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In order to address the challenges of inefficiency and insufficient accuracy in the

manual identification of young citrus fruits during thinning processes, this study

proposes a detection methodology using the you only look once for complex

backgrounds of young citrus fruits (YCCB-YOLO) approach. The method first

constructs a dataset containing images of young citrus fruits in a real orchard

environment. To improve the detection accuracy while maintaining the

computational efficiency, the study reconstructs the detection head and

backbone network using pointwise convolution (PWonv) lightweight network,

which reduces the complexity of the model without affecting the performance.

In addition, the ability of the model to accurately detect young citrus fruits in

complex backgrounds is enhanced by integrating the fusion attention

mechanism. Meanwhile, the simplified spatial pyramid pooling fast-large kernel

separated attention (SimSPPF-LSKA) feature pyramid was introduced to further

enhance the multi-feature extraction capability of the model. Finally, the Adam

optimization function was used to strengthen the nonlinear representation and

feature extraction ability of the model. The experimental results show that the

model achieves 91.79% precision (P), 92.75% recall (R), and 97.32% mean average

precision (mAP)on the test set, which were improved by 1.33%, 2.24%, and 1.73%,

respectively, compared with the original model, and the size of the model is only

5.4 MB. This study could meet the performance requirements for citrus fruit

identification, which provides technical support for fruit thinning.
KEYWORDS

YOLO V8, young citrus fruit, deep learning, target detection, lightweight network
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1 Introduction

Citrus fruits are extensively cultivated globally, with countries

such as China, Brazil, India, the United States, and Mexico ranking

among the top nations in terms of citrus cultivation area (Lyu et al.,

2022). This prominence establishes citrus as a crucial cash crop and a

significant contributor to the agricultural economy. Effective

management during the young fruit stage of citrus plays a pivotal

role in influencing fruit growth, development, and overall quality.

Consequently, adjusting the tree load during this period becomes

essential to promote the development and enhance the quality of

young fruits. The current practice of citrus young fruit thinning

primarily relies on manual interventions, resulting in drawbacks such

as low efficiency, imprecision, and higher costs. Leveraging machine

learning and artificial intelligence technologies for intelligent fruit

thinning holds the potential to improve work efficiency, ensure

superior fruit quality, and concurrently reduce production costs.

Therefore, intelligent fruit thinning stands as a promising avenue

with distinct advantages and developmental prospects.

Automated identification and detection of young citrus fruits

constitute a crucial stage in intelligent fruit thinning. The swift

advancement of deep learning and computer vision technologies in

recent years has opened new avenues for addressing this challenge.

Specifically, the YOLO (You Only Look Once) series of first-order

target detection algorithms have demonstrated noteworthy success

in image processing and computer vision tasks. Furthermore, these

algorithms have found extensive applications in the agricultural

domain (Akkem et al., 2023; Farjon et al., 2023; Wu et al., 2023).

Jintao Feng et al. (2023) proposed a YOLOX-based real-time multi-

type surface defect detection algorithm (MSDD-YOLOX) for

oranges in order to achieve real-time detection of orange surface

defects on an orange sorter. The algorithm improves the detection

of scars at different scales by introducing necking network residual

connections and cascading of necking networks. To address the

problem of missed detection in texture-based defects and to

improve the regression of the predicted bounding box, focus loss

and CIoU were used in the algorithm. The results show that MSDD-

YOLOX achieves F1 values of 88.3%, 80.4% and 92.7% for the

detection of deformities, scars, and lesions, respectively, with an

overall detection F1 value of 90.8% (Feng et al., 2023). Chaojun Hou

et al. (2022) proposed a new method to detect and localize ripe

citrus using You Only Look Once (YOLO) v5s with improved

binocular vision. In order to recover the missing depth information

due to random overlapping of background participants, Cr-Cb

chromaticity mapping, Otsu thresholding algorithm, and

morphological processing are sequentially used to extract the

complete shape of the citrus, and a kriging method was applied to

obtain the optimal linear unbiased estimator of the missing depth

values. Finally, the spatial position and attitude information of the

citrus were obtained based on the camera imaging model and the

geometrical features of the citrus. The experimental results showed

that the recall of citrus detection under non-uniform lighting

conditions, weak lighting and lighting conditions were 99.55%,

98.47% and 98.48% (Hou et al., 2022). Sadaf Zeeshan et al. (2023)

proposed a deep learning convolutional neural network model for

orange fruit detection using a generic real-time dataset for detecting
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oranges in complex dynamic environments. A Keras sequential

convolutional neural network model with convolutional layer

activation functions, maximum pooling and layers fully connected

was developed. Images acquired from an orchard using a Kinect

RGB-D camera were used to evaluate the model. The accuracy of

the proposed CNN model was 93.8%, precision was 98%, recall was

94.8% and F1 score was 96.5% (Zeeshan et al., 2023). In citrus

detection, scholars have done research on citrus surface defects,

spatial localization of citrus position and citrus quantity detection

using deep learning techniques, however, little research has been

done in the detection of young citrus fruits.

Despite remarkable progress in target detection using deep

learning, challenges remain in detecting citrus fruit in complex

orchard backgrounds, varying lighting conditions, occlusions and

fruit size differences. To address these issues, a novel YCCB-YOLO

model specifically tailored for citrus fruit detection was proposed.

This model aims to provide effective technical support for

automated orchard management, enabling a more efficient and

intelligent approach.

The study was structured as follows: an introduction outlining

the research background, importance, existing challenges and the

novelty of our approach was provided. The methods section details

the construction of the comprehensive dataset representing real

citrus young fruit images, and the design and implementation of the

YCCB-YOLOmodel. Experimental results covering the comparison

of the proposed method with existing techniques are then presented

to demonstrate its effectiveness. Finally, the study concludes with a

summary of our main contributions, findings and directions for

future research.

