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Introduction: In agriculture, especially wheat cultivation, farmers often use

multi-variety planting strategies to reduce monoculture-related harvest risks.

However, the subtle morphological differences among wheat varieties make

accurate discrimination technically challenging. Traditional variety classification

methods, reliant on expert knowledge, are inefficient for modern intelligent

agricultural management. Numerous existing classification models are

computationally complex, memory-intensive, and difficult to deploy on mobile

devices effectively. This study introduces G-PPW-VGG11, an innovative

lightweight convolutional neural network model, to address these issues.

Methods: G-PPW-VGG11 ingeniously combines partial convolution (PConv) and

partially mixed depthwise separable convolution (PMConv), reducing

computational complexity and feature redundancy. Simultaneously,

incorporating ECANet, an efficient channel attention mechanism, enables

precise leaf information capture and effective background noise suppression.

Additionally, G-PPW-VGG11 replaces traditional VGG11’s fully connected layers

with two pointwise convolutional layers and a global average pooling layer,

significantly reducing memory footprint and enhancing nonlinear expressiveness

and training efficiency.

Results: Rigorous testing showed G-PPW-VGG11's superior performance, with

an impressive 93.52% classification accuracy and only 1.79MB memory usage.

Compared to VGG11, G-PPW-VGG11 showed a 5.89% increase in accuracy,

35.44% faster inference, and a 99.64% reduction in memory usage. G-PPW-

VGG11 also surpasses traditional lightweight networks in classification accuracy

and inference speed. Notably, G-PPW-VGG11 was successfully deployed on

Android and its performance evaluated in real-world settings. The results showed

an 84.67% classification accuracy with an average time of 291.04ms per image.
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Discussion: This validates the model's feasibility for practical agricultural wheat

variety classification, establishing a foundation for intelligent management. For

future research, the trained model and complete dataset are made

publicly available.
KEYWORDS

classification, lightweight, field environment, G-PPW-VGG11, partially mixed depth
separable convolution, Android
1 Introduction

With the rising global population, the need for high-yielding,

quality wheat varieties is crucial amid shrinking farmland and

climate change (Anagun et al., 2023). China, a leading wheat

producer, contributed 41.54% to its total grain production in

2023 (Yearbook, 2023). In China, the family responsibility system

governs agricultural development. This results in dispersed wheat

cultivation without unified management, negatively impacting yield

and quality (Dong et al., 2020). To reduce yield loss from depending

on a single wheat variety, farmers often use diversified cropping

strategies and cultivate multiple varieties. However, subtle

morphological differences in leaves make visual identification of

these varieties challenging, causing potential confusion in later field

management stages. Accurate wheat identification using canopy leaf

characteristics is thus a vital technique. This method assists farmers

in distinguishing wheat varieties and guides the selection of those

with superior yield and quality for future cultivation. Additionally,

this technique offers researchers a way to monitor wheat growth

and compare it with harvest data, contributing to the scientific basis

for crop improvement and management strategies.

The traditional wheat classification depends largely on expert

knowledge. However, this traditional method is inefficient and

subjective (Ansari et al., 2021). Machine learning methods, known

for their speed and convenience, are addressing these challenges in

crop classification (Li et al., 2023a). Crop classification methods have

advanced, with diverse approaches emerging (Alqahtani et al., 2023;

Dogra et al., 2023; Li et al., 2023b). For instance, Dogan and Ozkan

(2023) enhanced the Extreme Learning Machine (ELM) model using

Harris Hawks’ Optimizer (HHO) and Particle Swarm Optimizer

(PSO) for wheat grain classification. Results showed binary and

multi-class accuracies of 99.32% and 95.95%, respectively. Singh

et al. (2020) extracted wheat grain parameters using digital image

processing (DIP), including groove area and asymmetry coefficient.

They then classified wheat grains using a fuzzy clustering random

forest (FCRF) based on the extracted parameters. This approach

improved classification accuracy by an average of 7% over existing

methods. Agarwal and Bachan (2023) preprocessed wheat grains by

removing shadows and segmenting. They extracted color and texture

features from the grains thereafter. Using cross-validation, they

evaluated Support Vector Machine (SVM), K-Nearest Neighbor
02
(KNN), Multilayer Perceptron (MLP), and Naive Bayes (NB)

algorithms to select the optimal classifier. The classification

accuracy reached 93%. Current wheat classification research,

focusing on grain characteristics, is limited by growth stages and

collection periods. Leaf image acquisition, possible throughout the

wheat growth cycle, allows for continuous monitoring. Zhou et al.

(2023) used a compact separation-based feature selection algorithm

(FS-CS) to filter spectral and texture features fromUAV images. They

achieved over 70% accuracy in wheat phenology classification using a

multilevel correlation vector machine (mRVM). While these studies

report high accuracy, feature selection requires domain-specific

knowledge and expertise.

