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Legume–grass mixtures improve
biological nitrogen fixation and
nitrogen transfer by promoting
nodulation and altering root
conformation in different
ecological regions of the
Qinghai–Tibet Plateau
Feng Luo1,2†, Wenbo Mi1,2† and Wenhui Liu1,2*

1Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of
Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China, 2Laboratory of Tibetan
Plateau Germplasm Resources Research and Utilization, College of Agricultural and Forestry Sciences,
Qinghai University, Xining, China
Introduction: Biological nitrogen fixation (BNF) plays a crucial role in nitrogen

utilization in agroecosystems. Functional characteristics of plants (grasses vs.

legumes) affect BNF. However, little is still known about how ecological zones

and cropping patterns affect legume nitrogen fixation. This study’s objective was

to assess the effects of different cropping systems on aboveground dry matter,

interspecific relationships, nodulation characteristics, root conformation, soil

physicochemistry, BNF, and nitrogen transfer in three ecological zones and

determine the main factors affecting nitrogen derived from the atmosphere

(Ndfa) and nitrogen transferred (Ntransfer).

Methods: The 15N labelingmethodwas applied. Oats (Avena sativa L.), forage peas

(Pisum sativum L.), common vetch (Vicia sativa L.), and fava beans (Vicia faba L.)

were grown in monocultures and mixtures (YS: oats and forage peas; YJ: oats

and common vetch; YC: oats and fava beans) in three ecological regions (HZ:

Huangshui Valley; GN: Sanjiangyuan District; MY: Qilian Mountains Basin) in a

split-plot design.

Results: The results showed that mixing significantly promoted legume

nodulation, optimized the configuration of the root system, increased

aboveground dry matter, and enhanced nitrogen fixation in different ecological

regions. The percentage of nitrogen derived from the atmosphere (%Ndfa) and

percentage of nitrogen transferred (%Ntransfer) of legumes grown with different

legume types and in different ecological zones were significantly different, but

mixed cropping significantly increased the %Ndfa of the legumes. Factors

affecting Ndfa included the cropping pattern, the ecological zone (R), the root

nodule number, pH, ammonium-nitrogen, nitrate-nitrogen, microbial nitrogen

mass (MBN), plant nitrogen content (N%), and aboveground dry biomass. Factors
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affecting Ntransfer included R, temperature, altitude, root surface area, nitrogen-

fixing enzyme activity, organic matter, total soil nitrogen, MBN, and N%.

Discussion: We concluded that mixed cropping is beneficial for BNF and that

mixed cropping of legumes is a sustainable and effective forage management

practice on the Tibetan Plateau.
KEYWORDS

cropping pattern, legume forage, symbiotic nitrogen fixation, rhizoma, root system, soil
physicochemical, ecoregion
1 Introduction

Soil nitrogen is a key factor influencing crop growth in cropping

systems (Mcgraw et al., 2008; Thilakarathna et al., 2012). Modern

agriculture achieves high yields by using large amounts of inorganic

nitrogen fertilizer and non-renewable resources, a practice that is

now being questioned (Hatano et al., 2002). Studies have shown that

such production practices negatively affect the nitrogen cycle and

nitrogen balance (Moorhead et al., 2013), are costly in terms of

public health and environmental safety (Tilman et al., 2002; Francis

et al., 2016), and are a serious impediment to sustainable

agricultural development (Song et al., 2020). Thus, agroecology

emphasizes the design of cropping systems using ecosystem services

and the sustainability of agricultural production systems (Clergue

et al., 2005; Faucon et al., 2017; Olounlade et al., 2017). Biological

nitrogen fixation (BNF) by legumes is an important way to

replenish soil nitrogen (Yao et al., 2019). Mixed grass and legume

forage cropping systems, which significantly optimize the cropping

system by increasing plant diversity and improving soil health

(Crème et al., 2015; Zhao et al., 2015), are a way to develop

sustainable ecological agriculture (Luo et al., 2023).

Legume forage plays a crucial role in livestock development by

providing a protein-rich source for grass-fed livestock and by

improving soil quality by symbiotic nitrogen fixation with soil

rhizobacteria (Rochon et al., 2010; Rispail et al., 2015). Including

legumes in mixed cropping systems increases crop yield (Tilman

et al., 2002), improves forage quality (Tahir et al., 2023), increases

resource utilization (Loreau et al., 2001) and soil quality (Wichern

et al., 2007; Hinsinger et al., 2009), and maintains the nitrogen

balance in the soil system (Ledgard and Steele, 1992), which reduce

chemical inputs and environmental pollution (Hinsinger et al.,

2009; Frankow-Lindberg and Dahlin, 2013). This is because

prokaryotic microorganisms are catalyzed by nitrogen-fixing

enzymes in mixed cropping systems of grasses and legumes,

which reduces atmospheric nitrogen to plant-available nitrogen

(ammonia), providing an additional source of nitrogen for the

grasses (Fitter, 1994). At the same time, nitrogen is transferred

from high-nitrogen-producing plants (Leguminosae) to low-

nitrogen-producing plants (Gramineae) due to the reservoir
02
source relationship, and this mechanism of nitrogen transfer frees

Gramineae from nitrogen limitations (Jalonen et al., 2009;

Poffenbarger et al., 2015). In addition, due to interspecific

competition among crops, competition for soil nitrogen from

grass crops stimulates legumes to fix more nitrogen from the

atmosphere for crop growth and development and also reduces

the nitrogen deterrent effect of legumes (Mtambanengwe and

Mapfumo, 1999; Peoples et al., 2015).