The main contributions of this study are as follows:

Model innovation: We introduce the YCCB-YOLO model,

which achieves accurate citrus young fruit detection in complex

backgrounds through optimized network architecture and

integrated attention mechanisms.

Dataset development: A comprehensive dataset of citrus fruit

images in authentic orchard environments will be established,

providing a rich resource for model training and evaluation.

Performance enhancement: By incorporating the SimSPPF-

LSKA feature pyramid and using the Adam optimization

function, we significantly improve the detection accuracy and

computational efficiency of our model.

Real-time application potential: The proposed method exhibits

compact model size and high computational efficiency, making it

suitable for real-time citrus fruit detection applications.
2 Experiments and methods

2.1 Image acquisition and pre-processing

In this study, the collection work of citrus young fruit image

data was carried out and the citrus young fruit dataset was

established. The collection site was selected in citrus plantation in

Huanglongxi Town, Shuangliu District, Chengdu City, Sichuan

Province (longitude 30°19′21.84″, latitude 103°57′48.57″),
while the collection tool was a Redmi K60 ultra mobile phone
frontiersin.org
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(Sony IMX596 camera). During the filming process, three different

time periods, namely, morning, noon and evening, were selected to

simulate different lighting conditions during the day, so as to gain a

more comprehensive understanding of its morphology and

characteristics. During the filming process, single pictures and

videos were taken, after obtaining the image data, the key frames of

the videos were selected and converted into pictures. By screening

and labelling the images, blurred, overexposed as well as duplicated

hard-to-label images were eliminated, and clear, high-quality and

representative images were retained. Finally, 1400 valid images of

young citrus fruits were obtained, some of which are shown in

Figure 1. The young citrus fruit targets in the images were labelled

using Labelimg image annotation tool and the images and labelled

data were stored in PASCAL VOC format. After completing the

labelling, the dataset was divided into training, testing and validation

sets in the ratio of 7:2:1 (Gao et al., 2022).
2.2 YCCB-YOLO detection model

The YCCB -YOLO citrus young fruit detection model adopts the

YOLO v8n model as the basic architecture, which is composed of

backbone, head and Detect respectively. In order to further improve
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the detection accuracy and lightweight of the model, backbone and

head were improved by light weighting, fusing the attention module,

adopting the fast inter-pyramid pooling method, as well as optimally

selecting the Adam optimizer, finally the structure of the citrus young

fruit detection model was as shown in Figure 2.

2.2.1 Lightweight backbone, head designs
The lightweight backbone, head design provides more

advantages for the citrus young fruit detection model in

embedded device applications. The YOLO series backbone

network mainly performs image feature extraction, using a

convolution kernel to perform convolution operation with the

input image after receiving the input image data in order to

capture the local features of the image, while an upsampling

operation will be added in the post-processing stage to perform

feature fusion (Jiang et al., 2024).

The detection head mainly performs target recognition based

on the information of the feature map and outputs the category and

location information of the target. The network firstly performs

convolution operation on the feature map output from backbone to

extract feature information, then it uses fully connected layer to

classify and regress the feature information. Fully connected layer

will classify each pixel location, determine whether there exists a
FIGURE 2

Structure of citrus young fruit detection model.
FIGURE 1

Images of young citrus fruit parts at different angles.
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target at that location, and output the location and category

information of the target (Xiao et al., 2023).

It could be seen that the convolutional layer conv plays a crucial

role in YOLO, and different convolutional kernels, step sizes,

activation functions, and network structures make up different

convolutional variants (Basha et al., 2019). These variants target

specific tasks and data to further improve the performance of the

convolution into performance and adaptability. The final

application scenario of this study was an orchard with a complex

environment, which has higher requirements for model accuracy,

size and detection speed, so a lightweight convolutional network

structure was used for head and backbone.

Deep separable convolution reduces the number of parameters

and computational complexity in the model by splitting the

convolution operation into two parts, deep convolution and

pointwise convolution, thus reducing the model size and runtime

(Hong et al., 2021). Therefore depth separable convolution was

commonly used in many lightweight models, but the frequent

memory access of this convolution was still a problem to be

solved, PConv used the redundancy of feature maps to further

optimize the cost to solve the problem of frequent memory access

nicely (Chen et al., 2023).

PConv unique in that it will select the first or last consecutive cp

channel as a representative of the overall feature map to be

computed when performing consecutive or standard memory

accesses (Chen et al., 2023). The FLOP was calculated as follows

in Equations 1–3:

h� w � k2 � c2p (1)

h� w � 2cp + k2 � c2p (2)

When the regular convolution r = 1/4, which is only 1/4 of its.

c1 �
h
4
� w

4
(3)

At the same time, in order to be able to use the information of

all channels, a pointwise convolution (PWonv) was attached to the

PConv, which finally shows the schematic of the convolution

in Figure 3.

Based on PConv convolution this paper redesigns the

Bottleneck module in C2F in YOLOV8, named P-Block, and its

structure diagram as shown in Figure 4 below, P-Block adds a layer

of ordinary 1*1 convolution and residual operation on the basis of
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P-shaped Conv to better optimize the whole module. In order to

backbone and head lightweight, all the c2f modules in YOLOV8

were replaced with P-Block (Bao et al., 2023), and the P-Block

module fused C2F as shown in Figure 5.

