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To study plant organs, it is necessary to investigate the three-dimensional (3D)

structures of plants. In recent years, non-destructive measurements through

computed tomography (CT) have been used to understand the 3D structures of

plants. In this study, we use the Chrysanthemum seticuspe capitulum

inflorescence as an example and focus on contact points between the

receptacles and florets within the 3D capitulum inflorescence bud structure to

investigate the 3D arrangement of the florets on the receptacle. To determine

the 3D order of the contact points, we constructed slice images from the CT

volume data and detected the receptacles and florets in the image. However,

because each CT sample comprises hundreds of slice images to be processed

and each C. seticuspe capitulum inflorescence comprises several florets,

manually detecting the receptacles and florets is labor-intensive. Therefore, we

propose an automatic contact point detection method based on CT slice images

using image recognition techniques. The proposed method improves the

accuracy of contact point detection using prior knowledge that contact points

exist only around the receptacle. In addition, the integration of the detection

results enables the estimation of the 3D position of the contact points. According

to the experimental results, we confirmed that the proposed method can detect

contacts on slice images with high accuracy and estimate their 3D positions

through clustering. Additionally, the sample-independent experiments showed

that the proposed method achieved the same detection accuracy as sample-

dependent experiments.
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1 Introduction

Analysis of plant structures, such as mathematical modeling

and classification of species based on morphological information, is

necessary for botanical research. For example, in the study by Shaiju

and Omanakumari (2009), the authors attempted to classify plants

of the genus Thottea on the basis of quantitative and qualitative

inflorescence and leaf characteristics. In a study by Yonekura et al.

(2019), a mathematical model for generating phyllotaxis patterns

was developed, and essential elements in the leaf formation process

were identified by comparing the generated patterns with those of

actual plants. Structural analysis of plants can typically be

performed by visual observation.

Although common plant observations are destructive surveys,

when the internal or three-dimensional (3D) structure of plants is

analyzed, the sample is observed using non-destructive techniques

(Pajor et al., 2013), such as computed tomography (CT). Micro-CT

technique is a useful imaging tool that significantly contributes to

the research of plant development by providing high-resolution,

three-dimensional structural measurements (Karahara et al., 2023).

This allows for non-destructive imaging to precisely quantify

phenotypic traits and provide essential data for modeling plant

growth and development, including the internal architecture. Also,

high-throughput phenotyping evaluation in a large number of

samples could be possible by establishing a segmentation pipeline

that automatically and rapidly analyzes accurate plant structure

using micro-CT data. This advancement has the potential to

significantly contribute to the future development of crop

breeding (Wu et al., 2021).

In this study, we use the capitulum inflorescence of

Chrysanthemum seticuspe (Maxim.) Hand.-Mazz as an example

and aim to estimate and analyze the 3D arrangement of the

inflorescence. We chose C. seticuspe because its entire gene

sequence has already been decoded and its transgenic plants can

be generated (Nakano et al., 2021). Figure 1A shows the structure of

the C. seticuspe capitulum inflorescence, which consists of a

receptacle, florets, and involucre. To visualize the arrangement of

the inflorescence, it is necessary to detect the contact points between

the florets and receptacle. Because the bud size is small and the
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contact points are inside the bud, we captured CT volume data and

analyzed the slice images shown in Figure 1B to estimate the 3D

arrangement of the florets. By estimating the 3D positions of the

contact points between the receptacle and the florets, we can analyze

the floret arrangement pattern on the receptacle. Specifically, we

calculate the 3D distance between adjacent florets and examine the

relationship between this distance and their positions on the

receptacle. This allows us to investigate how the receptacle’s

meristem influences the 3D arrangement of the florets and will

contribute to elucidating the mechanism of flower development in

C. seticuspe.

In the previous study, Zhang et al. used micro-CT data and

scanning electron microscope (SEM) images to estimate the

inflorescence of gerbera florets, which belong to the same

Asteraceae family as C. seticuspe (Zhang et al., 2021). In the

previous study, CT cross-sections were used to observe the

change in the shape of the receptacle with growth. The pattern of

floret phyllotaxis was estimated from 2D SEM images taken from

the top of the flower. However, neither segmentation of the

receptacle in the CT cross-sections nor estimation of the 3D

shape of the receptacle was performed. In addition, the 3D

position of the contact points between the receptacle and the

florets was not estimated. Therefore, it would be difficult for the

previous method to perform the analysis using the distance between

adjacent florets in 3D as planned in our study.

In addition, there are several studies that analyze plants using

CT volume data. Most of them obtain the 3D shape of the plant and

statistical information from the 3D shape. However, they cannot

estimate the positional information of the 3D structure of the plant,

such as the 3D arrangement of the contact points between the

receptacle and the florets. For example (Tracy et al., 2017),

succeeded in obtaining a 3D shape of Arabidopsis (Arabidopsis

thaliana L.) and barley (Hordeum vulgare L.) flowers from CT

volume data using simple image processing that distinguishes air

and flower organs. Since the floral organs were not segmented on

the obtained 3D shape, the information on the 3D positional

relationship of each organ cannot be estimated (Mathers et al.,

2018). used CT volume data of Arabidopsis, tomato, pea, barley,

oat, and rice leaves to measure leaf porosity and mesophyll exposed
BA

FIGURE 1

Example of mid-longitudinal section (A) and CT slice image of C. seticuspe (B). The blue dotted line in (A) shows the rotation axis.
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surface area. This study extracted statistical data of leaf porosity and

mesophyll exposed surface area from the volume data using simple

image processing and did not analyze the 3D structure of leaf cells

(Wu et al., 2021). takes images of the whole rice plant and performs

semantic segmentation on 80 slices of the stem near the base to

extract statistics related to the collapse of the rice plant, such as the

area occupied by the stem. In addition (Teramoto et al., 2020), uses

simple image processing to extract and visualize the 3D shape of

roots from CT data, and extracts statistical information such as the

total length of the roots. These are also statistical analyses based on

the extracted shapes, not structural information as in our study. In

(Ijiri et al., 2014), they propose a method to divide each petal of a

flower into individual petals from the CT volume. This method is

similar to our study because it can obtain 3D position information

of the petals. However, it is difficult to apply this method because

the shape of the flower in this study is different from that of the

C. seticuspe, which has a large number of flowers on a single bud.

In this study, we propose an image processing method that uses C.

seticuspe CT volume data to estimate the 3D position of the

inflorescence. We obtained CT volume data of C. seticuspe bud, and

then analyzed it using semantic and instance segmentation. To the best

of our knowledge, this is the first attempt to apply instance and

semantic segmentation to the CT volume data of C. seticuspe bud.