Plants use interspecific complementarity and interspecific

competition to access soil resources and promote rhizomatous

nitrogen fixation through positive plant–root–soil interactions

(Duchene et al., 2017). Grass–bean mixed grasslands rely on the

symbiotic relationship between rhizomes attached to legume root

systems and soil nitrogen-fixing bacteria to fix nitrogen, which

affects the soil carbon/nitrogen balance and improves nitrogen

utilization and mineralization rates (Odu and Akerele, 1973;

Sainju et al., 2003). In addition, mixes of grassland increase

organic matter input and beneficial soil microorganisms to

maintain the soil nutrient balance (Fornara and Tilman, 2008;

Fornara et al., 2009; Deyn et al., 2011). However, promoting and

suppressing nitrogen fixation efficiency depends on the pattern of

competition for soil nitrogen between the root systems of grasses

and legumes, which is a dynamic equilibrium (Haynes, 1980; Stern,

1993; Bouma et al., 2001). In addition, the efficiency of nitrogen

transfer from legumes to grasses is related to root system secretions

and the characteristics of the rhizomes. A high rate of BNF does not

represent a high nitrogen transfer efficiency (Rui et al., 2022). BNF

in legume crops is affected by biological factors (crop type and inter-

root mycorrhizal flora) (Meng et al., 2015) and environmental

factors (moisture, temperature, and soil nutrients) (Dollete et al.,

2023). Therefore, it is necessary to analyze the nodulation

characteristics, root phenotypic traits, soil physicochemical

properties, and interspecific relationships of grasses planted in a

mixed cropping system of grasses with different species of legumes

in different ecological zones to assess BNF and nitrogen

translocation capacity of leguminous pasture grasses and the

productivity of grasses to improve livestock production.

The Tibetan Plateau, with an average elevation of 4,000 m

above sea level (Li et al., 2022), is known as the “third pole”. The
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unique geographical location and climatic conditions of the

Tibetan Plateau create an alpine meadow ecosystem (Zhang

et al., 2014). The alpine meadows of the Tibetan Plateau are the

largest alpine grassland distribution area in the world, covering an

area of approximately 2.27 × 106 km2 (Liu et al., 2023), which

serves as an ecological barrier and an important source of forage

(Hu et al., 2021). Livestock husbandry is the leading industry in

this area (Wei et al., 2017). In recent years, human activities and

climatic factors have led to grassland degradation, and bare

vegetation has reduced the total amount of nitrogen fixation in

natural grasslands and lowered the ecological service function

(Harris, 2010; Ren et al., 2014; Xue et al., 2017). Therefore,

optimizing cropping systems with ecologically sound forage is

essential to restore the grasslands and develop animal husbandry

practices (Dong et al., 2010). Introducing a mixed forage cropping

system with legumes improves forage quality and replaces

inorganic nitrogen fertilizer inputs (Tahir et al., 2022).

Symbiotic nitrogen fixation accounts for 70% of the overall BNF

in agroecosystems (Herridge et al., 2008), and leguminous crops

provide 32–149 kg·hm−2 of nitrogen to growing crops through

BNF, increasing the total amount of nitrogen in the nitrogen cycle

of the agroecosystem (Mueller and Thorup-Kristensen, 2001).

However, different cropping patterns and crop types have

different effects on the rates of BNF and nitrogen transfer in

leguminous crops. Climate is another key factor influencing BNF

in leguminous crop fields (Liu et al., 2019). The altitude and

climate of the different alpine ecological zones are different, and

microclimates predominate. However, the forage production

capacity, BNF, and nitrogen transfer rates of different species of

leguminous forage mixed with oats in different ecological zones

are unclear. Therefore, there is a need to study BNF and nitrogen

transfer in legumes under various cropping patterns and in

different ecological zones to increase forage production and to

mitigate the negative impacts on the environment.
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This study investigated the effects of different cropping patterns

on aboveground dry matter, interspecific relationships, nodulation

characteristics, root phenotypic traits, soil physicochemical

properties, BNF, and nitrogen transfer in different alpine

ecological zones. The results of this study will guide mixed forage

cropping in the Qinghai region of China, which will reduce hazards

to the environment and promote sustainable development

of agroecosystems.
2 Materials and methods

2.1 Study site

The experiment was conducted at a planting site in each of the

three ecological zones in Qinghai Province, China (Figure 1):

1) HZ (Huangzhong County in Huangshui Valley): located in

Garur Village, Garur Township, Tumen Pass Township. No

irrigation was present, and it was a typical shallow mountain

cultivation area. The area has a highland continental climate, with

a short warm season and a long winter. The average annual

temperature and precipitation are 5.3°C and 490 mm,

respectively, and the soil type is calcium chestnut soil, with oats

and legume forage as the previous crops in 2022.

2) GN (Guinan County, Sanjiangyuan District): located in

Tashiu Village, Tashiu Township. No irrigation was present; it

has a highland continental climate with long winters and short

summers, and a cold and humid climate. The average annual

temperature and precipitation are 3.2°C and 403 mm,

respectively, and the soil type is clay loam, with oats and legume

pasture as the previous crops in 2022.

3) MY (Menyuan County, Qilian Mountain Basin): located in

Xianmi Township, Xianmi Township. No irrigation was present,

and the plateau continental climate is typical of the cold, warm,
FIGURE 1

Study area and cropping map.
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and humid climate of the plateau. It has a snowy and windy

spring, a cool and rainy summer, a mild and short autumn, and a

cold and long winter. The average annual temperature and

precipitation are 4.2°C and 518 mm, respectively, and the soil

type is black calcium soil, with oats and legume pasture as the

previous crops in 2022. The soil physicochemical properties are

shown in Table 1.
2.2 Experimental design

The trial employed a randomized block group design,

comprised of seven treatments. Each treatment had three

replication plots, for a total of 21 plots. The plot was the

experimental unit with an area of 20 m2 (5 m × 4 m). The seeds

were provided by the Qinghai Academy of Animal Husbandry and

Veterinary Science (Table 2).

The HZ, MY, and GN test sites were sown based on the local

climate and sowing dates. A total of 75 kg·ha−1 of urea (46% N) and

150 kg·ha−1 of calcium superphosphate (12% P2O5) were applied as

basal fertilizers before sowing. The sowing amounts are listed in

Table 1 (Xiang, 2022). Field management practices were consistent

with other crops. Weeds were controlled twice manually.
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To assess nitrogen fixation by the plants in the mixed sowing plots,

the plants were 15N-marked 2 weeks before harvest using the following

method. A 0.25-m2 marking strip of uniform length was selected for

each single and mixed sowing plot. A perforated plastic sheet was used

to identify the marking holes in the area using pieces of wire 15 cm

apart, for a total of 28 marking holes. Then, a syringe with a 3-cm

needle was attached, and 2 ml of a 0.08 g/m double-labeled
15NH4

15NO3 (99%, supplied by the Shanghai Institute of Isotope

Chemistry) solution was aspirated into the labeled holes for 15N

labeling. After completion, four thick wires of 50 cm length were

used to fix the position of the 15N markers for later sampling.
2.3 Sampling and measurements

Sampling was conducted at the oat milky stage, when the

quality of the oat forage was optimum. Due to the different

climates and altitudes at the three sites, the growing and

harvesting periods of the crops were different. The HZ, MY, and

GN sites were harvested, and soil samples were collected on 21

August, 28 August, and 9 September 2023, respectively.

