mL of the assay mixture to 4-cm2 squares of
Frontiers in Plant Science 08
Whatman P81 Phosphocellulose paper (Whatman, Maidstone, UK;

www.gelifesciences.com/whatman), immersing it in 1% (v/v)

phosphoric acid, then washing with four 800-mL volumes of 1%

phosphoric acid. The paper squares were immersed in acetone, dried,

and transferred to liquid scintillation vials to which 2 ml of Ultima

Gold XR (PerkinElmer) was added before liquid scintillation

counting using a Tri-carb (PerkinElmer) was used to determine

radioactivity associated with phosphorylated SPS peptide (Zhai

et al., 2018).
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