Another novelty of this study is that the proposed method can obtain

the 3D structural information, which cannot be obtained by the

previous studies. We detected the point between the floret and

receptacle using object detection on CT slice images. Because many

regions are similar to the contact points on the CT slice images, the

detection results contain false positives. Therefore, we detected the

receptacles using semantic segmentation and excluded false positives

not on the receptacles, thereby detecting contact points with high

accuracy. The detected contact points are then integrated into 3D

space. The contact points are not uniquely integrated in 3D space

because the detection results contain positional errors and a contact

point appears in multiple CT images. Therefore, a clustering algorithm

is applied to the contact points in 3D space, and the average of each

cluster is taken as the contact point estimation result.

We evaluated the proposed method on the basis of the original

data obtained by the SPring-8 large-scale synchrotron radiation

facility. The results showed that the accuracy of the contact point

detector was not sufficiently high; however, by excluding false

positives using semantic segmentation, the detection accuracy

improved. We integrated these detection results into a 3D model

and successfully estimated the 3D positions of the contact points

through clustering. Additionally, we conducted sample-

independent experiments, demonstrating that the proposed

method achieved detection accuracy equivalent to that of sample-

dependent experiments.
2 Materials and methods

2.1 CT volume data

This study used CT volumes obtained from 11 C. seticuspe

Gojo-0 samples. Gojo-0 is a self-compatible pure line of C. seticuspe
Frontiers in Plant Science 03
(Nakano et al., 2019). The CT volumes of the capitulum

inflorescence buds were captured at beamline BL20B2 of the

SPring-8 large-scale synchrotron radiation facility. The imaging

principles and system are based on existing methods (Uesugi et al.,

2010). The X-ray energy was changed from the original method

(Yamauchi et al., 2013), whereas other imaging conditions were

kept the same as in the original method.

The inflorescence buds of Gojo-0 were pretreated in 90% (v/v)

acetone on ice for 20 minutes, followed by a triple wash in

phosphate buffer for 15 minutes. Subsequently, they were fixed

overnight at 4°C in 4% (v/v) glutaraldehyde dissolved in 0.05 mol/L

NaPO4 buffer. Next, these buds were washed 4 times in phosphate

buffered on ice for 15 minutes, followed by post-fixation overnight

at 4°C in 1% (v/v) OsO4 dissolved in 0.05 mol/L NaPO4 buffer. After

another set of four 15-minute washes with phosphate buffer on ice,

the samples were dehydrated using a graded ethanol series on ice.

This was followed by three changes in 100% ethanol for 15 minutes,

after which they were replaced with t-butyl alcohol. For X-ray CT

scanning, the prepared inflorescence samples were freeze-dried

overnight (VFD-21, VACUUM DEVICE, Japan). The volume and

pixel size of each bud sample and the X-ray energy at the time of

capturing are presented in Table 1. Supplementary Figure S1 shows

mid-longitudinal sections of the bud samples. ChrGjS601 and

ChrGjS600 are in the early growth stage, whereas the others are

in the late growth stage.
2.2 Slice images from CT volume

When analyzing CT volumes, the volumes are sliced into

images. As shown in Figure 1A, the C. seticuspe receptacle has a

corn-like rotationally symmetric shape, and the entire bud is also

approximately rotationally symmetric about the axis of rotational

symmetry of the receptacle, which is shown as the blue dotted line

in Figure 1A. Therefore, if we slice the CT volume perpendicular to

the axis of rotation, the appearance of florets and receptacles in the

sliced images will differ significantly depending on the slice

position. In machine learning-based image detection methods, the

consistency of the object’s appearance greatly influences the task’s

difficulty and the detection accuracy. Objects with more consistent

appearances are generally easier to detect and yield higher accuracy.

Conversely, detection accuracy decreases when the same object has

different appearances in an image. Therefore, if images generated by

slicing the volume perpendicular to the rotation axis were used, the

accuracy of contact point detection would decrease. In this study,

we slice the volume along the rotation axis of the bud, as shown in

Figure 2B. In this method, as shown in Figure 2C, even if the slicing

position is different, the appearance of the organs on the image

remains constant. Furthermore, the proposed slicing method

facilitates the detection of contact points because the receptacles

and florets are clearly separated on the sliced images.

To generate slice images, two-dimensional (2D) stacked images

were transformed from the 3D volume using IMOD software

(Kremer et al., 1996). The length, width, and height of the

volume are equal to the width and height of the stacked images

and the number of stacked images. Slice images were generated in
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the plane containing the rotational symmetry axis from the 2D

stacked images.

In the volume data, the buds were placed in the center of the

volume, and the receptacles were oriented upward except for

sample Chrgojo02. Thus, we considered the rotation axis of the

buds as the z-axis of the volume data, as shown in Figure 2A, and

generated slice images. We generated 3,600 slice images for each

sample by rotating the mid-longitudinal section through the center

of the volume data by 0.05° using nearest neighbor interpolation.

The parietal of the receptacle of Chrgojo02 was significantly tilted

from the center of the volume data. We visualized the volume data

using IMOD software, and the rotation axis of the buds was roughly

determined from the volume data by visual inspection. The volume

data were rotated so that the rotation axis of the bud was set to the

z-axis of the volume data, as shown in Figure 2A, using IMOD

software. Then 3,600 slice images were generated as for the other

samples. When we generated slice images from the rotated volume

data, some generated images contained no-pixel value areas. These

areas were filled with the average of the voxel values of the original

volume data to maintain the statistical characteristics of the pixel

values in the images. The vertical resolution of the generated images

was equal to the height resolution of the volume data, whereas the
Frontiers in Plant Science 04
horizontal resolution was equal to the smaller of the horizontal and

vertical volume data resolutions.