The advancement of deep learning, especially the advent of

convolutional neural networks (CNNs), has supported diverse

image-based classification and recognition due to its robust feature

extraction and task transferability (Yasar, 2023). Alom et al. (2023)

successfully classified flowers, stems, and leaves of two oilseed rape

varieties using transfer learning with five neural networks in visible

light crop classification studies. Their method involving background

removal and CLAHE preprocessing achieved 100% accuracy in

flower classification and 97% in stem and leaf classification. Wei

et al. (2022) trained on both fluorescence and white light images of

five tea varieties using VGG16 and ResNet34. They observed that

fluorescence imaging, induced by ultraviolet (UV) LEDs at 370 nm,

yielded a higher classification accuracy of 97.5% compared to white

light imaging. Gao et al. (2021) achieved up to 99.51% accuracy in

classifying wheat leaves at three fertility stages using a bagging-based

algorithm and ResNet models. However, their dataset was collected in

a controlled lab setting with a uniform background. Sun et al. (2023)

used MixNet XL CNN and KNN to classify 21 leaf types, achieving a

99.86% accuracy rate. Chen et al. (2021) introduced a localized soft-

focus mechanism to MobileNet-V2, attaining an average accuracy of

99.71% for crop disease classification on the PlantVillage dataset. The

core goal of the aforementioned research is to enhance model

accuracy by increasing extracted feature values. However, deploying

these models on hardware or mobile devices is challenging due to

significant memory usage and processing power requirements.

Tang et al. (2022) introduced a geometric distance-based

pruning and grafting (P&GGD) optimization strategy. This

method successfully classified nine maturity levels across three tea

types, balancing model accuracy and size. Consequently, the
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method achieved a classification accuracy of 96.296%, exceeding

MobileNetV2 by 2.395% and reducing FLOPs by 45%. Yang et al.

(2021) replaced VGG16’s F6 and F7 layers with Conv6 and global

average pooling. They added a batch normalization layer, increasing

peanut variety classification accuracy to 97.7%, an 8.9%

improvement. Nasiri et al. (2021) modified VGG16, incorporating

global average pooling, dense, batch normalization, and culling

layers. Using leaf images in the visible spectrum (400-700 nm), this

method classified six grape varieties with over 99% accuracy. In

summary, these studies sought to develop lightweight models with

reduced computational demands. This was achieved by integrating

batch normalization and global average pooling, enhancing feature

extraction. This strategy balances memory usage with classification

accuracy effectively. However, these advanced strategies are seldom

applied to wheat variety identification.

This study addresses the technical challenges in classifying and

identifying wheat varieties by analyzing canopy leaf images from

mobile devices in field settings for six distinct wheat types. The

VGG11 model was chosen for its structural simplicity as our

baseline, applying a series of targeted optimizations to improve its

performance. The model was refined using three specific strategies.

First, we addressed feature redundancy and receptive field

limitations in traditional convolution by replacing standard

convolutions with partial and depthwise separable convolutions.

This modification enhanced the model’s feature extraction and

discrimination among wheat varieties.
Frontiers in Plant Science 03
Second, we replaced the fully connected layers with pointwise

convolutions and global average pooling, significantly reducing the

model’s parameters. This improvement reduces overfitting risk and

maintains global connectivity, allowing the model to capture image

information comprehensively and accurately.

Lastly, we incorporated an efficient channel attention mechanism

to reduce background noise in the model’s predictions. This strategy

further improved the model’s sensitivity to wheat features and its

classification accuracy. Collectively, these modifications represent our

novel approach to wheat variety classification and identification.

The enhanced G-PPW-VGG11 model was benchmarked

against classical lightweight networks: FasterNet (Chen et al.,

2023), MobilNet-V2 (Sandler et al., 2018), MobilNet-V3 (Howard

et al., 2019), EfficientNet-V2 (Tan and Le, 2021), and ShuffleNet-V2

(Ma et al., 2018). The enhancements in this study improved wheat

variety identification accuracy and achieved lightweight modeling.

This lays a strong foundation for swiftly identifying wheat varieties

in field conditions.
2 Materials and methods

The experimental design is illustrated in Figure 1. The following

four subsections detail the data acquisition, preparation,

modelling improvements, and wheat variety classification and

identification application.
FIGURE 1

Flowchart of the experimental design.
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2.1 Data acquisition

Experimental Area: Figure 2 shows the location near County

Road 015, Longyang Town, Qiaocheng District, Bozhou City,

Anhui Province, China (33°46′9.06″N, 115°54′57.63″E), where the
wheat dataset images were collected.

Collection Objects: This study includes six machine-seeded

wheat varieties cultivated by local farmers: Zhengmai101,

Xinmai20, Gaomai6, Jimai22, Wanmai51, and Wunong981.

Data Acquisition Equipment: Data was collected on April 04,

2022, from 14:00 to 18:00.

Data Acquisition Time: The data collection occurred on April

04, 2022, specifically between the hours of 14:00 and 18:00.

Acquisition Methods: The smartphone was held 30-50 cm

above the wheat leaves, focusing on three rows with the leaves in

the foreground and external elements as the background.
2.2 Data preparation

In this study, the dataset was randomly split into training

(60%) and testing (40%) datasets. This split was designed to

facilitate effective learning and improve the model’s adaptability

across various classification scenarios. To enhance robustness, a

subset of images was randomly selected for data augmentation,

creating additional datasets that mimic natural conditions. The

following augmentation techniques were employed:
Fron
1. Images were flipped vertically and horizontally and

randomly rotated between -30° and 30° to simulate

different angles and reduce positioning errors.