2.3.1 Sampling
Whole plot yield measurements were used. The plants were

mowed to the ground and weighed fresh (for mixed crops, the two

crops were weighed separately). A 1,000 g sample of fresh forage was

collected from each plot and brought back to the laboratory in air-

dried bags, air-dried at 105°C for 30 min, then air-dried at 65°C to

constant weight. The samples were ground in a ball mill to

determine 15N abundance and total nitrogen (TN) content. The

soil was carefully excavated with a spade to a depth of 35 cm along

the root system, and the large pieces of soil were shaken off. Five

intact legume and oat root systems were selected from each plot, the

number of root tumors were counted, and the fresh weight of the

root tumors were weighed. The root tumors and root systems were

also brought to the laboratory for determination of nitrogen-fixing

enzyme activity and scan of root structure. Then, the roots were

dried at 105°C for 30 min and baked in an oven at 80°C to constant

weight to determine root biomass. Soil samples were collected from

the 0–10-cm layer using the five-point method. A portion of fresh

soil was used to determine microbial biomass nitrogen (MBN)

content, while the rest of the soil samples were dried naturally and

sieved to determine other soil indicators.

2.3.2 Measurements
Plant 15N abundance was determined by mass spectrometry

(DELTAplus XP, Thermo Finnigan Electron Corp., Mannheim,

Germany). Root tumor nitrogen fixing enzyme activity was

determined by acetylene reduction method, and nitrogen fixing

enzyme activity was expressed as acetylene concentration (U/g)

(Khan et al., 1994). TN in the plants and soil was determined by the

Kjeldahl method. Soil organic matter (SOM) was determined by redox

titration with K2Cr2O7. Soil ammonium nitrogen (ANN) was

determined by the indophenol blue colorimetric method. Soil

nitrate–nitrogen (NN) was assessed using the phenol disulfonic acid

colorimetric method. Soil MBN was determined by the chloroform
TABLE 2 Planting systems and sowing rates.

Treatments Crop and species
Seeding quan-

tity/g·m−2

Y Oat (Qinghai 444) 22.50

S
Forage peas (Qingjian

No. 1)
11.16

J
Common vetch (Ximu

No. 324)
12.00

C
Fava bean (Qingcan

No. 22)
16.53

Y/S Oat/Forage peas 13.50/4.45

Y/J Oat/Common vetch 15.8/6.61

Y/C Oat/Fava bean 13.50/6.61
TABLE 1 Soil physicochemical properties before sowing in the
study area.

Soil indicators
Ecological region basic information

HZ GN MY

SOM (g·kg−1) 34.4 34.47 50.1

TN(g·kg−1) 2.2 2.4 3.1

TP(g·kg−1) 2.5 1.7 2

TK (g·kg−1) 24.4 18.1 21.1

AN(mg·kg−1) 120 105 124

APs(mg·kg−1) 27.6 20.3 26.1

AK (mg·kg−1) 290 244 258
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fumigation leaching method (Joergensen, 1996). Soil pH was

determined by potentiometry (water–soil ratio, 2.5:1). Roots were

scanned using a dual-light source color scanner (Sinocrystal

ScanMaker i800 plus, Hangzhou Wanshen Inspection Science and

Technology Co.)
2.4 Data collection and analysis

The land equivalent ratio (LER) of a mixed cropping system was

calculated using Equation 1:

LER =
LYI−Y
LY

+
YYI−I

LI
(1)

where Y represents oats and I represent legume forage. I = S,

forage pea; I = J, common vetch; and I = C, fava bean. LYI-Y and LYI-I
represent the aboveground dry matter mass of mixed-crop oats and

the legume forage, respectively, and LY and LI represent the

aboveground dry matter mass of monocrop oats and the monocrop

legume forage, respectively. When LER > 1, the aboveground dry

matter mass of the mixed crop was more advantageous than that of

the monoculture and vice versa.

Relative abundance of 15N (d15N) was calculated using

Equation,32] ?> 2 (Yoneyama et al., 1986):

d 15N( % ) =
Atom%  15 N(sample) − Atom%  15 N(standard)

Atom%  15 N(standard)
�1000 (2)

where d15N is the relative abundance of 15N in the sample; atom

%15N (sample) is the atomic abundance of 15N in the sample; and

atom% 15N (standard) is the atmospheric abundance of 15N

(0.3663%), which is used as the standard isotope abundance of 15N.

The %Ndfa of the legume forage and the proportion of N

transferred from the legume forage to oats (%Ntransfer) were

calculated using Equation 3 and Equation 4, respectively (Herridge

et al., 1995; Neumann et al., 2009):

%Ndfa = 1 −
A%EYI−I
A%EY

� �
 % (3)

%Ntransfer = 1 −
A%EYI−Y
A%EI

� �
 % (4)

where A%EY and A%EI are the d15N of the single-crop oat and

legume forage, respectively. A% EYI-Y and A% EYI-I are the d15N of

mixed-crop oat and legume forage, respectively.
2.5 Statistical analysis

Differences in aboveground biomass, nitrogen yield, rhizome traits,

root morphology, soil physicochemical properties, BNF, and nitrogen

transfer between cropping systems and the cropping areas were tested

using two-way analysis of variance followed by Duncan’s multiple

comparison test using SPSS 20.0 software (SPSS Inc., Chicago, IL, USA).

A p-value< 0.05 was considered significant. Graphs were plotted using

Origin 2021 software (OriginLab, Northampton, MA, USA).