In addition to the 3,600 images for each sample, we generated

images with the ground truth for training and evaluation. 24 images

per sample were generated by rotating the mid-longitudinal

sections at intervals of 7.5° from bud samples ChrGjL601,

ChrGjL600, ChrGjS601, and ChrGjS600. The ground truth of the

contact points between the receptacles and florets and the pixel-wise

receptacle regions were manually assigned. For Chrgojo01,

Chrgojo02, Chrgojo03, Chrgojo04, Chrgojo05, Chrgojo06, and

Chrgojo07, 4 slice images were generated by rotating the mid-

longitudinal sections at intervals of 45°. These slice images were also

used to determine the ground truths of the contact points and pixel-

wise receptacle regions. The CT images are summarized in Table 2.
2.3 Detection of contact points on images

We detected the contact points between the floret and

receptacle using machine learning-based object detection.

However, the detection results are not perfect. Therefore, we

removed detected contact points which are unnaturally far from
B CA

FIGURE 2

Proposed image slicing method. (A) Diagrammatic representation of the volume data. (B) shows how (A) is sliced when viewed directly above.
The green area indicates the area in which the sample is located, and the red line indicates the line to be sliced. (C) Examples of slice images.
TABLE 1 The volume size, the pixel size, and the X-ray energy in each bud when the CT data were captured.

Sample ID growth stage Volume size (pixel) Pixel size (µm) X-ray energy (keV)

ChrGjL601 later 2048×2048×1689 2.75 15

ChrGjL600 later 1836×1850×1778 2.75 15

ChrGjS601 early 1123×1090×920 2.75 15

ChrGjS600 early 926×944×966 2.75 15

Chrgojo01 later 2048×2048×2047 2.70 20

Chrgojo02 later 2048×2048×2047 2.70 20

Chrgojo03 later 2048×2048×2047 2.70 20

Chrgojo04 later 2048×2048×2047 2.70 20

Chrgojo05 later 2048×2048×2047 2.70 20

Chrogjo06 later 2048×2048×2047 2.70 20

Chrgojo07 later 2048×2048×2047 2.70 20
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the receptacle as wrong detection results (i.e., false positives). In the

remaining of this section, we present the contact point detection

method, the receptacle identification method, and the method used

to remove false positives.
2.3.1 Detection of contact points
We used YOLOv5l (You Only Look Once, version 5, large)

(Jocher et al., 2022), a representative deep learning-based object

detection method, to detect the contact points. The pre-trained

YOLOv5l model, which was trained on the Microsoft Common

Objects in Context (MS COCO) dataset (Lin et al., 2014), is capable

of detecting 80 object categories. To adapt the model for detecting

contact points between receptacles and florets, a new dataset was

created through manual annotation of bounding boxes around the

contact points on sliced images. Subsequently, the pre-trained

model was fine-tuned on this dataset, enabling it to detect and

localize the contact points.

2.3.2 Semantic segmentation of receptacles
Receptacles are identified using semantic segmentation, which

is a computer vision task that aims to categorize each pixel in an

image into a specific class or object. In this study, U-Net

(Ronneberger et al., 2016), a widely used semantic segmentation

model, is employed to detect receptacles. To train the U-Net model,

pixel-wise ground truth of receptacles is manually annotated on

some sliced images, as described in Section 2.2. The trained model

can then be applied to automatically identify receptacles.

2.3.3 Removal of false positives from
detector output

Upon analyzing the incorrectly detected contact points, it is

observed that they are predominantly located within the floret

regions. To address this issue, a simple method is employed to

eliminate these false positive detections. The method involves

checking whether the bounding boxes of the detected contact

points overlap with the receptacle area. If the bounding box of a

contact point does not overlap with the receptacle area, the

corresponding contact point is considered a false positive and is
Frontiers in Plant Science 05
subsequently removed from the set of detected points. By applying

this procedure, the accuracy of contact point detection is improved,

as the majority of false positive detections within the floret regions

are effectively filtered out. This refinement ensures that the

remaining contact points are more likely to represent true contact

points between the receptacles and florets.
2.4 Identification of 3D position of
contact points

To estimate the contact points in 3D space, we integrate the

detection results of the contact points on the images. Because the slice

images were generated using the method described in Section 2.2, the

positions of the generated images in the 3D volume data are known.

The contact points in 3D space can be integrated by placing the slice

images in 3D space and displaying the detected contact points. It is

important to emphasize that the sizes of the contact points are not

relevant to the current study. Our primary interest lies in analyzing

the spatial distribution and positions of the contact points.

Because a contact point has a specific size, it appears on multiple

slice images. Therefore, a contact point can be detected on multiple

images. Furthermore, the detected positions of the contact points

contain errors. Thus, the detected contact points of a contact point

are scattered, as shown in Figure 3. We need to estimate the position

of the contact points using the detection results.

In this study, we employ a clustering algorithm to estimate the

positions of contact points from scattered detection results.

Clustering is a technique used to divide a set of samples into

groups, known as clusters, based on the spatial proximity between

the samples. We apply the clustering algorithm to the detection

results in 3D space, using the Euclidean distance between the

samples as the similarity measure. The clustering algorithm used

in this study is the group average method, which is a hierarchical

clustering approach. Hierarchical clustering is a bottom-up

clustering technique where each sample initially represents a

separate cluster. The method then iteratively calculates the

similarity between clusters and merges similar clusters into a

single cluster. Unlike top-down clustering methods, which divide

the sample set into a fixed number of clusters, hierarchical

clustering does not require a predetermined number of clusters.

