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Background: The Haihe Plain plays an important role in wheat production and

food security in China and has experienced continuous cultivar replacement

since the 1950s.This study assessed the evolution of the yield and grain-filling

characteristics of the main winter wheat cultivars in the Haihe Plain over the last

seven decades (1950s to date).

Methods: Cultivar characterization indicated that the increase in yield was

negatively affected by spike number and positively affected by the number of

kernels per spike before the 2000s and kernel weight after the 2000s. Field trials

were conducted across two ecological zones over two consecutive

wheatgrowing seasons. The results showed that genetic gains in grain yield,

spike number, and kernel weight during 1955 to 2021 were 0.629%, 0.574%, and

0.332% year–1 on a relative basis or 39.12 kg ha–1, 24,350 hm–2, and 0.15 g year–1

on an absolute basis, respectively. However, the increase in the kernel number

per spike was not significant. Moreover, cultivar replacement explained 25.6%,

12.8%, and 37.5% of the total variance in grain yield, spike number, and kernel

weight, respectively. In summary, during the initial grain-filling stage, wheat

cultivar replacement led to the shortening of grain-filling duration and rapid

grain-filling rate. However, a longer active grain-filling duration was produced by

prolonged durations of rapid and late grain-filling. Additionally, the experimental

year had a greater effect on the kernel number, which explained 53.2% of the

total variance. Ultimately, modern wheat cultivars had a greater kernel weight.

Results: Although the increase in kernel weight has affected grain yield during

cultivar replacements in the Haihe Plain, the potential for further yield increase

through kernel weight enhancement alone is limited. Consequently, future

breeding efforts and cultivation practices should focus on improving spike

traits and canopy architecture to enhance productivity.
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1 Introduction

Wheat (Triticum aestivum L.), one of the most extensively

cultivated crops worldwide, is a vital component of the global

food security mosaic and accounts for one-fifth of the world’s

total calories (Reynolds et al., 2011). The Haihe Plain, situated in

the northern part of the Huanghuaihai Plain in China, is an

important wheat-producing region. In 2021, the area dedicated to

wheat cultivation was 2,247 million hectares, yielding a total

production of 14,691 million tons (NBS, 2022). Since 1949, the

Huanghuaihai wheat region has undergone seven to eight cultivar

updates, leading to substantial advancements. In the 1960s, wheat

yields were below 750 kg ha–1 due to stripe rust and inadequate

cultivation techniques. However, the 1970s marked a significant

improvement with the introduction of high-yield potential and

rust-resistant cultivars, increasing yields to 1,500 kg ha–1. The 1980s

brought further advancements, including improved lodging

resistance, resulting in yields exceeding 3,750 kg ha–1. During the

1990s, the development of high-yielding, multi-resistant cultivars

pushed yields to between 4,500 and 5,400 kg ha–1. In the 21st

century, the focus has shifted to cultivars that offer high

productivity, quality, and efficiency (Chen et al., 2008). Therefore,

clarity regarding the evolutionary law of yield and agronomic traits

of cultivar replacement for the breeding, cultivation, and

management of winter wheat in the Haihe Plain is needed.

Since the Green Revolution, the introduction of semi-dwarf

cultivars has led to dramatic increases in wheat yield (Shiferaw et al.,

2013). Research has shown that reductions in plant height are key

traits associated with genetic gains in wheat, and the genetic gain in

wheat plant height was −0.5% (Zhang et al., 2020; Wang et al.,

2023). The replacement of wheat cultivars has optimized the

distribution of dry matter. Root systems, as absorbing organs, are

smaller in modern cultivars (Fang et al., 2021). Modern cultivars

exhibit a decrease in total root length and root biomass (BIO), with

total root length per plant following a non-linear decline pattern

with the year of release, decreasing from 16.2 m plant−1 to 10.1 m

plant−1, and total root BIO declining linearly with the year of release

at a rate of 0.058 g plant−1 year−1 (Ludlow and Muchow, 1990; Aziz

et al., 2016). The smaller root systems of modern wheat cultivars

enhance population performance, increase the harvest index (HI),

and consequently boost yield, with the root-to-shoot ratio

negatively correlated with yield (r = −0.77) and the HI positively

correlated with yield (r = 0.74) (Zhu et al., 2018). Additionally, the

improvement of photosynthetic performance can also be caused by

cultivar replacements. Tian et al. (2011) found that leaf area, leaf

area index (LAI), and the net photosynthetic rate (Pn) of flag leaves

significantly increased during cultivar development. Specifically, the

leaf area increased by 0.41–0.53 cm2 annually, with LAI gradually

rising from 4.87 to 6.03. The Pn of the flag leaf also increased

gradually, from 19.24 to 22.22 mmol CO2 m−2 s−1. This

enhancement in photosynthetic performance was primarily

achieved by prolonging the photosynthetic duration. The

photosynthetic activity duration similarly increased with cultivar

development, from 266.58 to 334.74 mmol CO2 m
−2 s−1 day. Beche

et al. (2014) demonstrated that increasing the HI and BIO led to

higher grain yields. The HI increased on average by 0.24% year−1,
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while BIO also increased, with an average increase of 47.59 kg ha−1

year−1. However, as a crucial aspect of yield formation and BIO

allocation, studies on the effects of variety replacement on grain-

filling characteristics are still relatively rare.