2. Brightness was randomly adjusted between 0.9 and 1.1 to

mimic natural lighting variations.

3. Hue and saturation were independently adjusted between

0.9 and 1.1 to replicate the diversity of light and

environmental conditions.
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These augmentation strategies were designed to enhance the

model’s generalization capabilities. After augmentation, images

retained a resolution of 3,000×4,000 pixels. Using high-resolution

images directly for training would significantly increase the number

of parameters. Therefore, the enhanced images were first randomly

cropped to 300×400 pixels, as shown in Supplementary Figure 1. These

cropped images were then resized to 224×224 pixels. This process

effectively expanded the dataset and reduced the model’s parameter

count. Table 1 outlines the detailed quantities of the processed dataset

and the abbreviated names of the wheat varieties. The dataset can be

accessed at the provided URL (https://pan.baidu.com/s/

107ICGZOxmOXURkZQcHgbeQ) with the access code: 6666.

To assess the refined model’s stability, we constructed a cross-

validation dataset using the original data. Ensuring data consistency

as per Table 1, we employed a 3-fold cross-validation technique to

evaluate the model’s robustness. Table 2 provides a detailed

overview of the dataset’s quantitative distribution.
2.3 APP development

2.3.1 APP development environment
The application was developed on a Windows 10 operating

system, utilizing a specific set of tools tailored for Android

application development:
1. JDK (Java Development Kit) Version 17: This is essential

for Java development, encompassing the Java runtime

environment, tools, and basic libraries.

2. Android Studio Version 3.1: The chosen Integrated

Development Environment (IDE) for facilitating app

development and debugging.

3. Android SDK (Software Development Kit): Includes

necessary tools, libraries, emulators, and documentation

for Android app development, with a specific mention of

the Android SDK Build-Tools version used.
FIGURE 2

Experimental area (Bozhou City, Anhui Province) and data collected.
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2.3.2 Functional design and implementation
The development process incorporates four optimization

strategies into the mobile-optimized G-PPW-VGG11 model. Key

steps include:

1. Image acquisition.

a) Local Photo Albums: “AlbumA.java” utilizes “android.

intent.action.GET_CONTENT” to select images from the

device’s album.

b) Camera Shooting: Establishing “Camera.java” for capturing

images directly via the app, checking permissions with

“ContextCompat.checkSelfPermission” and “ActivityCompat.

requestPermissions”, and capturing images with “android.

media.action.IMAGE_CAPTURE”.

2. Image preprocessing.

This method resizes images longer than 300 pixels to 300×300,

then downscales them to 224×224 pixels to prevent distortion and

preserve classification accuracy.

3. Application development.

a) Model Format Conversion: Converting the model from

“.pth” to “.pt” format for Android compatibility and placing it in

the “app/src/main/assets” directory.

b) Label File: Creating a “label.java” file for required

label information.

c) Configuration File: Adding functional buttons for album and

camera access, linking to “Albums.java” and “Camera.java” for

respective functionalities.

d) APK File Generation: Outlining the process for generating an

installable “.apk” file via the Android Studio environment.
Frontiers in Plant Science 05
3 Algorithm and improvement of
wheat classification

3.1 VGG network model

Among various classification algorithms, the VGG network

model is notable for its simplicity, making it an ideal basis for

network optimization. The VGGNet family, proposed by Simonyan

and Zisserman (2014), includes structures such as VGG11, VGG13,

and VGG16. Aligned with the goal of devising a lightweight model for

classifying wheat varieties, VGG11 was selected as the baseline due to

its minimal layer count.
3.2 VGG11 network improvements

This study achieved model parameter optimization by adjusting

the number of convolutional kernels in the VGG11 architecture.

Considering the impact of convolutional kernels on model

parameters, the original configuration was revised from 64, 128,

256, 256, 512, 512, 512, 512, 4,096, 4,096, classifier to a more

efficient 32, 64, 64, 64, 128, 128, 256, 256, 1,024, 1,024, classifier.

This modification streamlined the model without compromising

classification performance.

Following Ioffe and Szegedy (2015), batch normalization (BN)

was added after each convolutional layer. Integrating BN

normalizes data distribution, enabling faster and more robust

model training. The improved model, RE-VGG11, forms the basis

for all further optimization experiments in this study.

Compared to lightweight models like MobileNet, EfficientNet,

and ShuffleNet, RE-VGG11 faces several challenges:
1. Extracted feature values across channels show high

similarity (Chen et al., 2023). Partial convolution was

introduced to minimize feature redundancy.

2. The small 3×3 kernels in RE-VGG11 limit its receptive

field’s diversity. Incorporating mixed depthwise separable

convolutions alleviates this, reducing weight bias and

enhancing feature integration from diverse receptive fields.

3. Fully connected layers comprised 92.02% of the original

model’s parameters. Replacing them with pointwise
TABLE 1 Number of wheat datasets before and after processing.

Variety Original image
Dataset Data enhancement and cutting

Training Testing Training Testing

Zhengmai101 (zm101) 157 94 63 1,963 1,054

Xinmai20 (xm20) 170 102 68 2,040 1,032

Gaomai6 (gm6) 153 92 61 1,902 956

Jimai22 (jm22) 159 95 64 2,213 1,087

Wanmai51 (wm51) 155 93 62 2,381 1,218

Wunong981 (wn981) 158 95 63 2,045 1,034
TABLE 2 3-fold cross-validation dataset.