This property makes hierarchical clustering suitable for our study,

as the number of contact points is unknown. The output of the

clustering algorithm is a set of clusters, where each cluster

represents a group of detection results corresponding to a single

contact point. To estimate the position of each contact point, we

calculate the average of the detection results within each cluster. The

number of clusters obtained from the clustering algorithm is equal

to the number of contact points in the biological structure. By

applying the group average hierarchical clustering algorithm to the

scattered detection results, we can effectively estimate the positions

of the contact points without prior knowledge of their number. This

approach allows us to analyze the spatial distribution of the contact

points in the biological structure, providing valuable insights into

the underlying mechanisms and functions.
TABLE 2 CT image summary.

Samples Slice
interval
(degree)

Images for
each
sample

Annotation

all 0.05 3600 No

ChrGjL601
ChrGjL600
ChrGjS601
ChrGjS600

7.5 24
Receptacle regions
Contact points

Chrgojo01
Chrgojo02
Chrgojo03
Chrgojo04
Chrgojo05
Chrgojo06
Chrgojo07

45 4
Receptacle regions
Contact points
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The group average method calculates the similarity between two

clusters as the average of all pairwise distances between the samples

in the two clusters. Let A and B be two clusters, and let   ·  j j denote
the number of samples in a cluster. Let x and y be the coordinates of
the detected contact points which separately belong to clusters A

and B in 3D space. Let d(x, y) be the distance between two samples,

specifically the Euclidean distance between two detected contact

points. The group average can then be described by the following

Equation 1:

1
Aj j Bj j ox∈A

  o
y∈B

d(x, y) : (1)

To obtain appropriate clustering results, it is necessary to set

termination conditions for the hierarchical clustering process. In this

study, the termination condition is defined such that the clustering

process stops when the smallest value of the group average between

any two clusters exceeds a predetermined threshold.
3 Experiments

In the experiments, we first evaluated the contact point

detection method. Next, we evaluated the estimation of the 3D

position of the contact points. In these evaluations, we performed a

sample-dependent evaluation: the training and evaluation data were

derived from the same sample, but the training and test data were

not identical. Furthermore, we evaluated the estimation of the 3D

position of the contact points in a practical scenario; the evaluation

data were derived from other samples different from those that

generated training data for the contact point detector and receptacle

segmentation. In the following section, we describe the
Frontiers in Plant Science 06
experimental setup and evaluation metrics and show the results

of each evaluation.
3.1 Evaluation of the contact point
detection method

We calculated the accuracy of the contact point detection

method. As mentioned in Section 2.3, the contact point detection

method comprises three elementary methods: contact point

detector and receptacle segmentation, and false positive removal

of the detector. To evaluate each of the elementary methods, we

used method-specific metrics.
3.1.1 Contact point detector
To train and evaluate the contact point detector, we used four

CT volumes: ChrGjL601, ChrGjL600, ChrGjS601, and ChrGjS600.

Twenty-four slice images were generated from each volume, and the

ground truths were manually assigned in each CT volume, as

described in Section 2.2. Because the size of the contact point

region is smaller than the size of the slice images, the contact point

may not be detected. Therefore, we cropped the slice images so that

they included the entire receptacle. Because the position and size of

the receptacles are different for each CT volume, we changed the

cropping region according to the CT volumes. Supplementary Table

S1 shows the coordinates of the upper left and lower right corners of

the crop regions on the slice images.

The evaluation was performed in a sample-dependent scenario.

We trained the model on each bud sample and evaluated it using the

same bud sample for training. We evaluated the detection accuracy

using leave-one-out (LOO) cross-validation on the cropped images.
B C DA

FIGURE 3

3D integrated contact point detection results for each bud sample: (A) ChrGjL601, (B) ChrGjL600, (C) ChrGjS601, and (D) ChrGjS600. The top and
bottom rows show the results before and after removing false positives.
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In LOO cross-validation, a datum is selected from a dataset, and the

model is trained using the remaining data in the dataset. The

trained model is evaluated using the selected datum. This process

is repeated until all data in the dataset have been selected for

evaluation. The average accuracy of all evaluations is calculated as

the model accuracy.

The specific uses of the training and evaluation data are as

follows. For each bud sample, 1 of the 24 images was selected for

accuracy evaluation, and the remaining 23 images were used for

training. Because the 23 images were too small to train the model,

we augmented the images to 2,300 and used them for training. The

trained model was evaluated on the selected image. We repeated

the process 24 times and calculated the average accuracy as the

performance of the contact point detector.

The details of how we augmented 23 images to 2,300 are as

follows. 23 images were flipped from left to right to generate 23

images. We applied geometric transformations, including translation,

rotation, and scaling, to the original cropped and flipped images,

bringing the total number of images to 2,300. The specifications of

each geometric transformation are as follows: Translation moved the

image vertically or horizontally by a distance of 10% or less of its

height or width. Rotation was a clockwise or semiclockwise rotation

around the image center at a random angle between 0°and 20°.

Scaling was performed by enlarging the image at a random scale

between 0.95 and 1.05. The missing areas caused by these

augmentation processes were filled with the mean pixel values of

the original cropped image so that the size of the augmentation image

was the same as that of the original crop image.

For model training, we used Adam as the optimization

algorithm for network training. The batch size was set to 16, and

25 epochs were trained (the loss curve is not provided). The initial

training rate was set to 10−3, and after 25 epochs, it was linearly

reduced using the scheduler to 10−4. During training and

verification, the input images were resized to 640 × 640 pixels

while keeping the aspect ratio. The longer side of the image was set

to 640 pixels. The blank space resulting from resizing was filled with

the average pixel value of ImageNet (Deng et al., 2009).

We used average precision (AP) as an evaluation metric. AP is a

model prediction metric that represents the accuracy of the model

outputs. Let p( � ) and r be the precision and recall of the model,

respectively, and AP is calculated using the following Equation 2:

AP =
Z 1

0
p(r)dr : (2)

Because AP is calculated on the basis of the accuracy of the

model output, criteria are required to determine whether the model

output is correct when evaluating object detection methods, such as

those used for contact point detection. Intersection over union

(IoU) is generally used as an object detection criterion. IoU is a

criterion that indicates the extent to which the object region

predicted using the model and the ground truth overlap. Let P

and G be a set of image pixels in the predicted and ground truth

object regions, respectively. The IoU between the prediction and

ground truth is defined by the following Equation 3:
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IoU(P,G) =
P ∩ Gj j
P ∪ Gj j : (3)

If IoU is greater than the threshold value, the object is

correctly detected.