Relationships between the soil’s physical properties, rhizome
Frontiers in Plant Science 05
characteristics, climatic factors, and aboveground biomass and

variables, such as BNF and nitrogen transfer, were determined by

calculatingMantle’s test and Pearson’s correlation coefficients. Statistical

analyses and mapping were performed using R 4.3.1 for Windows and

the “ggplot2”, “linkET”, “dplyr”, and “piecewiseSEM” software packages

(The R Foundation for Statistical Computing, Vienna, Austria).
3 Results

3.1 Effect of the cropping pattern on
aboveground dry biomass and nitrogen
accumulation in the different
ecological zones

The cropping pattern, ecological zone, and their interactions

had extremely significant (p< 0.01) or significant (p< 0.05) effects on

aboveground dry biomass (Table 3). In all ecological zones, total

aboveground dry biomass was significantly higher in all three mixed

cropping patterns than in the oat monoculture, and the differences

among the three mixed cropping combinations were significant in

the same ecological zone. In addition, total aboveground dry matter

in the three ecological zones was in the order of MY (770.79 g·m−2)

> HZ (750.04 g·m−2) > GN (740.90 g·m−2), and tended to decrease

with increasing altitude. The LER of mixed cropping was >1 in all

ecological zones, indicating that the total aboveground biomass of

the mixed cropping system was more advantageous than that of oat

monoculture. The cropping pattern with the highest aboveground

total dry matter in each ecological zone was in the order of HZ (YS),

GN (YC), and MY (YS), which were 16.37%, 17.07%, and 12.16%

higher than that of oat monoculture, respectively.

The cropping pattern, ecological zone, and their interaction had

significant (p< 0.05) effects on nitrogen content and nitrogen

accumulation of the aboveground biomass (Figure 2). In all

ecological zones, nitrogen content and nitrogen accumulation of oats

grown in mixes were significantly higher than that of oats grown in

monoculture, and the differences were significant among the ecological

zones. In addition, no significant differences in nitrogen content or

nitrogen accumulation of oats grown in the three mixes were detected

in the same ecoregion (Figures 2A, B). In all ecological zones, nitrogen

content and nitrogen accumulation of the mixed legume forages were

significantly higher than their respective counterparts in monoculture

(Figures 2C, D). N content and total N accumulation were greater for

mixed cropping than oat monocropping (Figures 2E, F).
3.2 Effect of the ecological zone planting
pattern on root tumor characteristics of
legume forage grasses

The cropping pattern, ecological zone, and their interactions had

significant (p< 0.05) effects on root tumor number, root tumor fresh

weight, and nitrogen-fixing enzyme activity (Figure 3). In all ecological

zones, the number of tumors of mixed legume forages was significantly

greater than that of the corresponding monocultures, and the highest

number of tumors was found in the YS cropping 7pattern, followed by
frontiersin.org
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YJ. The number of rhizomes on C monocultures was significantly

lower than that of the other cropping patterns (Figure 3A). Significant

differences in tumor weight and nitrogen-fixing enzyme activity were

observed in all ecological zones among the three legumes, and all

showed the pattern of broad bean > forage pea > arrow end pea. In

addition, in the same ecoregion, the tumor weight and nitrogen-fixing

enzyme activity of the legume forage grasses grown in monoculture

were significantly lower than those of the corresponding mixes, except

for the root tumor weights of the C and YC cropping patterns of GN

(Figures 3B, C).
3.3 Effect of the ecological region planting
pattern on forage root characteristics

Root dry weight and root volume were significantly higher in

monoculture than those in the corresponding mixtures in all
Frontiers in Plant Science 06
ecological zones and were highest in fava beans, followed by oats.

Moreover, root dry weight and root volume were significantly

higher in MY than in HZ or GN (Figures 4A–D, M–P). In contrast,

in all ecological zones, root length and root surface area were

significantly higher in the mixed cropping than in the

corresponding monoculture cropping pattern. Root length and

surface area revealed an overall pattern of broad bean > oat > arrow

end pea > pea. In addition, root length and root surface area among

regions were in the order of MY > HZ > GN (except broad bean)

(Figures 4E–I, G, K, L). Root diameter was significantly higher in

monoculture oats than in the mixed cropping pattern, and the YC

cropping pattern had the smallest root diameter in oats. The root

diameter of oats between regions followed the same trend as root

dry weight and root volume, both indicating that MY was

significantly higher than HZ and GN (Figure 4Q). Additionally,

the root diameters of all three legume mixtures were lower than

those of the corresponding monocultures, suggesting that root
TABLE 3 Aboveground dry biomass and the land equivalent ratio (LER) of monoculture and mixed cropping in the three ecological zones.

Ecological
region

Cropping
system

Oats
(g·m−2)

Leguminosae
(g·m−2)

Total
(g·m−2)