2.2.2 Attentional mechanisms of fusion
Attention mechanism is a method in deep learning that mimics

human attention allocation, helping neural networks capture long-

distance dependencies in input sequences more effectively by

automatically learning to weight and focus on key information

(Wang and Jiao, 2022). In deep learning target detection techniques,

the attention mechanism automatically identifies and focuses on
FIGURE 3

Schematic diagram of P-shaped Conv convolution.
FIGURE 4

Schematic diagram of P-Block module.
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key regions in the input image, thus improving the accuracy and

robustness of target detection with reduced computational resource

consumption. By fusing different attention mechanisms together,

the advantages of each mechanism as well as their respective

shortcomings could be fully utilized. Because different attention

mechanisms focus on problems from different perspectives and in

different ways, fusing them together could complement each other

and capture the characteristics of the input data in a more

comprehensive way. Secondly, integrating multiple attention

mechanisms improves the diversity of the model, diverse

information processing methods help to improve the robustness

and generalization ability of the model. Finally, fusing multiple

attention mechanisms has flexibility in that it could be flexibly

combined according to specific tasks and data characteristics to

adapt to different application scenarios (Wan et al., 2023).

Therefore, in this paper, a fused attention mechanism was added

to the citrus young fruit detection model to improve the detection

accuracy of the model.

Efficient multi-scale attention (EMA) is an efficient multi-scale

attention mechanism that can effectively solve the accuracy

degradation problem caused by channel dimensionality reduction

in model construction. Figure 6 shows the structure diagram of the

EMA module. From the figure, it could be seen that the module

transforms some channels into batch dimensions, groups channel

dimensions into multiple subfeatures, encodes global information

to recalibrate the weights of parallel channels, then aggregates

feature outputs across dimensions, while ensuring that the

information of each channel was focused without increasing the

computational complexity (Ouyang et al., 2023).

The Triplet Attention ternary attention mechanism implements

the interaction of information between the channel dimension and

the spatial dimension in an almost parameter-free way constructing

the channel attention and spatial attention. The structural sketch of

the Triplet Attention module shows in Figure 7, from which it could

be seen that the module captures the information of the interaction of

the quartal dimensions through three parallel branch structures. The

first branch captures the interaction features between the channel

dimension and the spatial dimension. It interacts the channel

dimension in the input tensor with the spatial dimension to extract

the channel features at different spatial locations. The second branch

interacts the channel dimension with another spatial dimension to

capture the interaction between channel features at different spatial

locations. The third branch was used to build spatial attention. It

generates a global representation of the channel by aggregating the

features of the channel dimension to capture the interactions between

different channels, thus improving the feature extraction capability of

the module in different dimensions (Lau et al., 2024).
Frontiers in Plant Science 05
The Large Separable Kernel Attention (LSKA) module solves

the problem of large convolutional kernels showing a quadratic

increase in computation and memory for deep convolutional layers.

The structure of the LSKA module shown in Figure 8. As shown in

the structure diagram, the module decomposes the 2D

convolutional kernels of the deep convolutional layer into

cascaded horizontal and vertical 1-D kernels to reduce the

computational complexity (Zhichao et al).

In this paper, the design of the citrus young fruit recognition

model focuses on the lightweight of the detection model, but the

lightweight will inevitably bring the loss of detection accuracy.

Therefore, a fused attention mechanism was adopted to improve

the detection accuracy of the model. The Triplet Attention ternary

attention mechanism was used in the detection head, the EMA
FIGURE 5

Schematic diagram of P-Block module fusion C2F.
FIGURE 6

Schematic diagram of the efficient multi-scale attention module
of EMA.
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attention mechanism was adopted in the detection backbone,

and the LSKA attention mechanism was adopted in the feature

pyramid, and the location map of their added attention mechanisms

as shown in Figure 2.

2.2.3 Feature pyramid networks
The feature pyramid network can fuse feature information from

different scales and reduce the loss of small targets (Deng et al.,

2021; Huang et al., 2021). The SPPF feature pyramid structure has

been adopted in yolov8. It reduces the amount of computation by

three consecutive maximum pooling, the convolution kernel unified

as 5*5, finally concat the results before pooling and after each

pooling, meanwhile ensures the effect of multi-scale fusion achieves

the fusion of local features and global features at the level of

featherMap (Tang et al., 2023). In the citrus young fruit dataset

there was some noise and interference, so in order to improve the

robustness of the model, the SimSPPF structure (Hu and Zhu, 2023;

Wang et al., 2023) was introduced and the large kernel separated

attention (LSKA) was used in the architecture, which was called the

feature pyramid structure as SimSPPF- LSKA, and the structure as

shown in Figure 9.

As shown in Figure 9, SimSPPF-LSKA has been optimized

compared to SPPF in the choice of activation function, with SPPF

using SiLU (Sigmoid Linear Unit) as the activation function, while

SimSPPF uses ReLU (Rectified Linear Unit), this change improves

the speed of each module, making SimSPPF more efficient

compared to SPPF. In addition, the LSKA attention module with

a 5 × 5 convolutional kernel has been incorporated after three

consecutive maximum pooling. The LSKA module enables the

model to accurately capture important feature information at

different scales by combining the local and global attention

mechanisms, thus improving the quality of feature representations

to enhance the performance of the model.
Frontiers in Plant Science 06
3 Results and discussion

3.1 Test environment and
parameter configurations

The hardware environment for this test is Lenovo

R9000P2021H with AMD Ryzen 7 5800H processor, 16GB of

RAM on board, RTX3060 Laptop GPU graphics card, and

Windows 10 Home Edition 2021 system.