In the experiment, we calculated three types of AP using the

same method as that in the MS COCO dataset (Lin et al., 2014):

AP50, AP75, and AP(0.5:0.95). AP50 and AP75 are the AP values

when the threshold of IoU is 0.5 and 0.75, respectively. AP(0.5:0.95)

is the AP value when the IoU threshold changes from 0.5 to 0.95

with an interval of 0.05.

The implementation of the AP calculation was performed

as follows:
1. The detection results were sorted by the confidence value

output by the detector.

2. The IoU for each detection result was calculated. If the IoU

was greater than the threshold, the detection results were

considered correct. Cumulative precision and recall were

calculated from the thresholding results.

3. The AP value was calculated using interpolation and

approximation, as in the MS COCO dataset.
3.1.2 Receptacle segmentation
Four bud samples, ChrGjL601, ChrGjL600, ChrGjS601, and

ChrGjS600, were used to evaluate receptacle segmentation, as in the

case of contact point detection. The slice images used to evaluate

receptacle segmentation were also the same images used to evaluate

contact point detection. The receptacle regions were manually

assigned to the slice images, and the receptacle region was used

for model training and evaluation. No cropping was performed

because the receptacle regions to be detected were sufficiently large

for the slice images.

We evaluated the segmentation accuracy using LOO cross-

validation, as described in Section 3.1.1. The Dice coefficient, which

is commonly used in segmentation evaluation, was used as the

evaluation metric. The Dice coefficient DCS(P,G) of the predicted

and ground truth object regions P and G is given by the following

Equation 4:

DSC(P,G) =
2 P ∩ Gj j
Pj j + Gj j : (4)

The Dice coefficient becomes large when the overlap between the

two regions is large.

The data augmentation applied was the same as that in Section

3.1.1; 24 slice images were generated for each bud sample. 23 slice

images were augmented to 2,300 by left and right inversion and data

augmentation procedures. The remaining image was used

for evaluation.

We used U-Net as the segmentation model. We replaced the

encoder section of U-Net with ImageNet pretrained VGG16

(Simonyan and Zisserman, 2015) and used it in the experiment.

We used Adam as the optimization algorithm. The training rate,

batch size, and number of epochs were set to 10−4, 32, and 25,
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respectively. The size of the images used for the experiments was

normalized to 512 × 512 pixels.

3.1.3 Removal of contact point false positives
We evaluated the false positive removal method in a bud

sample-dependent scenario. Contact point detection and

receptacle segmentation were performed on 3,600 slice images of

each bud sample. The detector and segmentation model were

trained on 2,400 images from each bud sample. The 2,400 images

were augmented from the 24 images using the ground truths

described in Section 2.2. All other experimental settings were the

same as those described in Sections 3.1.1 and 3.1.2.

3.1.4 Estimation of the 3D position of
contact points

After removing false positives, we integrated the detection

results and estimated the 3D position of the contact points using

hierarchical clustering. We used the images and detection results

obtained in Section 3.1.3 in the experiment.

When the group average between clusters was greater than or

equal to threshold d, cluster merging was terminated. We changed d

to 1, 10, 20, 30, 40, and 50 and investigated the number of clusters

and the clustering results in 3D integrated data.
3.1.5 Accuracy evaluation of the
proposed method

To evaluate the accuracy of the integration of the detected

contact points, we conducted further experiments. In these

experiments, we evaluated three aspects related to 3D position

estimation: outlier removal, image slicing method, and accuracy

of the distance between the contact points. In these experiments, we

evaluated the 3D coordinate of the contact points estimated by the

proposed method using the sample ChrGjL600 with the clustering

threshold of 50 as the ground truth. This is because it is difficult to

obtain the ground truth of the contact points for the bud samples.

First, we evaluated the effectiveness of outlier removal. We

integrated the 2D contact point detection without false positive

removal explained in Section 2.2 for ChrGjL600. Then, we

calculated the error between the estimated detected points and

the ground truth. We considered the correspondence point of an

estimated contact point as the nearest contact point on the ground

truth and calculated the error.

Next, we used a simulation to evaluate the influence of the

image slicing method and the accuracy of the distance between the

contact points. Since slice images are generated as shown in

Figure 2B, the interval between images changes depending on the

distance from the axis. Therefore, we conduct simulation

experiments to evaluate whether this difference in image interval

affects the accuracy of contact point estimation. We generated slice

images from the estimation data; the coordinate of the contact

points on the slice images was known. We considered the generated

slice images as the slice images after applying contact point

detection and outlier removal, and then performed 3D integration

and clustering with the threshold of 50 on the generated slice

images. We evaluated the estimation accuracy by the error between
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the estimated contact points and the ground truth. In the proposed

image slicing method, the sampling rate depends on the distance

from the rotation axis of the buds, and this difference in sampling

rate may affect the 3D position estimation results. To evaluate the

effect of the proposed image slicing method, we plotted the errors

with the horizontal axis as the distance from the rotation axis of the

buds and the vertical axis as the error.

We also evaluated the distance between the contact points,

which we plan to use in future analyses mentioned in Section 1. We

calculated the distance between each contact point and its closest

contact point, and calculated the error between them and the

distance calculated using the ground truth.
3.2 3D contact point estimation in a
practical scenario

Previous experiments were conducted using sample-dependent

scenarios. However, considering the practical use of this method, a

sample-independent scenario is preferable because it reduces the

time and effort required for annotation. We then evaluated the

proposed method in the sample-independent scenario.