LER

HZ

Y 746.75 ± 8.99Ba – 746.75 ± 8.99Bc –

YS 693.61 ± 5.83Bb 175.17 ± 8.78Ac 868.78 ± 14.45Ba 1.19

S – 658.3 ± 16.18Aab 658.3 ± 16.18Ade –

YJ 710.27 ± 7.14Ab 114.72 ± 11.56Abd 824.99 ± 8.48Bb 1.13

J – 644.08 ± 32.59Ab 644.08 ± 32.59Ae –

YC 674.1 ± 15.2Bc 145.19 ± 8.65Bc 819.28 ± 23.17Bb 1.11

C – 688.12 ± 11.55Aa 688.12 ± 11.55Ad –

GN

Y 724.55 ± 12.25Ba – 724.55 ± 12.25Bc –

YS 677.47 ± 2.53Cb 155.47 ± 6.68Bc 832.94 ± 4.19Ca 1.18

S – 629.68 ± 4.74Bb 629.68 ± 4.74Be –

YJ 693.27 ± 5.81Bb 110.48 ± 2.55Bd 803.75 ± 7.52Cb 1.13

J – 618.83 ± 18.3Ab 618.83 ± 18.3Ae –

YC 685.36 ± 20.23ABb 162.9 ± 5.98Ac 848.26 ± 24.07Aa 1.18

C – 686.09 ± 12.61Aa 686.09 ± 12.61Ad –

MY

Y 799.9 ± 12.25Aa – 799.9 ± 12.25Ac –

YS 726.06 ± 6.56Ab 171.03 ± 4.33Ac 897.09 ± 6.2Aa 1.16

S – 675.3 ± 13.97Aa 675.3 ± 13.97Ad

YJ 713.2 ± 7.79Abc 131.31 ± 9.63Ad 844.51 ± 3.2Ab 1.10

J – 630.91 ± 19.55Ab 630.91 ± 19.55Ae

YC 707.41 ± 3.34Ac 153.82 ± 4.3Abc 861.23 ± 5.07Ab 1.11

C – 686.61 ± 14.96Aa 686.61 ± 14.96Ad –

Ecological region (R) ** * ** –

Cropping system (P) ** ** ** –

R * P ** * ** –
Lowercase letters indicate significant differences in the same ecological region for different planting patterns, while uppercase letters represent significant differences in the same planting patterns
for different ecological regions (p< 0.05). The same as below. * and ** represent significant differences at the 0.05 and 0.01 levels, respectively.
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growth of the legumes was inhibited in the mixed cropping system

(Figures 4R–T). In addition, the root systems of crops in different

ecological zones varied considerably, e.g., the root surface area of

broad bean was largest in the GN region, whereas the root surface
Frontiers in Plant Science 07
area of arrow end pea and oat was largest in the MY region

(Figures 4I, K, L).

The planting pattern, the ecological zone, and their interactions

had significant or extremely significant (p< 0.05) effects on root dry
B

C

A

FIGURE 3

Characteristics of legume root tumors under different cropping patterns in different ecological zones. (A) Root tumor number. (B) Root tumor fresh
weight. (C) Nitrogen-fixing enzyme activity.
B

C D

E F

A

FIGURE 2

Nitrogen content and accumulation in aboveground dry matter of oats and legumes in the different ecological zones under different cropping
patterns. (A) Nitrogen content of aboveground dry matter in oats. (B) Nitrogen accumulation of aboveground dry matter in oats. (C) Nitrogen
content of aboveground dry matter in pulses. (D) Nitrogen accumulation of aboveground dry matter in pulses. (E) Nitrogen content of aboveground
dry matter in cropping systems. (F) Nitrogen accumulation of aboveground dry matter in cropping systems.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1375166
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2024.1375166
weight, root length, root area, root volume, and root diameter for all

crops, except for the ecological zones, which had no significant

effect on the diameter of the three types of beans, or the volume of

the three types of beans as a result of the interaction between the

planting pattern and the ecological zone (Figure 4).
3.4 Effect of cropping pattern on soil
physicochemical properties in different
ecological zones

The planting pattern, ecological zone, and their interaction had

extremely significant (p< 0.01) effects on pH, SOM, TN, NN, ANN, and

MBN, except for the interaction between the planting pattern and the

ecological zone, which did not have a significant effect onNN (Figure 5).
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Mixed cropping tended to reduce soil pH compared to oat

monoculture, but the difference was not significant (Figure 5A).

Monocropping and mixed cropping of the three legumes

increased SOM compared to oat monocropping in all ecological

zones, with legume monocropping the highest, followed by

mixing. SOM of the mixed crops was significantly higher than

that of oat monoculture. In addition, the cropping patterns with

the highest SOM in each ecological zone were HZ (YS), GN (YC),

and HZ (YS) (Figure 5B). Soil TN content revealed that mixed

cropping was significantly higher than oat monocropping and the

corresponding bean monocropping in all ecological zones, but the

differences among the three mixed cropping patterns were not

significant. In addition, TN content increased the most in MY

compared to pre-sowing (Figure 5C). Soil ANN and NN contents

in all ecological zones were in the order of bean monoculture >
B C D

E F G H

I J K L

M N O P

Q R S T

A

FIGURE 4

Root system characteristics of monoculture and mixed cropping of oat and legume forages in different ecological zones. (A–D) Root dry weight. (E–H) Total
root length. (I–L) Root area. (M–P) Root volume (Q–T) and root diameter. Lowercase letters indicate significant differences in the same ecological regions
for different planting patterns, whereas uppercase letters represent significant differences in the same planting patterns for different ecological regions (p<
0.05). * denotes a significant difference between legume monoculture and mixture in the same ecoregion, ∗ denotes 0.01< p< 0.05, ∗∗ denotes p< 0.01, and
∗∗∗ denotes p< 0.001.
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mixed > oat monoculture, and soil ANN and NN were

significantly greater than the pre-sowing soils, except for oat

monoculture (Figures 5D, E). Soil MNB content increased in all

ecological zones and all cropping patterns compared to pre-

sowing. Among them, oat monoculture was the lowest, and the

mixed cropping pattern was the highest. The cropping patterns

with the highest MBN in each ecological zone were HZ (YJ), GN

(YC), and HZ (YS) (Figure 5F). MY had significantly higher SOM,

TN, NN, ANN, and MBN contents than HZ or GN (Figure 5).
3.5 Effect of the cropping pattern on
biological nitrogen fixation efficiency and
the amount of nitrogen fixation by the
legume forage in different ecological zones

The cropping pattern, ecological zone, and their interactions

had extremely significant (p< 0.01) effects on the rate of BNF, the

amount of BNF, and the contribution of nitrogen fixation of legume

forages (Figure 6).