A column of key parameters were carefully chosen for model

training as shown in Table 1, as shown in Table 1 the input image
FIGURE 7

Schematic diagram of Triplet Attention ternary attention
mechanism module.
FIGURE 8

LSKA Large Separable Kernel Attention Module.
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size as 640×640, batch size as 16, initial learning rate as 0.001, etc.,

these parameters were set to ensure efficient training and validation

of the model to maximize the performance and accuracy of

the model.
3.2 Evaluative indicators

In this paper, the target detection model has been

comprehensively evaluated using evaluation metrics such as

precision rate, recall rate, mAP50 and test time per image. These

evaluation metrics comprehensively measure the performance of

the model in terms of classification accuracy, localization accuracy

and operational efficiency, thus the comprehensive evaluation of

these metrics provides important guidance for model optimization

(Guo et al., 2023; Huang et al., 2023). Precision, Recall, AP, and

mAP calculation formulas follow as shown in Equations 4–7 below.

Precision =
TP

TP + FP

� 100%                                                                               (4)

Recall =
TP

TP + FN

� 100%                                                                             (5)

AP =
Z 1

0
P(R)dR                                                                                   (6)
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mAP =
1
Ko

K

i=1
AP(i) (7)

where: Precision-precision, Recall-recall rate, mAP-mean

average precision

TP-number of correctly detected citrus fruit.

FP-Number of incorrectly detected young citrus fruit.

FN-number of missed citrus fruits.

AP- Area under the P and R curves.
3.3 Analysis of results

3.3.1 Analysis of model training and
validation process

Deep learning models are known as “black boxes” due to their

complex network structure and large number of parameters, whose

internal reasoning process often remains opaque, posing challenges

for model training and evaluation. In order to increase the

interpretability of the model and prove the effectiveness of

training and evaluation, loss function analysis was used in this

study. As shown in Figure 10. The loss function values were

monitored during the training process and the loss plots for

training and validation were plotted. From Figure 10 it can be

seen that the model achieved proper convergence as the number of

training rounds increased, therefore our model and training

evaluation were valid.
3.3.2 Analysis of result verification for lightweight
P-Block

In this paper, the model adopts P-Block module for light

weighting, in order to verify the feasibility of the method the

model with P-Block module and the original model are compared

and analyzed for various evaluative metrics, the results as shown in

Figure 11. As could be seen from Figure 11, the size of the model

with P-Block in both the head and the backbone was 4.8 MB, which

was 20.6% less compared to the original model, the precision was

91.47%, which was 2.14% less compared to the original model, the

recall was 89.29%, which was 1.04% less compared to the original

model, and the mAP was 96.12%, which was 0.11% less compared

to the original model. The size of the model has been compressed

after light weighting and at the same time there was a negative

impact on the overall performance of the model.
3.3.3 Result validation analysis of the attentional
mechanism of fusion

The model in this paper fuses different types of attention

modules at different locations, in order to verify the effectiveness

of fusing multiple attention mechanisms, the model with fused

attention mechanisms was tested in comparison with the original

model, and the results were shown in Table 2. As shown in Table 2,

the citrus young fruit detection model fused with multiple attention

mechanisms improves in detection performance, compared with

the model without added attention modules the precision improves
FIGURE 9

Schematic diagram of SimSPPF- LSKA feature pyramid structure.
TABLE 1 Table of model training parameters.

Parameter name Configuration value

Input image size 640×640

Initial learning rate 0.001

Batch size 16

Number of training epochs 100

Optimizer SGD/Adam/AdamW

Momentum 0.937
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by 0.24%, the recall improves by 1.67%, and the mAP improves by

0.12%, meanwhile, it was found that different parts of the addition

of the attention modules have different effects, the addition of the T-

Attention attention module to the head of the mAP improved by

0.02%, P decreased by 0.63%, and R decreased by 1.96% compared

to fusing multiple attention modules. This proves that different

attention modules in different locations have different performance

in improving the detection indexes, while the same comparison

finds that the size of the model increases by 0.1MB compared to that

of the lightweight P-Block, which indicates that the fusion of

multiple attention mechanisms will increase the parameters of the

model and thus increase the size of the model while improving the

performance of the model.

3.3.4 Result validation analysis of SimSPPF- LSKA
feature pyramid

In this paper, SimSPPF- LSKA feature pyramid was used for the

model, and large kernel separated convolutional attention was

incrementally added while simplifying the feature pyramid to

improve the ability of different scales feature fusion. In order to

verify the feature fusion ability of SimSPPF- LSKA feature pyramid,

a comparison test is carried out between the model of this paper

using SimSPPF- LSKA feature pyramid and the model of this paper

using SPPF, SPPF- LSKA, SimSPPF, and the results shown in
Frontiers in Plant Science 08
Table 3. As indicated in Table 3, the LSKA attention module

increases the model size by 0.5MB due to the addition of the

large kernel separation convolution. in the precision comparison

the pyramid is the highest for the SimSPPF model at 91.93%, the

highest value of recall was 92.05% for the model using the SimSPPF-

LSKA feature pyramid, and the highest value of mAP was 96.58%,

which indicates that SimSPPF- LSKA feature pyramid improves the

ability of feature fusion at different scales.
3.4 Discussion and analysis

3.4.1 Discussion of the results of different light
weighting models

Lightweight detection heads and detection backbones have been

the focus of research, where lightweight target detection heads and

backbone networks form the key to improving real-time target

detection and reducing computational resource consumption.

Therefore, this section focuses on the effects of different

lightweight detection heads and backbone networks on the

improved YOLOV8 series model. As shown in Table 4, P-Block is

added into the detection head and backbone of YOLOV8, C3

lightweight detection backbone was adopted, fastestet was

adopted as the detection backbone to compare and analyze with
FIGURE 10

Loss map for model training and validation.
FIGURE 11

Comparison test results of lightweight P-Block with the original model.
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the model of this paper, respectively. As shown in Table 5, the

detection performance of different combinations of detection head

and detection backbone is different, when P-Block was used in both

the detection head and the detection backbone, the model size of

4.8MB was the model with the lowest percentage of all models,

while Map increased by 0.53% compared to the model with C3

module, and increased by 0.78% compared to the model with the

detection head bit c2f and the backbone with fasternet, when

considering the effects of detection performance and model size,

the YOLO V8 model with P-Block achieves excellent performance.