We used ChrGjL601, ChrGjL600, ChrGjS601, and ChrGjS600

for training and Chrgojo01, Chrgojo2, and Chrgojo03 for

validation. Chrgojo04, Chrgojo05, Chrgojo06, and Chrgojo07

were used for testing. We used the labeled slice images from

previous experiments as training data, i.e., 24 images for each bud

sample, totaling 96 images. The regions shown in Supplementary

Table S1 were cropped when the images were used for contact

point detection.

96 labeled slice images were augmented to 9,600 images for

training. We used appropriate augmentation methods for the

contact point detector and receptacle segmentation. To train

the contact point detector, we used RandAugment, one of the

augmentation methods proposed by Cubuk et al (Cubuk et al.,

2020). The parameters n and m of the RandAugment, which

represent the number of augmentation transformations to apply

sequentially, and the magnitude for all the transformations, were set

to 4 and 25, respectively. For receptacle segmentation, the

augmentation procedure was the same as that described in

Section 3.1. Other training configurations, such as the training

algorithm, batch size, and learning rate, were the same as those

described in Section 3.1. We choose a model that outputs the

highest accuracy on the validation dataset among all training epochs

for evaluation. Using the outputs of the selected models, we

performed false positive removal and 3D point estimation.
4 Results

We show the evaluation results of contact point detection.

Table 3 shows the AP50, AP75, and AP(0.5:0.95) values for each

bud using LOO cross-validation. Figure 4 shows the example

detection results and ground truth for each bud sample.

Then, receptacle segmentation results were presented. The Dice

coefficients of receptacle segmentation for each bud sample are
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shown in Table 4. Examples of the segmentation results are shown

in Figure 5.

The false positives of the contact points were removed based on

the receptacle segmentation results. The 3D integrated detection

results before and after removing false positives were plotted on 3D

coordinates, as shown in Figure 3.

The estimation results of the 3D position of the contact points

are as follows. The number of clusters when d changed in each bud

sample is shown in Table 5. The clustering results in 3D data when d

was changed are shown in Figure 6; Supplementary Figures S2–S4.

The dots show the detected contact points, and each cluster is

colored differently. We also plotted the estimated contact points,

which are the means of the clusters, with the receptacle at d = 50 for

ChrGjL600, as shown in Figure 7. To better illustrate the 3D data,

see a video of this rotated plot in Supplementary Material. The same

video has been uploaded to YouTube (https://youtu.be/

w9TriAqQan4). The receptacle was drawn by integrating the

contours of the segmentation results of the slice images in 3D

and reconstructing the surface using the ball-pivoting algorithm

(Bernardini et al., 1999). Laplacian smoothing was then applied to

the reconstructed surface. OpenCV (https://opencv.org), an image

processing library available from Python, was used for contour

detection. MeshLab (Cignoni et al., 2008) was used for the ball-

pivoting algorithm, Laplacian smoothing, and rendering.

The results of the verification experiment on the contact

detection accuracy in Section 3.1.5 are as follows. The mean and

standard deviation of the contact point estimation error without

outlier removal were 14.843 and 2690.05, respectively. Figure 8

shows the estimated position of the contact points in 3D without

outlier removal. To evaluate the influence of the image slicing

method, Figure 9A shows the plot of the error with the horizontal
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axis as the distance from the rotation axis. The mean and standard

deviation of the errors are 1.881 and 12.588, respectively. The mean

and standard deviation of the errors for the distance between the

florets are 0.454 and 1.040, respectively. Figure 9B shows

the scatterplot where the horizontal axis is the distance from the

rotation axis of the bud and the vertical axis is the absolute distance

error. From the experimental results, false positives removal has a

significant effect on improving the accuracy of estimating the 3D

position of the contact points. Also, the closer to the axis, the worse

the accuracy of estimating the 3D position of the contact points.

Finally, we show the result of 3D contact point estimation in a

practical scenario. Supplementary Tables S2, S3 show the APs of

contact point detection and the Dice coefficients of receptacle

segmentation. Supplementary Figures S5–S11 show examples of

contact point detection results, receptacle segmentation results,

detection results after the removal of false positives, and

clustering results of 3D contact points for Chrgojo04, Chrgojo05,

Chrgojo06, and Chrgojo07, respectively.
5 Discussion

The proposed method could estimate the contact points

between florets and receptacles as shown in Figure 7. The 3D plot

allows us to analyze the inflorescence in 3D, which could not be

done using only 2D images. In the following section, we discussed

the error of the estimated contact points by the proposed method,

and the experimental results.
5.1 Contact point estimation error

We analyze the potential error in estimating the contact point

position as a cluster center in two aspects, as shown in

Supplementary Figure S12A: radial and tangent directions.

5.1.1 Error in the radial direction
The error in the radial direction corresponds to that within a sliced

image. Table 3 shows that the AP50 score for the detection of contact

points is high, while the AP75 and AP(0.5:0.95) scores are low. This
B C DA

FIGURE 4

Example of the detection results for the contact point between florets and receptacle for each bud sample: (A) ChrGjL601, (B) ChrGjL600,
(C) ChrGjS601, and (D) ChrGjS600. The blue rectangles indicate the ground truth of the contact points. The red bounding boxes indicate the
detection results. The independent blue rectangle in (A, D) and independent red rectangle in (C) indicate failure in detection (false negative) and
wrong detection (false positive), respectively.
TABLE 3 Contact point detection results.

Sample ID AP(0.5:0.95) AP50 AP75

ChrGjL601 0.4218 0.8898 0.3341

ChrGjL600 0.5167 0.9382 0.4908

ChrGjS601 0.5552 0.9510 0.5872

ChrGjS600 0.3441 0.7791 0.2283
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result indicates that many contact points are detected with IoUs between

0.5 and 0.75. Since an IoU of 0.5 corresponds to the situation in which

the ground truth area and the detected area overlap by 2/3, a slight shift

in the detection position of the contact point causes a significant decrease

in IoU, as shown in Figure 4. The primary cause of this phenomenon is

that the detection targets are small and lack sufficient detailed appearance

information to distinguish them from the background and similar

objects [e.g., Bai et al. (2018)]. However, in this experiment, the

contact point can still be detected even if the IoU value for contact

position detection is low, as long as it falls within the detection area.