Variety Dataset 1 Dataset 2 Dataset 3

Zhengmai101 (zm101) 1,057 1,008 1,003

Xinmai20 (xm20) 1,049 1,089 1,105

Gaomai6 (gm6) 822 902 775

Jimai22 (jm22) 1,044 971 1,032

Wanmai51 (wm51) 986 920 948

Wunong981 (wn981) 1,071 1,064 1,077
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Fron
convolution and global average pooling addressed

this imbalance.

4. The field-acquired dataset contained multiple interference

sources, prompting the introduction of an efficient channel

attention mechanism. This enhances the model’s focus on

relevant leaf information, improving feature discernment

in noisy data and classification capabilities.
Enhancements addressing these challenges have been

implemented in RE-VGG11. Figure 3 shows the comprehensive

structure of the refined model, G-PPW-VGG11, and its structural

modules. Specific improvement strategies will be detailed accordingly.

3.2.1 Partial convolution
The model exhibits a high degree of similarity among features

extracted from different channels. This similarity causes the model

to disproportionately favor redundant features during weight

allocation, leading to excessive weighting (Chen et al., 2023).

However, this bias in weight distribution leads to the neglect of

smaller, yet crucial, feature components essential for accurate

performance. The neglect of these components can undermine

the model’s precision and, consequently, its overall performance.

Partial convolution (PConv), introduced by Chen et al. (2023),

replaces traditional convolution in neural networks with a

lightweight alternative. Its principle aims to address the high

similarity issue between channels in standard convolution layers.

PConv selectively uses a subset of channels for feature extraction,

rather than all channels. Extracted features are concatenated with

remaining channels, followed by pointwise convolution to enhance
tiers in Plant Science 06
channel correlation. Adopting this method significantly reduces

computational demands and weight bias, improving classification

accuracy. Figure 4 illustrates the operational process of PConv.

3.2.2 Partial mixed depth separable convolution
Partial mixed depthwise separable convolution (PMConv)

integrates the strengths of Partial convolution (PConv) and

Mixed depthwise separable convolution (MixConv), as developed

by Tan and Le (2019). Figure 5A provides a clear visualization of

this integrated architecture. In PMConv’s workflow, an initial

screening selects a subset of channels for convolution with

various kernel sizes to generate feature maps. Subsequently,

pointwise convolution concatenates these feature maps with

unused channels, enhancing information exchange and inter-

channel correlation. This design enhances the model ’s

representational capabilities and overall performance.

PMConv reduces computational complexity by excluding

redundant features, preventing weight shifts caused by duplicate

feature values. It also integrates MixConv, allowing for the

integration of feature mappings from diverse receptive fields.

Figure 5 schematically depicts this process. In this approach,

PMConv selectively processes a subset of channels, using diverse-

sized kernels for convolution to generate feature maps. Subsequent

pointwise convolution strengthens the correlation between generated

feature maps and unused channels. This approach enables PMConv

to combine the advantages of Partial Convolution—significantly

reducing computational demands and avoiding weight biases—and

the strengths of Mixed Depthwise Separable Convolution to

effectively merge features from different receptive fields.
B

A

FIGURE 3

G-PPW-VGG11 model structure diagram (A) General structure of the improved G-PPW-VGG11 model. (B) Improved basic modules of the G-PPW-
VGG11 model.
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3.2.3 Efficient channel attention mechanism
ECANet (Wang et al., 2020) enhances SENet (Hu et al., 2018).

Analysis and evaluation reveal that dimensionality reduction

hampers channel attention prediction and that capturing

dependencies across all channels is inefficient and superfluous.

Conversely, suitable cross-channel interactions can simplify the

model without significantly compromising performance.
Frontiers in Plant Science 07
ECANet retains channel dimensionality after global average

pooling, obviating reduction. Moreover, its architecture enables

local interactions by considering each channel and its adjacent k

channels. This approach boosts efficiency in managing channel

relationships, enhancing performance. Figure 6 clearly illustrates

ECANet’s structure, showcasing its innovations and advantages.

These refinements allow ECANet to overcome SENet’s limitations,
FIGURE 6

Diagram of efficient channel attention module.
BA

FIGURE 5

Partial mixed depth separable convolution (A) PMConv. (B) Point-by-point convolution.
B

A

FIGURE 4

Schematic diagram of the partial convolution structure (A) PConv. (B) Point-by-point convolution.
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offering a streamlined, effective solution for channel

attention prediction.

ECANet and SENet differ in several key aspects. Firstly, the

conventional MLP module, comprising a fully connected layer

(FC1), ReLU activation function, and another fully connected

layer (FC2), undergoes an innovative transformation in ECANet,

where a one-dimensional convolutional form replaces it. This shift

reduces computational burden and enhances efficiency by

simplifying parameter calculations. Secondly, the one-dimensional

convolution interacts with a subset of channels, streamlining the

computation process. This design enables effective cross-channel

interactions, maintaining performance while reducing complexity.