3.4.2 Discussion of results for different
optimization functions

Different optimization methods have different expressive power

in the YOLO series of models, this section compares the

performance of SGD, Adam, and AdamW optimization functions

in YOLO V8 with the citrus young fruit model (Loshchilov and

Hutter, 2018; Jia et al., 2022), whose results are shown in Figure 12.

From Figure 12, it could be seen that the model in this paper

performs best when using Adam optimizer, and Adam optimizer

significantly improves the performance of the model compared to

other optimizers. Compared to the SGD optimizer, using the Adam

optimizer can improve the P-value of this paper’s model by 1.67%,

the R-value by 1.40%, and the mAP-value by 0.74%. Compared to

the AdamW optimizer, using the Adam optimizer improves the P-

value of this paper’s model by 0.63%, the R-value by 0.17%, and the

mAP value by 0.04%. The model of this paper was compared with
Frontiers in Plant Science 09
the YOLOv8 model in terms of optimizer selection. The P, R and

mAP of this paper’s model were better than YOLOv8 when using

the Adam optimizer. This paper’s model also performs well when

using the AdamW optimizer, but is slightly inferior to

YOLOv8.Therefore, the Adam optimizer was finally chosen for

this paper’s model.

3.4.3 Comparison of different citrus
detection models

A variety of advanced deep learning models have been

developed in the field of citrus recognition, where the accuracy

and efficiency of citrus recognition has been greatly improved. In

this paper, a variety of citrus detection models are selected for

comparative analysis, as shown in Table 5. As shown in Table 5,

different citrus recognition models differ in performance. It could be

noted that the differences in the performance of different citrus

recognition models were mainly related to the model structure,

parameter settings and dataset quality, etc. Chaojun Hou et al. The

improved YOLO v5s model with P of 99.55%, R of 98.47%, and

mAP of 98.48% was the best performer among all the models. This

paper’s model performs well in terms of accuracy, speed and mAP

values and could meet the needs of different application scenarios.
3.4.4 Advanced comparative analysis of
benchmarking models

This section presents a detailed comparative analysis between

the YCCB-YOLO model and current advanced benchmark models,

including YOLO V5, YOLO V6, YOLO V7, and YOLO V8, as

illustrated in Table 6. The YCCB-YOLO model demonstrates

superior performance in the task of citrus young fruit detection,

achieving a precision of 91.79%, a recall rate of 92.75%, and mAP of

97.32%. In comparison, YOLO V5 and YOLO V8 exhibit

commendable precision rates of 90.81% and 90.46%, respectively,

while YOLO V6 follows closely behind the YCCB-YOLO model in

recall performance with a rate of 92.13%. YOLO V7 shows

moderate performance across all metrics, particularly ranking

lowest in mAP at 94.47%. The high efficiency and accuracy of the

YCCB-YOLO model in detecting young citrus fruits underscore its

advantages, while also highlighting the performance of other

models in specific metrics. This analysis provides valuable

insights for the future improvement and optimization of models.
3.4.5 Portability of model field
movement detection

The cost of hardware must be considered when building a citrus

young fruit detection system, and the low price and good detection

effect will be accepted by the orchard operators (Cubero et al.,

2016). Therefore, the relatively inexpensive embedded devices were

chosen for citrus young fruit detection, but the low-cost embedded

devices have limited processing power to put forward better

requirements for the model, so the test on the embedded devices

was more valuable for practical applications. The system used in

this paper mainly consists of a micro computer processor

(Advantech AiMC-200J), camera, and monitor. The memory of

the microcomputer processor with 2GB, the processor with Inter
TABLE 2 Test results of the fused attention mechanism.

Model Attention
Module

P/
%

R/
%

mAP/
%

Model
Size/
MB

YOLO
V8-

P-Block

× 91.47 89.29 96.12 4.8

YOLO
V8-

P-Block

Head + T-Attention 91.03 90.91 96.26 4.9

YOLO
V8-

P-Block

Backbone + EAM 90.76 89.45 96.17 4.9

YOLO
V8-

P-Block

Head + T-
Attention、

Backbone + EAM

91.71 90.96 96.24 4.9
TABLE 3 Results of the improved feature pyramid structure.

Feature
Pyramid

P/% R/% mAP/
%

Model
Size/MB

SPPF 91.71 90.96 96.24 4.9

SPPF- LSKA 91.84 91.74 96.33 5.4

SimSPPF 91.93 88.41 96.22 4.9

SimSPPF- LSKA 91.21 92.05 96.58 5.4
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Celeron CPU J1900, the disk capacity of 128GB, the operating

system micro Ubuntu 20.04.

Fifty images of young citrus fruits in the test set of this paper’s

dataset were randomly selected for testing this paper’s model and

YOLO V8n in this system, and the results are shown in Figure 13.

The detection accuracy of this paper’s model was inferior to that of

the YOLO V8n model in the images with sparse young fruits, but

the V8n model showed leakage detection. In partially occluded

images the detection frame of this paper’s model more accurately

identifies the larger fruits at the front end, and the overall detection

accuracy of this paper’s model was higher than that of the YOLO

V8n model in images with dense young fruits. However, in the

detection time of V8n model, the average detection time of a single
Frontiers in Plant Science 10
sheet of 0.6564 seconds, and the average detection time of a single

sheet of 0.6971 seconds of this paper’s model increased by 0.0207

seconds. Taken together this paper’s model was more advantageous

in the face of dense young fruits and shaded young fruits.