Nitrogen fixation efficiency of legumes was significantly higher in

mixed cropping than in the corresponding monocropping in all

ecological zones and was significantly different among the three

legumes in the same area. Among them, the cropping patterns with

the highest nitrogen fixation rates in all ecological zones were HZ (YS),

GN (YC), and MY (YJ), respectively. In addition, the nitrogen fixation

rate of common vetch was significantly different among the three

ecological zones (Figure 6A). BNF and the contributions of BNF were

higher in all ecological intervals for monocultures than the
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corresponding mixtures and differed significantly among the three

legumes in the same region. All three legumes in MY had higher

biological nitrogen fixation rates than those in HZ and GN (except GN,

fava bean). In addition, YS was the cropping pattern with the highest

amount of BNF and contributions of BNF from mixed cropping in all

regions. The amount of BNF and contribution of nitrogen fixation by

fava bean were significantly higher in GN than in other regions

(Figures 6B, C).
3.6 Effects of mixed sowing in the different
ecological zones on the proportion of
nitrogen transfer and the amount of
nitrogen transferred by leguminous
forage grasses

The cropping pattern, ecological zone, and their interactions had

extremely significant (p< 0.01) effects on the N-transfer rate and the

amount of N-transferred by legume forages (Figure 7). The nitrogen

transfer rates of all three legume species were significantly different in

the same region, and the order of the nitrogen transfer rates in the

regions was HZ (YS > YC > YJ), MY (YC > YS > YJ), and GN (YC > YS

> YJ), respectively. In addition, YS, YJ, and YC had the highest nitrogen

fixation rates among the regions HZ, GN, and MY, respectively

(Figure 7A). Significant differences in N transfer were detected among

the three legume species in the same region, except for YC and YJ (HZ),

and YS and YJ (MY), which were not significantly different. The order

of the nitrogen transfer rate among regions wasHZ (YS > YC > YJ), MY

(YC > YS > YJ), and GN (YS > YJ > YC), respectively. Moreover, the
B

C D

E F

A

FIGURE 5

Soil physicochemical properties of the cropping patterns in different ecological regions. (A) Soil pH. (B) Soil organic matter. (C) Soil total nitrogen. (D) Soil
ammonium nitrogen. (E) Soil nitrate nitrogen. (F) Soil microbial nitrogen.
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highest nitrogen fixation rates were found in the regions of YS, YJ, and

YC: GN, MY, and GN, respectively (Figure 7B).
3.7 Factors affecting biological nitrogen
fixation and nitrogen transfer

Pearson’s correlation analysis showed that the ecological region (R)

was significantly and positively correlated (p< 0.05) with N%, MBN,

ANN, NN, TN, SOM, NN, pH, PPT, and T. The planting pattern (P)

was significantly and positively correlated (p< 0.05) with NW, NRN,
Frontiers in Plant Science 10
RD, RV, RS, RL, and RW. Mantel’s test showed that NRN, pH, NN,

ANN, MBN, N%, and DM were significantly and positively correlated

(p< 0.05) with BNF contribution (NC). P, R, NRN, pH, MBN, NN,

ANN, N%, and DM were significantly and positively correlated (p<

0.05) with the amount of nitrogen fixation (Ndfa). P, R, T, NRN, NRN,

pH, SOM, TN, NN, N%, and DM were significantly and positively

correlated (p< 0.05) with BNF (%Ndfa). R, T, ALS, RS, GN, SOM, TN,

MBN, and N% were significantly and positively correlated (p< 0.05)

with nitrogen transfer (Ntransfer) (Figure 8).

R and NG had a significant direct positive effect on Ndfa, and P

had a significant direct negative effect on Ndfa. The cropping pattern
BA

FIGURE 7

Nitrogen transfer from legume forage to oats under different cropping patterns in different ecological zones. (A) Nitrogen transfer rate. (B) Nitrogen transfer.
∗ denotes 0.01< p< 0.05, ∗∗ denotes p< 0.01, ∗∗∗ denotes p< 0.001, and ns denotes p> 0.05.
B

C

A

FIGURE 6

Biological nitrogen fixation characteristics of legume forage under the different cropping patterns in different ecological zones. (A) Biological
nitrogen fixation rate. (B) Biological nitrogen fixation. (C) Biological nitrogen fixation contribution.
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indirectly affected Ndfa by increasing NG, and the ecological

zone indirectly increased Ntransfer by significantly increasing NN.

P had a significant direct negative effect on Ntransfer, and NW

had a significant direct positive effect on Ntransfer. R increased

NT by increasing N%, and P increased Ntransfer by increasing

RS (Figure 9).
4 Discussion

The present study showed that the cropping pattern in different

ecological zones increased crop aboveground dry matter and

changed the root conformation. Mixed cropping improved soil
Frontiers in Plant Science 11
nutrients and had beneficial effects on the rhizomes, nitrogen

fixation, and nitrogen transfer. Studying the changes in

nodulation, nitrogen-fixing enzyme activities, root phenotypic

traits, and soil physicochemical traits in legumes helped to

understand the overall response of BNF and nitrogen transfer in

legumes in different ecological zones. The ability of legumes to

biologically fix nitrogen is a result of their symbiosis with

rhizobacteria, which are present in the rhizomes of legumes, and

different crop types and growing environments affect the formation

and activity of nodules, which, in turn, affects the amount of

nitrogen biologically fixed by the plant (Suter et al., 2015;

Duchene et al., 2017). Nitrogen fixation in the aboveground

portion of legumes in an intermixed cropping system yields
FIGURE 8

Correlation between biological nitrogen fixation, nitrogen transfer, and biological nitrogen fixation contribution with cropping system (P), ecological
region (R), climatic factors, root tumor characteristics, soil physical properties, and aboveground dry biomass. T, temperature; ASL, altitude; RW, root
dry weight; RL, root length; RS, root surface area; RV, heel volume; RD, root diameter; NRN, number of rhizomes; NW, fresh weight of rhizomes;
NG, nitrogen-fixing enzyme activity; DM, aboveground dry biomass. The width of the Mantel edge corresponds to the Mantel r value, and the color
of the edge indicates statistical significance. ∗ denotes 0.01< p< 0.05, ∗∗ denotes p< 0.01.
BA

FIGURE 9

Piecewise structural equation modeling (SEM) describing the effects of the cropping system in different ecoregions on biological nitrogen fixation
and nitrogen transfer in legume forage. Effect of cropping pattern (R) and ecological region (P), nitrogen-fixing enzyme activity (NG), microbial mass
nitrogen (MBN), nitrate nitrogen (NN), pH (Ph), total nitrogen (TN), nitrogen content (%N), and root surface area (RS) on biological nitrogen fixation
(Ndfa) and nitrogen transfer (Ntransfer). Solid lines indicate significant effects, and dashed lines indicate non-significant effects. * and *** indicate
significant differences at 0.05 and 0.001 levels, respectively.
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40–100 kg ha−2, and legume nitrogen fixation in an intermixed

cropping system is more than three times that in a monoculture

(Jensen, 1996), whereas 7%–42% of the nitrogen in non-leguminous

forage is transferred by legumes (Schipanski and Drinkwater, 2012;

Thilakarathna et al., 2016). This is due to nitrogen fixation by

leguminous crops, which alters the soil’s carbon-to-nitrogen ratio,

improves the soil’s nitrogen balance, and accelerates the cycling of

nutrients and enzymes required for normal plant growth and

development, which has a positive effect on crop growth (Spiegel

et al., 2007). Therefore, rational farming practices and cropping

patterns not only add additional nitrogen to the soil and improve

soil health but also effectively promote the agroecosystem cycle

(Crème et al., 2015; Zhao et al., 2015).