Lastly, ECANet features an adaptive mechanism that dynamically

adjusts the one-dimensional convolution kernel size (k),

determining interaction coverage. The value of k proportionally

scales with channel dimensions, defined by a specific formula. This

strategy endows ECANet with flexibility to adapt to varied data

characteristics and demands, enhancing performance and

generalization. It is calculated as shown in Equation 1:

k =
log2C + b

g

�
�
�
�

�
�
�
�
odd

(1)

Where: C indicates the number of channels, ||odd means that k

can only take odd numbers, g and b are set to 2 and 1 in the paper

and are used to vary the ratio between the number of channels C

and the size of the convolutional kernel sum.

3.2.4 Convolutional layer replacing fully
connected layer

Pointwise convolution, defined by a 1×1 kernel size, offers

several advantages. It functions similarly to a fully connected
Frontiers in Plant Science 08
layer, processing feature maps globally. Additionally, pointwise

convolution increases the model’s nonlinearity, thereby enhancing

its expressive capabilities. Considering these advantages, this study

utilizes pointwise convolution layers as replacements for fully

connected layers.

In the RE-VGG11 model, fully connected layers constitute

92.02% of the total parameters. To optimize model structure, this

study replaces the original fully connected layers with two pointwise

convolutions and a global average pooling layer. This refinement

simplifies the architecture and potentially improves model

performance. Figure 7 illustrates the modifications to the fully

connected layers, providing a visual representation of

the enhancement.
3.3 Parameter setting

3.3.1 Test environment
This study conducted model improvement testing on a laptop

using Python in the PyCharm integrated development environment

(IDE). Table 3 meticulously details the laptop’s hardware

specifications and PyCharm’s relevant software settings.

3.3.2 Hyperparameter setting
During the training phase, this study util ized the

AdamW optimizer (Loshchilov and Hutter, 2018) instead of the

original Adam optimizer, significantly improving network

model performance.

Table 4 presents the detailed parameter settings of the

network model, carefully adjusted during training to

optimize performance.
B

A

FIGURE 7

Schematic diagram of the full connectivity layer improvement (A) Original fully connected layer. (B) Improved fully connected layer.
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3.4 Evaluation metrics

This study uses a rigorous assessment framework to evaluate the

improved model’s performance, covering key metrics such as

average accuracy (ACC), F1-score, precision, computational

complexity (Flops), memory usage, and runtime. These multi-

dimensional evaluation parameters allow for an accurate

quantification of the model’s performance, ensuring the

experimental results’ reliability and validity. Notably, all

mentioned evaluation metrics depend on the confusion matrix for

detailed calculations. For matrix parameters involved in training,

refer to Supplementary Table 1.

(1) Average accuracy rate (ACC).

The average accuracy rate (ACC) is a quantitative metric

assessing the model’s prediction accuracy, defined as the ratio of

correctly predicted samples to the total predicted samples. It is

calculated as shown in Equation 2

ACC  ¼  
TP + TN

TP + FP + TN + FN
(2)

(2) Precision and Recall.

Precision and recall are essential for evaluating classifier

performance in predicting positive instances, focusing on
Frontiers in Plant Science 09
accuracy and completeness, respectively. Precision represents the

ratio of correctly identified positive instances to those classified as

positive by the classifier. High precision indicates the classifier’s

effectiveness in reducing false positives (FP) by minimizing

misclassification of negative instances as positive. It is calculated

as shown in Equation 3.

PrecisionðPÞ  ¼  
TP

TP + FP
(3)

Recall measures the ratio of actual positive instances correctly

identified by the classifier. High recall indicates the classifier

effectively reduces misclassifications of positive instances as

negative, thus lowering the rate of false negatives (FN). It is

calculated as shown in Equation 4

Recall ðRÞ  ¼  
TP

TP + FN
(4)

(3) F1-score.

The F1-score, incorporating both precision and recall, evaluates

the accuracy of model classification. An elevated F1-score signifies

enhanced classification performance. It is calculated as shown in

Equation 5.

F1_score  ¼  
2� P � R
P + R

(5)

(4) Flops (Floating point operations).

Flops serve as a metric for quantifying an algorithm or model’s

computational complexity, offering insights into resource

requirements and efficiency.
BA

FIGURE 8

t-SNE visualization of prediction results from different models (A) VGG11. (B) G-PPW-VGG11.
TABLE 3 Test equipment parameters.

Configuration Version

Computer Legion Y9000P

CPU Intel Core i7-12700H (3.5GHz/L3 24M)

GPU NVIDIA GeForce RTX 3070

Memory 8 G

Memory stick 32 G

CUDA 11.6

Cudnn 11.6

Pytorch 1.13.0

Torch vision 0.14.0

Python 3.9.7
TABLE 4 Model parameter configuration.

Configuration Parameters

Optimizer AdamW (Loshchilov and Hutter, 2018)

Loss function CrossEntropy loss (Wang et al., 2019)

Batch_size 112

Epoch 120

Initialization rate 0.005

Learning rate decay index 0.5
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(5) Model Memory Occupancy (MB).

This study aims to minimize the model’s parameter count while

maximizing accuracy. The model’s memory footprint is a key

metric for assessing its superiority in this research context.

(6) Inference speed.