In order to further verify the reliability in the low-configuration

hardware of this model, a citrus young fruit detection system was

built outdoors to detect the citrus young fruit model tree as shown

in Supplementary Figure 1, where the electric trolley was detected

around the distance from the citrus young fruit model tree in a

circle. In the detection the camera monitors the upper middle and

lower citrus young fruits through the regulator respectively, and

some of the results are shown in Figure 14. As shown in Figure 14,

the model was able to detect the young citrus fruits in the test
FIGURE 12

Comparison results of different optimization functions.
TABLE 4 Results of the improved feature pyramid structure.

model Head Backbone P/% R/% mAP/% Model Size/MB

YOLO V8 C3 C3 90.46 90.51 95.59 5.2

YOLO V8 C2f C2f 93.61 90.33 96.23 6.3

YOLO V8 P-Block P-Block 91.47 89.29 96.12 4.8

YOLO V8 C2f Fasternet 90.34 86.75 95.34 8.6
TABLE 5 Comparison of performance of different citrus recognition models.

Author Data set Model P/% R/% mAP/% Velocity

Hamzeh Mirhaji et al. (2021) Self-built citrus trees YOLO v4 91.23 92.8 90.8 /

Jintao Feng et al. (2023) Self-built mature citrus YOLO-DCA / / 96.98 Single sheet 5.9ms

Zhenhui Zheng et al. (2021) Self-built green citrus YOLO BP 86.00 91.00 91.55 18 frames (FPS)

Chaojun Hou et al. (2022) Self-built mature citrus Improved YOLO v5s 99.55 98.47 98.48 78.96 ms

Heqing Huang et al (Huang et al., 2021) Self-built mature citrus YOLO v5s-CBAM+ASFF+Purning 93.32 88.78 / 180 ms/frame

Sadaf Zeeshan et al. (2023) Internet crawler Orange-detection CNN 93.8 94.8 / /

Aang Gao et al. (2022) Self-built young citrus fruit Improved YOLO v8 model 91.79 92.75 97.32 单张697.1ms
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environment, with leakage and low detection accuracy during the

detection process, which was due to the large differences between

the color and background of the citrus in the test environment and

the images in the test set of this paper, but it also proved that the
Frontiers in Plant Science 11
model has a certain degree of resistance to interference, and is able

to operate in inexpensive equipment.
4 Conclusion

In this paper, we present a novel method for citrus young fruit

detection, termed YCCB-YOLO. This approach employs a

lightweight P-Block to construct both the detection backbone and

detection head, integrates multiple attention mechanisms, adopts

the SimSPPF-LSKA feature pyramid, and utilizes the Adam

optimization function. In the test set of the model of this paper,

the P was 91.79%, the R The experimental results indicate that the

model proposed in this study maintains a lightweight structure
Types of 

images

YOLO V8n Our model explanatio

n

Significan

t size 

difference

The model 

in this 

paper 

performs 

better for 

small fruit 

detection 

in images

Fruits 

shade 

each 

other, 

leaves 

shade 

fruits

The 

original 

model had 

a repeated 

detection 

box when 

detecting 

the 

occluded 

fruit.

Dense 

young 

fruit

Both 

models 

work well 

in images 

of dense 

fruits.

Single 

image 

detection 

time/s

0.6564 0.6771 --

FIGURE 13

Testing of different models in the detection system.
TABLE 6 Comparison results with advanced benchmark models.

model P/% R/% mAP/%

YOLO V5 90.81 88.04 95.24

YOLO V6 88.92 92.13 96.11

YOLO V7 89.43 91.18 94.47

YOLO V8 90.46 90.51 95.59

The model of this paper 91.79 92.75 97.32
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while ensuring detection accuracy. The introduction of the P-Block

structure contributes significantly to the model’s lightweight design.

Moreover, the integration of various attention mechanisms

enhances the model’s focus on critical areas within images. The

SimSPPF-LSKA feature pyramid structure facilitates multi-

dimensional feature fusion, thereby improving target detection

accuracy. The incorporation of the Adam optimization function

further strengthens the model’s nonlinear representation and

feature extraction capabilities, enhancing its robustness and

generalizability. Testing this model within a citrus young fruit

detection system has confirmed its reliability in low-configuration

hardware environments.

Considering other well-known objective evaluation metrics,

such as accuracy, recall rate, and mAP, this research not only

provides a new solution for the task of citrus young fruit detection

but also promises to offer citrus growers and managers a more

reliable and efficient tool for young fruit detection, fostering the

intelligent development of the citrus industry. However, the dataset

used in this study is limited, posing a potential risk of overfitting.

Despite the model’s exceptional performance, it still faces challenges

in dealing with the complexities of real-world operational

environments. Future research will focus on expanding and

enhancing the dataset and optimizing the model structure to

further improve the model’s performance and practicality.

We believe that the contributions of this study lie not only in

proposing a novel method for citrus young fruit detection but also

in demonstrating the vast potential of deep learning applications in

the agricultural sector. By continuously improving and optimizing

the model, we anticipate providing more intelligent and efficient
Frontiers in Plant Science 12
solutions for agricultural production, thereby advancing the

modernization of agriculture.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

GA: Writing – original draft. TZ: Conceptualization, Data

curation, Writing – original draft. MW: Formal analysis, Funding

acquisition, Writing – review & editing. SY: Funding acquisition,

Resources, Writing – review & editing. RL: Investigation,

Methodology, Writing – review & editing. FY: Project

administration, Resources, Software, Writing – original draft. QJ:

Methodology, Project administration, Supervision, Writing – review

& editing. XL: Supervision, Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was the Innovation Team Fund for Fruit Industry of Modern

Agricultural Technology System in Shandong Province(SDAIT-
FIGURE 14

Some test results of the outdoor inspection system.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1375118
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ang et al. 10.3389/fpls.2024.1375118
06-12) and Key projects of Sichuan Provincial Science and