Mixed cropping in all ecological regions had more aboveground

dry matter than monocultures and LERs > 1, suggesting that

interspecific complementarity is greater than interspecific

competition in hybrid systems. Previous studies have reached the

same conclusion (Willey, 1979) because plants use interspecific

complementarity and interspecific competition to access soil

resources and promote rhizomatous nitrogen fixation through

positive plant–soil–microbe interactions (Duchene et al., 2017).

Plant facilitation and competition coexist in intercropping/mixed

cropping, and facilitation occurs when plant species positively

interact to provide complementary services (Bedoussac and Justes,

2010; Amossé et al., 2013). The interspecific relationships of crops

are related to root conformation and root depth, as root

characteristics determine the depth of water and nutrient uptake

(Peoples et al., 2004; Hauggaard-Nielsen et al., 2008). Plants use the

plasticity of roots to avoid excessive root competition and to explore

different regions of the soil, which in turn acts on the growth and

development of the aboveground parts (Schroth, 1998; Hauggaard-

Nielsen et al., 2001; Rich and Michelle, 2013). Our study confirmed

that mixing oats with the three legumes promoted root growth,

particularly increasing root length and surface area in the mixed

cropping system, increasing nutrient uptake from the soil, and

promoting aboveground growth. The amount of aboveground dry

matter was significantly higher in all of the mixes than in

monocropping and that the mixed cropping system was in an

interspecific complementary situation. The aboveground N

contents of oats planted under mixed cropping in the same

ecoregion were all significantly higher than those of single-

cropped oats, while the opposite was true for pulses, and there

were differences in the N contents of oats among the three mixed

cropping modes of pulses, YS, YJ, and YC. One was that N fixed by

legume crops is taken up and utilized by grass crops, depleting the

nitrogen in the soil and forcing legumes to increase their BNF rate

to meet their own nitrogen needs, while utilization of nitrogen

resources by oats is enhanced by interspecific intercropping (Wahbi

et al., 2016; Ingraffia et al., 2019). Second, the N content of legumes

is inherently higher than that of oats, and the difference in N

between plants after mixed cropping establishes a reservoir–source

relationship for oat–mungbean intercropping, resulting in the

transfer of nitrogen from high- to low-N plants and an increase

in the N content of the oats (Neumann et al., 2009; Rui et al., 2022).

The root tumor is the main site of BNF in leguminous plants

(Gibson, 1977), and the strength of the nitrogen fixation capacity of
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the root tumor is related to the number of root tumors, the weight

of the root tumors, the activity of nitrogen-fixing enzymes, the

habitat of the plant, and the characteristics and growth and

reproduction of the plant (Vincent et al., 1980), such as farming

practices, cropping pattern, and climatic conditions (Wheatley

et al., 1995; Marcarelli and Wurtsbaugh, 2010; Ben-Chuan et al.,

2022). In this study, the number of nodules, weight, and nitrogen-

fixing enzyme activity of the legumes increased in the mixed

cropping system, but the number of rhizomes varied considerably

from crop to crop, with pea having the highest number of nodules

and fava beans the largest rhizome weight, and the differences in

rhizome characteristics among the different crop species were

greater than those among the different cropping patterns. This

finding suggests that plant nodulation is mainly determined by

genetic characteristics (Hardarson and Atkins, 2003; Keneni et al.,

2013), but cropping systems can also significantly increase the

number and weight of rhizomes (Fujita et al., 1992; Bloem et al.,

2009). In addition, the characteristics of crop rhizomes of the same

cropping pattern varied considerably in different ecological zones;

particularly, the number and weight of the legume nodules were

significantly higher in MY than in HZ and GN, except for fava bean,

which had the highest number and weight of nodules in GN. This

may have occurred because of the fertile soil and suitable climate in

MY, which was favorable for legume crop nodulation, and similar

results were reported by related studies (Dollete et al., 2023).

Beuselinck et al. (2005) confirmed that plants grown in fertile

soils have dense and large rhizomes, whereas those grown in poor

soils have fewer rhizomes. However, the fava bean tumor pattern is

the opposite, with the lowest temperature and rainfall in the GN

region inhibiting the growth and development of the crop, and the

aboveground dry matter yield of the crop in the GN (highest

altitude) region was lower than in all other regions. This may be

due to the fact that broad beans are more adaptable to their

environment and that low temperatures and dry conditions are

more favorable for nodulation. This is contrary to the findings of

Lumactud et al (Fernández-Luque et al., 2008; Belén et al., 2015).

This may have occurred because of the different crop species

studied; broad bean has a longer root system, greater volume and

surface area, greater ability to draw water and nutrients, greater

ability to cope with drought, and a lower effect on nodulation

(Rowse and Goodman, 1981; Nyalemegbe and Kenneth, 1994). In

addition, the mixed cropping increased nitrogen-fixing enzyme

activity in the rhizomes of the leguminous crops, which was

consistent across all three leguminous crops in all ecological

zones. Root interactions in the mixed cropping system may be

responsible for the increased oat root growth, root surface area, and

spatial expansion of the oat root system (Hoad et al., 2001; Gao

et al., 2010), which created a favorable microaerobic environment

and promoted nitrogen-fixing enzyme activity (Serraj, 2003;

González et al., 2015).