The model’s inference speed is assessed by the total time it takes

to process 6,381 testing images. It is calculated as shown in

Equation 6:

Inference speed  ¼  
x − x1
x

(6)

where x denotes the total inference time spent by the original

model and x1 denotes the total inference time spent by the

improved model.
4 Results and analysis

4.1 Comparison of classification
modeling results

The original VGG11 and optimized G-PPW-VGG11 models

were tested on a dataset of 6,381 testing images. To visually

represent prediction outcomes, we used t-SNE (t-Distributed

Stochastic Neighbor Embedding) for analysis before and after

optimizing the VGG11 model. Results are detailed in Figure 8. t-

SNE, a two-dimensional dimensionality reduction technique,

effectively preserves the local characteristics of high-dimensional

data. This ensures data points close in high-dimensional space

remain close in the two-dimensional representation. Consequently,

the t-SNE visualization in Figure 8 clearly depicts relationships

between different wheat varieties.

Figure 8 illustrates the relationships among six wheat varieties,

showing inter- and intra-class distances and misclassifications.

Specifically, Xinmai20, Wanmai51, and Wunong981 show distinct

inter-class separations from the other three varieties. Conversely,

Zhengmai101 is positioned close to Gaomai6 and JiMai22,

indicating less discernible inter-class boundaries.

A comprehensive comparative analysis between the enhanced

G-PPW-VGG11 and the original VGG11 models revealed key

disparities: (1) A notable increase in the inter-class distance
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between Jimai22 and Gaomai6 indicates a significant

improvement in distinguishing between these varieties. (2)

Despite some classification errors among Zhengmai101, Gaomai6,

and Jimai22, the model significantly increased the inter-class

distances between these varieties. Additionally, the intra-class

sample distribution for each variety has become more coherent,

demonstrating stronger internal cohesion and reducing intra-class

errors. (3) The enhanced model shows a more prominent inter-class

distance between Wanmai51 and Gaomai6, with a notable

reduction in misclassification events. This underscores the

model’s effectiveness in enhancing the discrimination capability

between these two varieties.

In conclusion, the findings demonstrate the G-PPW-VGG11

model’s significant advantages in enhancing inter-class distances

and minimizing intra-class dispersions. These improvements have

enabled the model to achieve superior discrimination between

wheat varieties, providing a more accurate and reliable

classification approach.
4.2 G-PPW-VGG11 ablation test
performance comparison

This study performed systematic ablation tests on a dataset

comprising 6,381 testing images to assess the efficacy of different

optimization strategies. Table 5 presents the comprehensive results

of the ablation experiments.

Table 5 data indicates Scheme 4’s superior performance, leading

to its selection as the final optimized model, G-PPW-VGG11, for this

study. The G-PPW-VGG11 model achieved a classification accuracy

of 93.52% and a processing time of 93.45s. Notably, the model

demonstrated exceptional memory efficiency, using only 1.79 MB.

Compared to RE-VGG11, G-PPW-VGG11 improved classification

accuracy by 1.76%, speed by 33.48%, AUC value by 0.05%, and

reduced memory usage by 96.89%. Additionally, computational

complexity decreased by 51.41%. These results indicate that G-

PPW-VGG11 significantly optimized resource utilization efficiency

while maintaining high classification performance.

Introducing PConv boosted classification speed by 34.98% and

reduced computational complexity by 50.69% (445.35 M).

FL2PWConv significantly optimized memory, reducing usage by
TABLE 5 Comparison of model improvement results.

Model

Choice Result

a b c d ACC (%) F1-score (%) Precision (%) Params (MB) Inference time (s)
Flops
(MB)

AUC
(%)

VGG11 87.63 87.52 87.69 491.29 144.76 7,618.57 98.46

RE-VGG11 91.76 91.78 91.96 57.63 140.49 878.58 99.27

1 √ 92.69 92.65 92.64 50.30 91.35 433.23 99.36

2 √ √ 92.75 92.74 92.75 1.78 86.68 426.87 99.35

3 √ √ √ 93.00 92.94 92.91 1.79 88.23 426.87 99.41

4 √ √ √ √ 93.52 93.47 93.47 1.79 93.45 426.87 99.32
frontie
(a) PConv. (b) FL2PWConv. (c) PMConv. (d) ECANet.
The bolded data represent the results of the final improved model proposed in this paper.
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96.91% (55.85MB). Incorporating PMConv slightly increased memory

use by 0.01 MB but improved classification accuracy by 0.25%. The

integration of ECANet improved classification accuracy by 0.52%,

without increasing memory usage or computational complexity.

These findings highlight G-PPW-VGG11’s successful balance

between classification accuracy and inference speed. The optimized

model, G-PPW-VGG11, marks a significant advancement, offering

a solution for memory-constrained environments without

compromising performance.

Figure 9 shows a comparative analysis of classification accuracy

and precision for six wheat varieties using the optimized models

listed in Table 5. The results indicate that introducing PMConv

enhances classification accuracy for the Zhengmai101 variety

without affecting overall accuracy. Furthermore, the evolution

into G-PPW-VGG11 results in significant improvements in

classification precision and overall accuracy for all wheat varieties.

These findings underscore the proposed model’s efficacy in wheat

variety classification, particularly highlighting G-PPW-VGG11’s

enhanced classification performance.