Technology Plan (2022YFG0147) Chengdu Local Finance Special

Fund Project for NASC (NASC2021KR02) and (NASC2021KR07).
Acknowledgments

We are very grateful to all the authors for their support and

contribution with the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 13
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1375118/

full#supplementary-material
References
Akkem, Y., Biswas, S. K., and Varanasi, A. (2023). Smart farming using artificial
intelligence: A review. Eng Appl Artif Intell. 120, 105899. doi: 10.1016/
j.engappai.2023.105899

Bao, J., Li, S., Wang, G., Xiong, J., and Li, S. (2023). Improved YOLOV8 network and
application in safety helmet detection. J. Physics: Conf. Ser. 2632 (1), 012012.
doi: 10.1088/1742-6596/2632/1/012012

Basha, S. H. S., Dubey, S. R., Pulabaigari, V., and Mukherjee, S. (2020). Impact of fully
connected layers on performance of convolutional neural networks for image
classification. Neurocomputing 378, 112–119. doi: 10.1016/j.neucom.2019.10.008

Chen, J., Kao, S., He, H., Zhuo, W., Wen, S., Lee, C., et al. (2023). Run, don't walk:
chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 12021–12031. doi: 10.1109/
CVPR52729.2023.01157

Cubero, S., Lee, W. S., Aleixos, N., et al. (2016). Automated systems based on
machine vision for inspecting citrus fruits from the field to postharvest—a review. Food
Bioprocess Technol. 9, 1623–1639. doi: 10.1007/s11947-016-1767-1

Deng, C., Wang, M., Liu, L., Liu, Y., and Jiang, Y. (2021). Extended feature pyramid
network for small object detection. IEEE Trans. Multimedia 24, 1968–1979.
doi: 10.1109/TMM.2021.3074273

Farjon, G., Huijun, L., and Edan, Y. (2023). Deep-learning-based counting methods,
datasets, and applications in agriculture: a review. Precis. Agric. 24 (5), 1683–1711.
doi: 10.1007/s11119-023-10034-8

Feng, J., Wang, Z., Wang, S., Tian, S., and Xu, H. (2023). MSDD-YOLOX: An
enhanced YOLOX for real-time surface defect detection of oranges by type. Eur. J.
Agron. 149, 126918. doi: 10.1016/j.eja.2023.126918

Gao, A., Geng, A. J., Zhang, Z. L., Zhang, J., Hu, X. L., and Li, K. (2022). Dynamic
detection method for falling ears of maize harvester based on improved YOLO-V4. Int.
J. Agric. Biol. Eng. 15, 22–32. doi: 10.25165/j.ijabe.20221503.6660

Guo, B., Ling, S., Tan, H., Wang, S., Wu, C., and Yang, D. (2023). Detection of the
grassland weed phlomoides umbrosa using multi-source imagery and an improved
YOLOv8 network. Agronomy 13 (12), 3001. doi: 10.3390/agronomy13123001

Hong, G., Chen, X., Chen, J., Zhang, M., Ren, Y., and Zhang, X. (2021). A multi-scale
gated multi-head attention depthwise separable CNN model for recognizing COVID-
19. Sci. Rep. 11 (1), 18048. doi: 10.1038/s41598-021-97428-8

Hou, C., Zhang, X., Tang, Y., and He, Y. (2022). Detection and localization of citrus
fruit based on improved You Only Look Once v5s and binocular vision in the orchard.
Front. Plant Sci. 13, 972445. doi: 10.3389/fpls.2022.972445

Hu, H., and Zhu, Z. (2023). Sim-YOLOv5s: A method for detecting defects on the
end face of lithium battery steel shells. Adv. Eng. Inf. 55, 101824. doi: 10.1016/j.aei.2022.
101824

Huang, H., Huang, T., Li, Z., Lyu, S., and Hong, T. (2021). Design of citrus fruit
detection system based on mobile platform and edge computer device. Sensors 22 (1),
59. doi: 10.3390/s22010059

Huang, M., Yan, W., Dai, W., and Wang, J. (2023). EST-YOLOv5s: SAR image
aircraft target detection model based on improved YOLOv5s. IEEE Access 11, 113027–
113041. doi: 10.1109/ACCESS.2023.3323575

Huang, W., Li, G., Chen, Q., Ju, M., and Qu, J. (2021). CF2PN: A cross-scale feature
fusion pyramid network based remote sensing target detection. Remote Sens. 13 (5),
847. doi: 10.3390/rs13050847
Jia, X., Feng, X., Yong, H., and Meng, D. (2022). Weight decay with tailored adam on
scale-invariant weights for better generalization. IEEE Trans. Neural Networks Learn.
Syst. doi: 10.1109/TNNLS.2022.3213536

Jiang, X., Hu, H., Qin, Y., Hu, Y., and Ding, R. (2022). A real-time rural domestic
garbage detection algorithm with an improved YOLOv5s network model. Sci. Rep. 12
(1), 16802. doi: 10.1038/s41598-022-20983-1

Lau, K. W., Po, L. M., and Rehman, Y. A. U. (2024). Large separable kernel attention:
rethinking the large kernel attention design in CNN. Expert Syst. Appl. 236, 121352.
doi: 10.1016/j.eswa.2023.121352

Loshchilov, I., and Hutter, F. (2018). Fixing weight decay regularization in adam.
ArXiv. doi: abs/1711.05101.10.48550/arXiv.1711.05101

Lyu, J., Li, S., Zeng, M., and Dong, B. (2022). Detecting bagged citrus using a semi-
supervised SPM-YOLOv5. Trans. Chin. Soc. Agric. Eng. (Transactions CSAE) 38, 204–
211.