Furthermore, any detection errors can be corrected during the 3D

integration process. This phenomenon is explained as follows by the

law of large numbers. LetN be the number of 2D images that contain

a contact point; imagine that a cluster consists of approximately N

points in Figure 6. For simplicity, let us assume a one-dimensional

case where errors in the detected positions of the contact points

appear only horizontally, while the same argument can be applied to

a general two-dimensional case. Suppose that the amount of

displacement, say x, is a random variable, and x1, x2,…, xN denote

concrete values drawn from the distribution. Then, regardless of its

distribution, the average displacement, 1
NoN

i=1xi, is expected to

become close to zero with a large N. In the extreme case, it is

expressed as in Equation 5:

lim
n→∞

1
No

N

i=1
xi → 0: (5)

However, even with a relatively large N such as in our experiment,

we can expect that the average displacement is close to zero

regardless of the amount of displacement. In a similar argument,
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we can also expect that the effect of failure in detecting contact

points is minimized.

The 3D position of the contact point is estimated by taking the

average of the detected positions in each cluster. Therefore, even if

there is an error in the detection of a contact point in the 2D image,

the above discussion suggests that the error does not significantly

affect the accuracy of the 3D position estimation.

5.1.2 Error in the tangent direction
The error in the tangent direction corresponds to that across the

sliced images, which also includes the arbitrariness of the image

slicing selection. Supplementary Figure S12B illustrates a case where

the estimated cluster center does not move regardless of the slicing

positions of the images. In contrast, Supplementary Figure S12C

illustrates a case where the estimated cluster center shifts with slight

changes in the slicing positions. In the latter scenario, the maximum

value of the tangential error will be the distance between two adjacent

images, whose distance grows proportionally to the distance from the

rotation center of the CT volume. So far, we have assumed that no

contact point detection errors occur. If detection errors do occur, it is

obvious that the estimated cluster center will shift. Let us consider the

scenario of failing to detect each contact point in each sliced image.

The point farthest from the cluster center has the greatest effect on the

displacement of the estimated cluster center, which the detection

errors of other points have a smaller impact. However, given the high

detection accuracy shown in Table 3, such errors are rare. Therefore,

the positions of the estimated cluster centers are considered to be

reasonably precise.

Taking ChrGjL601 as an example, let us calculate the possible

maximum error. As shown in Table 1, the width and height of the CT

volume are each 2048 pixels. Since each side corresponds to 90 degrees

and the sliced images exist at every 0.05°, each side is divided into 90/

0.05 = 1800 sliced images. Therefore, the possible maximum error is

given as 2048/1800 ∼ 1.14 pixels. Considering that each pixel represents

2.75 μm, this corresponds to a deviation of up to approximately 3.13 μm

at the edge of the CT volume. According to Figure 6, clustering is most

successful when d = 40, so a reasonable distance between contact points

is about 40 pixels. The contact points exist near the center of the image,

so the error is smaller, so we believe that the error caused by the

proposed method is within the acceptable range.
B C DA

FIGURE 5

Examples of receptacle segmentation results overlaying the ground truth for each bud sample: (A) ChrGjL601, (B) ChrGjL600, (C) ChrGjS601, and
(D) ChrGjS600. The red regions indicate the segmentation results, and the blue regions indicate the ground truth that does not overlap.
TABLE 4 Dice coefficients of receptacle segmentation for each
bud sample.

Sample ID Dice coefficient

ChrGjL601 0.9761

ChrGjL600 0.9810

ChrGjS601 0.9745

ChrGjS600 0.9640
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5.2 Sample difference in contact
point detection

As presented in Table 3, ChrGjS600, which was at an early

growth stage, had lower contact detection accuracy than the other

bud samples. This is because the receptacle has not yet developed in

the early growth stage, and the boundary between the floret and

receptacle regions is unclear. As shown in Figure 10, the 3D

visualization of contact points for ChrGjL601 revealed certain

regions where contact points were not detected. This phenomenon

did not occur in any other sample. Therefore, this phenomenon is not

caused by the sample treatment process, but by some impact applied

only to this sample. In contrast, this result shows that the accuracy of

the detector is so high that it does not detect a contact point if there is

a small gap between the petal and receptacle.
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5.3 Receptacle segmentation

Regarding receptacle segmentation, the LOO cross-validation

accuracy was high, as presented in Table 4. This is because of the

slicing method proposed in Section 2.2. The receptacles were

located in the center, and their shape and texture were consistent

in the slice images generated using the proposed method. Therefore,

receptacle detection has become a simple task, and we can achieve

high accuracy in receptacle segmentation.
5.4 False positive removal of contact
point detection

In Figure 3, false positives from contact point detection are

removed from the detection results. Because the appearance of the

contact point is similar to that of the floret area, contact point

detection incorrectly detects similar receptacle areas. Because object

detection detects the target object based on its visual similarity in an

image, it is difficult to reduce false positives when the image

contains regions that have a similar appearance to the target

object. Although contact point detection had false positives, the

accuracy of the receptacle segmentation results was high. Then, by

combining the results of contact point detection and receptacle

segmentation, it was possible to remove false positives and detect

contact points with high accuracy. Figure 8 shows the result of 3D
TABLE 5 Contact point estimation results.