An in-depth comparative analysis of confusion matrices, as

depicted in Figure 10, showed varied improvements in classification

accuracy across all six wheat varieties. Specifically, Zhengmai101’s

classification accuracy improved by 16.22%, underscoring the

substantial enhancement from model optimization. In contrast,

Wanmai51’s classification accuracy improved by a modest 1.8%.
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Nevertheless, this underscores the model improvement’s positive

impact on overall classification performance.

Furthermore, the analysis shows a significant reduction in the

probability of Zhengmai101 being misclassified as Gaomai6 post-

optimization, crucial for minimizing misidentification. Remarkably,

post-optimization, the misclassification of Xinmai20 as Jimai22 and

Wanmai51 dropped to zero, affirming the optimized model’s

efficacy in improving accuracy and reducing misclassifications.

In conclusion, the improved model exhibits superior

classification performance for wheat varieties by enhancing

accuracy and significantly reducing misclassification risks. This

results in a more accurate and reliable tool for wheat

variety identification.

Figure 11 presents a comparative analysis of ROC curves for

various wheat varieties, before and after model improvement, using

confusion matrix data. The results show that the enhanced model,

G-PPW-VGG11, has ROC curves closer to the point (0,1) across all

varieties, with higher AUC values. This trend signifies a substantial

improvement in the AUC metric for the refined model, indicating

superior classification performance. It can be concluded that

modifications have significantly enhanced the G-PPW-VGG11

model’s classification accuracy, demonstrating improved

discriminatory power and practical value. This finding highlights

the critical role of model optimization in improving the accuracy

and reliability of wheat variety classification.
TABLE 6 Comparison of experimental performance of different network models.

Model ACC (%) F1-score (%) Precision (%) Params (MB) Inference time (s) Flops (M) AUC (%)

FasterNet 89.19 89.16 89.34 52.30 122.52 1910 98.84

MobilNet_V2 89.96 89.94 90.03 8.51 132.04 318.96 98.99

MobilNet_V3_large 88.32 88.23 88.35 16.06 143.43 226.44 98.59

MobilNet_V3_small 87.78 87.79 88.04 5.81 133.58 58.79 98.45

ShuffleNet_V2_x1_0 87.85 87.81 87.84 4.81 138.28 149.58 98.51

ShuffleNet_V2_x1_5 88.69 88.72 88.08 9.48 146.84 302.65 98.63

EfficientNet_b0 92.61 92.56 92.52 15.32 167.79 398.03 99.33

EfficientNet_b1 92.36 92.34 92.33 24.88 210.70 587.07 99.31

G-PPW-VGG11 93.52 93.47 93.47 1.79 93.45 426.87 99.32
fr
The bolded data represent the results of the final improved model proposed in this paper.
FIGURE 9

Comparison chart of ablation test results.
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4.3 Experimental comparison of different
lightweight classification models

This study introduces G-PPW-VGG11, a performance-

optimized deep learning model designed for wheat canopy leaf

image cultivar classification. To validate this model’s effectiveness

and superiority, a systematic comparative analysis was conducted

against prevalent lightweight network architectures. Specifically, the

comparison included benchmark models such as FasterNet,

MobileNet_V2, MobileNet_V3 (large and small variants),

ShuffleNet_V2 (x1_0 and x1_5 configurations), and EfficientNet’s

baseline and sub-baseline models, b0 and b1. The comprehensive

results of these comparative experiments are documented in Table 6.

Meticulous analysis of the experimental data unequivocally

demonstrated G-PPW-VGG11’s exceptional performance in wheat

canopy leaf image classification, highlighting its potential advantages

and application prospects compared to leading lightweight models.

The results (Table 6) reveal that the G-PPW-VGG11 model

achieved a classification accuracy of 93.52% and an inference time of

93.45s. Compared to state-of-the-art models like FasterNet,

MobileNet_V2, MobileNet_V3_large, MobileNet_V3_small,
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ShuffleNet_V2_x1_0, ShuffleNet_V2_x1_5, EfficientNet_b0, and

EfficientNet_b1, the G-PPW-VGG11 showed superior performance.

Specifically, it outperformed these models in terms of classification

accuracy by 4.33%, 3.56%, 5.20%, 5.74%, 5.67%, 4.83%, 0.91%, and

1.16%, respectively. Moreover, the model reduced inference time by

29.07s, 38.59s, 49.98s, 40.13s, 44.83s, 53.39s, 74.34s, and 117.25s

compared to the aforementioned models.

Notably, the G-PPW-VGG11 model achieved the highest

classification accuracy with minimal inference time. Additionally,

its 1.79 MB memory footprint makes it highly suitable for mobile

deployment, facilitating portable wheat variety classification. These

characteristics make the G-PPW-VGG11 model a promising

candidate for real-world applications prioritizing accuracy,

efficiency, and portability.

Figure 12 presents a comparative diagram of prediction

results from various models. Rigorous analysis reveals that the

optimized G-PPW-VGG11 model exhibits notable superiority

in precision and accuracy (ACC). Among the models compared,

G-PPW-VGG11 achieves the highest precision and accuracy,

demonstrat ing i ts except ional performance in wheat

varieties classification.
BA

FIGURE 11

Comparison of ROC curve results (A) VGG11. (B) G-PPW-VGG11.
FIGURE 10

Confusion matrix for VGG11 and G-PPW-VGG11.
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4.4 Research on model stability testing
based on cross-validation

To assess the model’s stability, 3-fold cross-validation was

performed on the dataset shown in Table 2. The experimental

results are detailed in Table 8.