Mirhaji, H., Soleymani, M., Asakereh, A., and Mehdizadeh, S. A. (2021). Fruit
detection and load estimation of an orange orchard using the YOLO models through
simple approaches in different imaging and illumination conditions. Comput. Electron.
Agric. 191, 106533. doi: 10.1016/j.compag.2021.106533

Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., et al. (2023). “Efficient
multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1–5.

Tang, H., Liang, S., Yao, D., and Qiao, Y. (2023). A visual defect detection for optics
lens based on the YOLOv5-C3CA-SPPF network model. Optics Express 31 (2), 2628–
2643. doi: 10.1364/OE.480816

Wan, S., Li, T., Fang, B., Yan, K., and Hong and X. Li, J. (2023). Bearing fault
diagnosis based on multisensor information coupling and attentional feature fusion.
IEEE Trans. Instrumentation Measurement 72, 1–12. doi: 10.1109/TIM.2023.3269115

Wang, S., and Jiao, C. K. (2022). Leveraging behavioural economics in smart nudge
design through data-driven prospect-theoretic modelling and context-aware intelligent
reasoning: application to smart tip nudging. J. Eng. Design 33 (11), 896–918.
doi: 10.1080/09544828.2022.2150448

Wang, X., Gao, H., Jia, Z., and Li, Z. (2023). BL-YOLOv8: an improved road defect
detection model based on YOLOv8. Sensors 23 (20), 8361. doi: 10.3390/s23208361

Wu, X., Deng, H., Wang, Q., Lei, L., Gao, Y., and Hao, G.. (2023). Meta-learning
shows great potential in plant disease recognition under few available samples. Plant J.
114 (4), 767–782. doi: 10.1111/tpj.16176

Xiao, Q., Huang, J., Huang, Z., Li, C., and Xu, J. (2023). Transparent component
defect detection method based on improved YOLOv7 algorithm. Int. J. Pattern
Recognition Artif. Intell. 37 (14), 2350030. doi: 10.1142/S0218001423500301

Zeeshan, S., Aized, T., and Riaz, F. (2023). The design and evaluation of an orange-
fruit detection model in a dynamic environment using a convolutional neural network.
Sustainability 15, 4329. doi: 10.3390/su15054329

Zheng, Z., Xiong, J., Lin, H., Han, Y., Sun, B., Xie, Z., et al. (2021). A method of green
citrus detection in natural environments using a deep convolutional neural network.
Front. Plant Sci. 12, 705737. doi: 10.3389/fpls.2021.705737

Zhichao, H., Yi, W., Junping, W., Wanli, X., and Bilian, L. Improved lightweight
rebar detection network based on YOLOv8s algorithm. Advances in Computer, Signals
Syst. 7 (10), 107–117. doi: 10.23977/acss.2023.071015
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1375118/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1375118/full#supplementary-material
https://doi.org/10.1016/j.engappai.2023.105899
https://doi.org/10.1016/j.engappai.2023.105899
https://doi.org/10.1088/1742-6596/2632/1/012012
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.1109/CVPR52729.2023.01157
https://doi.org/10.1109/CVPR52729.2023.01157
https://doi.org/10.1007/s11947-016-1767-1
https://doi.org/10.1109/TMM.2021.3074273
https://doi.org/10.1007/s11119-023-10034-8
https://doi.org/10.1016/j.eja.2023.126918
https://doi.org/10.25165/j.ijabe.20221503.6660
https://doi.org/10.3390/agronomy13123001
https://doi.org/10.1038/s41598-021-97428-8
https://doi.org/10.3389/fpls.2022.972445
https://doi.org/10.1016/j.aei.2022.101824
https://doi.org/10.1016/j.aei.2022.101824
https://doi.org/10.3390/s22010059
https://doi.org/10.1109/ACCESS.2023.3323575
https://doi.org/10.3390/rs13050847
https://doi.org/10.1109/TNNLS.2022.3213536
https://doi.org/10.1038/s41598-022-20983-1
https://doi.org/10.1016/j.eswa.2023.121352
https://doi.org/abs/1711.05101.10.48550/arXiv.1711.05101
https://doi.org/10.1016/j.compag.2021.106533
https://doi.org/10.1364/OE.480816
https://doi.org/10.1109/TIM.2023.3269115
https://doi.org/10.1080/09544828.2022.2150448
https://doi.org/10.3390/s23208361
https://doi.org/10.1111/tpj.16176
https://doi.org/10.1142/S0218001423500301
https://doi.org/10.3390/su15054329
https://doi.org/10.3389/fpls.2021.705737
https://doi.org/10.23977/acss.2023.071015
https://doi.org/10.3389/fpls.2024.1375118
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Fruits hidden by green: an improved YOLOV8n for detection of young citrus in lush citrus trees
	1 Introduction
	2 Experiments and methods
	2.1 Image acquisition and pre-processing
	2.2 YCCB-YOLO detection model
	2.2.1 Lightweight backbone, head designs
	2.2.2 Attentional mechanisms of fusion
	2.2.3 Feature pyramid networks


	3 Results and discussion
	3.1 Test environment and parameter configurations
	3.2 Evaluative indicators
	3.3 Analysis of results
	3.3.1 Analysis of model training and validation process
	3.3.2 Analysis of result verification for lightweight P-Block
	3.3.3 Result validation analysis of the attentional mechanism of fusion
	3.3.4 Result validation analysis of SimSPPF- LSKA feature pyramid

	3.4 Discussion and analysis
	3.4.1 Discussion of the results of different light weighting models
	3.4.2 Discussion of results for different optimization functions
	3.4.3 Comparison of different citrus detection models
	3.4.4 Advanced comparative analysis of benchmarking models
	3.4.5 Portability of model field movement detection


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