Nutrient composition of the soil and physicochemical factors,

such as soil organic matter (SOM), soil TN, soil total phosphorus

(TP), and electrical conductivity (EC) are soil factors that

significantly affect the rhizomes of legumes. In turn, the tumor

characteristics of the plant counteract soil quality (David and Khan,

2001; Massawel et al., 2016). Our study found that mixed cropping
frontiersin.org

https://doi.org/10.3389/fpls.2024.1375166
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2024.1375166
significantly increased SOM, TN, nitrate–nitrogen, and

ammonium–nitrogen compared to oat monoculture, but nitrate–

nitrogen and ammonium–nitrogen contents were lower than those

in monoculture legumes. This may have occurred because nutrients

are released from the decomposition of withered material and root

rot of leguminous crops, while the nitrogen fixation of legumes

increases the number of beneficial microorganisms in the soil,

accelerates nutrient mineralization (Wardle et al., 2006; Deyn

et al., 2011; Zhao, 2014), and increases the organic matter content

in the soil, providing a favorable environment for crop growth

(Fontaine et al., 2003; Blagodatskaya and Kuzyakov, 2008; Bernard

et al., 2009). Second, oat and legume root interactions were

enhanced in the mixed cropping system and became closer as the

reproductive period progressed, with root secretions inducing

interactions between roots, soil microorganisms, and the

surrounding soil particles (Burns, 1982; Dennis et al., 2010).

Plant-secretion-enriched soil microorganisms play a key role in

the decomposition of SOM and nutrient cycling by releasing and

influencing various enzyme activities (Trasar-Cepeda et al., 2008;

Kabiri et al., 2016; Zhou et al., 2016). Third, N released by legumes

undergoes three pathways, including plant resorption–

denitrification and loss-soil microbial fixation (Nasholm et al.,

2009; Cameron et al., 2013). The main form of N in legume

rhizome sediments is ammonium-N, which is converted to plant-

available nitrogen by nitrification (Lesuffleur et al., 2007; Paynel

et al., 2008), resulting in increased levels of nitrate and ammonium-

N in mixed cropping systems.

The BNF rates of the three legumes varied significantly in the

different ecological zones, and the BNF rates of the three legumes also

varied significantly within the same ecological zone. The cultivation

patterns with the highest BNF rates in each region were HZ (YS), GN

(YC), and MY (YJ), respectively. This finding indicates that different

crops have different adaptability to the environment and that climatic

and soil factors affect nitrogen fixation in legume crops (Sprent,

1999). A rational cropping pattern will increase the nitrogen fixation

rate of the crop (Zang et al., 2015; Tsialtas et al., 2018). Smercina et al.

(2019) showed that BNF is cumulatively sensitive to environmental

changes that affect the growth and development of the aboveground

parts and the belowground root systems of crops (Smercina et al.,

2019; Chun et al., 2021). Intercropping improves N fixation (%Ndfa)

in legumes because legumes take up less N from the soil in

intercropping systems, which improves N fixation efficiency (Danso

et al., 1987). This effect becomes more pronounced as grain density

increases (Fan et al., 2018). This study showed that the YS cropping

pattern had the highest BNF and BNF contribution in the three

ecological zones, and in the mixed cropping system with oats, the

forage pea was at a disadvantage in the utilization of soil nitrogen

resources, stimulating its BNF and enabling oats to obtain more

ground nitrogen (Ingraffia et al., 2019). The N transfer rate and N

transfer of the three leguminous crops differed significantly in the

same ecological zone and also among the ecological zones of the same

cropping pattern. Of these, 11.38%–12.68%, 6.85%–9.77%, and

7.94%–11.65% of the nitrogen in oats from the mixed cropping

systems of YS, YJ, and YC came from S, J, and C, respectively. This is

due to differences in the characteristics of the different types of

legume nodules and root systems (Rao and Ito, 1998), changes in
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cropping patterns that can affect nitrogen fixation, and the different

ecological conditions that affect root secretions. In addition, there are

differences in soil nutrient cycling, the growth of aboveground parts

of plants, and the uptake and translocation of nitrogen from the crop

(Gupta et al., 2006; Collino et al., 2015). A high N fixation rate did not

represent a high N transfer rate because N fixation is mainly

associated with nodulation in legumes (Weaver, 1987), whereas N

transfer is related to N uptake, the difference in N content between

oats and legumes, and the closeness of root contact between the two

(Stern, 1993; Shao et al., 2021).

Factors affecting nitrogen fixation and the nitrogen transfer rate

in legumes are complex, with the cropping environment, cropping

pattern, and crop type being the key factors (Rui et al., 2022). This

study showed that the cropping pattern and ecological zone

promoted BNF in legumes by increasing nitrogen-fixing enzyme

activity and ammonium–nitrogen content. In addition, the

ecological zone and cropping pattern improved the nitrogen

transfer rate in the legumes by increasing rhizome weight and

aboveground nitrogen content. In this study, we found that

Legume-grass mixtures can improve the biological nitrogen

fixation capacity of legume crops. By promoting rhizoma

formation and optimizing root morphology, it promotes crop

growth and development, increases soil nutrients and optimizes

resource allocation. We also found that Legume-grass mixtures

also affects root secretions, rhizobia, and nitrogen-fixing bacteria,

thereby altering the inter-root microcosm. However, the molecular

biological mechanisms by which nitrogen-fixing microorganisms

affect legume-grass mixtures are not yet clear and can be further

elucidated with the help of new technologies such as soil

macrogenomics and macrotranscript genomics.
5 Conclusion

Legumes reduce atmospheric nitrogen to plant-available nitrogen

(ammonia) catalyzed by nitrogen-fixing enzymes. Plants use

interspecific complementarity and interspecific competition to access

soil resources and promote the process of rhizomatous nitrogen

fixation through plant-root-soil interactions. This finding provides

further evidence that mixing legumes with oats is an effective

sustainable forage management practice. We found significant

differences in BNF rates of legumes grown with different types of

legumes and in different ecological zones, but overall, mixed cropping

significantly increased the BNF rates of legumes. In addition, high rates

of BNF did not represent high rates of nitrogen transfer. Our study

demonstrated the effects of the ecological zone and cropping pattern on

BNF and nitrogen transfer in alpine mixed-seeded grassland. These

results will help us to better understand nitrogen fixation and grass

interactions in alpine grassland ecosystems.
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