The results (Table 7) show that the model attained an average

classification accuracy of 92.78% following a 3-fold cross-validation

process. Compared to the results from the dataset in Table 1, there

was a minor decrease in classification accuracy, a reduction of 0.74%.

This observation suggests that dataset selection influences the model’s

classification accuracy. However, the overall impact was not

significant, demonstrating the improved model’s robust stability.
4.5 APP result demo

The combined experimental results from Sections 4.3 and 4.4

indicate that the G-PPW-VGG11 model exhibits outstanding
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classification performance. Specifically, the model achieved an

average classification accuracy of 93.52% with a compact size of

1.79MB, making it suitable for use in mobile devices for portable

applications. The model was successfully transferred to a Xiaomi

10s Android smartphone using a network/data cable. Practical

runtime tests on the device showed a memory usage of 88.50 MB,

indicating efficient performance on mobile platforms.

To validate the APP’s practical effectiveness in wheat variety

classification, a test dataset of 300 wheat canopy leaf images was

collected under field conditions using a smartphone. Rigorous

testing and analysis yielded the experimental results presented in

Table 8. These findings offer valuable insights for future research

and contribute to advancing agricultural intelligence.

The results (Table 8) show that testing large images

(4,000×3,000 pixels) with the APP resulted in an average

classification accuracy of 84.67% and an average inference time of

291.04ms. This performance suggests the model meets real-time

classification requirements for wheat varieties in field

environments, highlighting its practicality and application value.
TABLE 7 3-fold cross-validation results.

Training Testing ACC (%) F1-score (%) Inference time (s) AUC (%)

1 Datasets 1 and 2 Dataset 3 93.34 93.32 92.22 99.27

2 Datasets 1 and 2 Dataset 2 92.72 92.75 89.32 99.12

3 Datasets 1 and 2 Dataset 1 92.29 92.30 89.03 98.71
fr
FIGURE 12

Comparison of model prediction results for each variety.
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Supplementary Figure 2 demonstrates the APP’s ability to read

and identify images from the photo gallery. Upon image selection,

the APP interface displays the chosen image, predicted variety,

inference time, variety characteristics, and cultivation site

information. The example shows the predicted wheat variety as

Gaomai6, with an inference time of 280ms, confirming the model’s

efficiency and accuracy in practical applications.
5 Conclusion

This study presents an innovative lightweight convolution

method, partial mixed depthwise separable convolution

(PMConv), integrating the principles of partial and mixed

depthwise separable convolution. Rigorous ablation experiments

reveal PMConv’s significant advantages in improving model

classification performance.

Employing VGG11 as the baseline architecture, this study

integrates PConv with PMConv techniques to accurately capture

wheat leaf features. This design reduces misclassification due to

weight bias and enhances the model’s feature fusion capabilities.

Additionally, the study replaces traditional fully connected layers

with FL2PWConv, enhancing nonlinear expressiveness and

reducing parameter size for model lightweight. Integrating

ECANet allows the model to focus more precisely on critical

wheat leaf features, effectively filtering out background noise and

significantly improving classification accuracy.

The G-PPW-VGG11 model, as improved in this study,

demonstrated exceptional performance with a memory footprint

of merely 1.79 MB and a classification accuracy of 93.52%. To

validate the model’s capabilities comprehensively, an experimental

comparison was conducted between G-PPW-VGG11 and classic

l ightweight models such as FasterNet, MobileNet_v2,

MobileNet_v3_large, MobileNet_v3_small, EfficientNet_b0,

EfficientNet_b1, ShuffleNet_V2_x1_0, and ShuffleNet_V2_x1_5.

Experimental results showed significant improvements in G-

PPW-VGG11 across multiple evaluation metrics. Specifically, G-

PPW-VGG11 showed notable improvements over the baseline

VGG11 in ACC, F1-score, and precision, with increases of 5.89%,

5.93%, and 5.78%, respectively. These enhancements substantiate

the improved model’s superiority in classification performance.
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Additionally, G-PPW-VGG11 showed a 35.44% improvement in

inference time, significantly enhancing response speed.

Furthermore, the model reduced memory usage by 99.64%

compared to the VGG11 model’s 489.5 MB memory footprint.

To improve portability and classification efficiency, the

enhanced model was adapted for testing on the Android

smartphone platform. Actual measurements showed that the

model recognized a single image in an average of 291.04ms,

meeting the stringent criteria for real-time classification. In

natural environments, the model’s recognition of wheat varieties

demonstrated superior performance, offering valuable insights for

research and applications in intelligent agriculture.

To facilitate further research, the trained model and complete

dataset from this study have been made publicly accessible. The

model code is located in https://github.com/mengyuqq/G-PPW-

VGG and The dataset is available at the following URL (https://

pan.baidu.com/s/107ICGZOxmOXURkZQcHgbeQ) with the

access code: 6666. These contributions are anticipated to serve as

valuable resources, providing significant data support and a strong

foundation for enhancing the accuracy and efficiency of wheat

variety classification in the field.
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