Sample ID Threshold d Ground
truths

1 10 20 30 40 50

ChrGjL601 6606 428 205 132 103 101 108

ChrGjL600 6589 444 208 126 97 96 95

ChrGjS601 4955 329 145 99 95 91 93

ChrGjS600 4098 307 134 104 95 64 100
B C

D E F

A

FIGURE 6

Contact point clustering results when d changes in 3D for ChrGjL601. Because of the large number of clusters, it was difficult to color all clusters
with different colors. Therefore, 10 different colors were used to paint the clusters so that neighboring clusters would not have the same color.
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integration of the contact point detection results without false

positive removal. Some of the contact points are far from the

receptacle, indicating that the estimation results are clearly

incorrect. This indicates that false positive removal is

indispensable for accurate 3D position estimation.
5.5 Clustering for integrating detection
results in 3D

Table 5 demonstrates that, when estimating the 3D position of

the contact points, adjusting the threshold d (which serves as the

termination condition) enabled the acquisition of clusters closely

approximating the original contact points. Because hierarchical

clustering does not set the termination condition automatically, it

is necessary to adjust the termination condition manually. As

shown in Figure 3, a set of detected contact points from a contact

point was scattered, and each set of detected contact points was
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separated from each other. Therefore, the threshold can be adjusted

by making each set of detected contact points a cluster in 3D space.

For instance, Figure 6 illustrates the results of contact point

clustering for sample ChrGjL601 using various values of the

distance threshold d. Ideally, each cluster should be assigned a

unique color. However, due to the large number of clusters, we

limited the color palette to 10 colors and assigned different colors to

neighboring clusters. When a single blob contains multiple colored

clusters, it indicates over-segmentation when d = 1,10,20,30, as

shown in Figures 6A–D. In contrast, when multiple blobs are

assigned the same color, it suggests over-grouping of clusters, as

observed when d = 50, as shown in Figure 6F. Therefore, the

appropriate d value was determined to be 40, as shown in Figure 6E,

because each blob was clustered into a single cluster. Thus,

appropriate clustering parameters can be determined by plotting

the clustering results in 3D, as shown in Figure 6, and verifying that

each blob is classified into a single cluster by visual inspection. As

shown in Supplementary Figures S2–S4, the other bud samples,

along with ChrGjL601, can determine the appropriate values for the

parameter d.
5.6 Simulation experiment in 3D contact
point estimation

From Figure 9A, the contact points that were close to the

rotation axis have larger errors than the contact points that were

far from the axis. This is due to the clustering error, not the

sampling density. Because the shape of the receptacle was conical,

the contact points that were close to the rotation axis were placed at

the top of the receptacle. The contact points were densely placed on

the top of the receptacle. Therefore, the clustering fails, and the

error between the ground truth and the estimation results becomes

larger. The distance between the contact points also has the same

tendency as the estimation error. From Figure 9B, distance errors

also tend to be larger for contact points closer to the axis of bud
FIGURE 7

Contact point estimation results for ChrGjL600 at d = 50 with the receptacle. The red dots represent the estimated contact points, and the white
object represents the reconstructed receptacle from the segmentation result.
FIGURE 8

Contact point estimation results for ChrGjL600 at d = 50 without
false positive removal.
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rotation, i.e. closer to the apex of the receptacle. The clustering

results depend on the value of the parameter d: if d is small, the

number of clusters will increase. In the experiment, when we

applied the clustering method with the same d for all contact

points, the clustering method would fail on the top of the

receptacle where the contact points were dense. One of

the solutions to improve the clustering result is to apply the

clustering method while changing the parameter d adaptively. If

we apply the clustering method with smaller d for the top of the

receptacle, more accurate clustering results would be obtained. It
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would lead to more accurate contact point estimation and be able to

perform pattern analysis of floret phyllotaxis.

The average distance between contact points is about 50 pixels.

As shown in Figure 9B, the error in this distance is less than 1 pixel,

providing sufficient accuracy for subsequent analyses that rely on

these measurements. However, Figure 9B also shows that the error in

the distance between contact points near the rotation axis, that is the

contact points close to the apex, can reach up to nearly 8 pixels. This

level of error is significant enough to impact subsequent analyses.

Therefore, improving the accuracy of the vertices by adjusting their

clustering parameters could lead to more precise future analyses.
5.7 Sample-independent scenario

As shown in Supplementary Tables S2, S3, the detection accuracy

of the contact point detection and receptacle segmentation in the

sample-independent scenarios (presented in Section 3.2) was

comparable to that in the sample-dependent scenarios (presented at

the beginning of Section 3). The false positive removal and contact

point clustering were also successful, as shown in Supplementary

Figures S7–S11. Therefore, the proposed method is useful for

detecting contact points in real-world scenarios.

In Supplementary Table S2, Chrgojo07 shows lower accuracy

compared to other samples, likely due to texture-level differences in

the contact points’ appearance. Neural networks are sensitive to texture

variations, which can influence detection results (Hermann et al., 2020).

While Chrgojo07 may seem similar to other samples at first glance,

subtle texture differences may have caused detection failures. Increasing

the number of training samples could potentially improve its accuracy.
5.8 Limitation of the proposed method

A limitation of this study is that we could not experimentally prove

the applicability of the proposedmethod when the variety of the scanned
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FIGURE 9

Scatter plots of (A) position and (B) distance estimation error for each contact point in the simulation experiment, where the horizontal axis is the
distance of the contact point from the axis of rotation of the bud.
FIGURE 10

Regions in which contact points were not detected for ChrGjL601.
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flower changes. In our experiments, we used only CT images of C.

seticuspe. However, when applying the proposed method to other plants,

it may fail due to variations in receptacle shape and floret arrangement.
6 Conclusion

In this study, to understand the 3D structure of the C. seticuspe

bud, we collected the 3D data by CT and detected the contact points

between the florets and the receptacle from the slice images using

image recognition technology and displayed them in 3D space. To

facilitate the contact point detection task, we proposed a new image

slicing method for CT volumes such that all slice images have a similar

appearance. Furthermore, we segmented the receptacles and removed

detected points not on the receptacles as false positives. When the

results of contact detection on the slice images were integrated into 3D

space, the contact points were not uniquely determined because of the

contact point size. We used a clustering method to estimate the

position of the contact points. The experimental results showed that

the proposed method estimated the contact points when the clustering

parameter was set appropriately. The results also indicated that the

proposed method could estimate the contact points even when the

training and test images were generated from different bud samples.

A future task is to automate the clustering parameters, which

are currently determined manually. We also plan to develop a

mathematical model of the position of the contact point between

the receptacle and florets based on the estimation results.
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