The replacement of crop cultivars has a significant influence on

yield. For example, Cao (2001) showed that wheat cultivars replaced

once can generally increase the yield by approximately 10% The annual

genetic gain in wheat yield in the northern wheat region of China was

0.48%–1.23% (Zhou et al., 2007a; Qin et al., 2019). Aisawi et al. (2015)

showed that wheat kernel weight gradually increased with cultivar

replacements, but kernel number per spike did not change significantly.

Thapa et al. (2019) showed that, compared with spike number and

kernel number per spike, kernel weight had the greatest response to

water stress. Owing to the continuous increase in grain production in

the Haihe Plain over the past 50 years, groundwater extraction in

agricultural areas has continuously increased (Feng et al., 2013).

Therefore, water conservation and drought resistance are highly

desirable traits that require an increase in the kernel weight of wheat

to stabilize the spike number. Wheat kernel weight mainly depends on

the transport and distribution of assimilates to grains during grain

formation (Wan et al., 2022). Sink strength, which includes sink size

and activity, affects the ability of wheat grains to accept assimilates

(Dreccer et al., 1997; Borrás et al., 2004; Hidaka et al., 2019).

Meanwhile, sink activity is influenced by grain-filling characteristics,

which change the grain-filling rate, thereby controlling kernel weight;

therefore, sink activity is enhanced in newer wheat cultivars by

changing the grain-filling characteristics to increase kernel weight

(Ho, 1996). Old wheat cultivars are affected by early senescence and

relatively less dry matter accumulation during the grain-filling period,

resulting in lower wheat kernel weight (Acreche and Slafer, 2009).

The grain-filling characteristics have a significant impact on the

yield and kernel weight. Currently, there is considerable research on

wheat-filling characteristics and yield in the Haihe Plain, but most

of these studies have only focused on the factors affecting grain-

filling in single cultivars or cultivars in the same period (Zheng

et al., 2022). However, few studies have been conducted on the

evolution of the yield and grain-filling characteristics of wheat

during cultivar replacement. In this study, we analyzed wheat

yield progress and grain-filling characteristics of wheat cultivar

replacement in the Haihe Plain over the last seven decades to (1)

clarify patterns in yield and yield component changes over the last

70 years of the main winter wheat cultivars in different years in the

Haihe Plain, and (2) understand the response of grain-filling

characteristics to cultivar replacement.
2 Materials and methods

2.1 Study site

This study was conducted in Hebei Province at the Mazhuang

Experimental Station (MZ, 37°47′52″N, 115°18′28″E) during the

2021/2022 wheat growing season and at the Malan Experimental

Station (ML, 37°58′28″N, 115°12′2″E) during the 2021/2022 and

2022/2023 wheat growing seasons (Figure 1). The MZ and ML

experimental stations were located in the Piedmont Plain of Mt.
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Taihang and the Heilonggang Plain, respectively, at elevations of 53

and 37 m in the Haihe Plain (Hou and Hao, 2010). Both the

Heilonggang Plain and the Piedmont Plain of Mt. Taihang have a

warm temperate semi-humid continental monsoon climate, whereas

the Piedmont Plain of Mt. Taihang has relatively good soil conditions

(Asadi Zarch et al., 2015). The annual precipitation in 2021/2022 and

2022/2023 was 804.7 mm and 731.0 mm, respectively, with the wheat

growing season receiving 174.1 mm and 181.9 mm of precipitation,

respectively. The annual average temperatures for the 2021/2022 and

2022/2023 seasons were 17.2°C and 15.14°C, respectively, with the

wheat growing season averaging 8.7°C and 9.4°C, respectively. During

the 2022/2023 season, the lowest temperature reached −9.3°C

(Supplementary Figure S1). The organic matter, total nitrogen,

alkaline-dissolved nitrogen, available phosphorus, and potassium in

the study area during the experiments were 22.4 g kg–1, 1.26 g kg–1,

131.2 mg kg–1, 25.8 mg kg–1, and 122.2 mg kg–1, respectively, in MZ,

and 19.7 g kg–1, 1.09 g kg–1, 125.0 mg kg–1, 15.32 mg kg–1, and

101.3 mg kg–1, respectively, in ML.
2.2 Experimental design

The field arrangement followed a single-factor randomized block

design with three replicates. A total of 29 winter wheat cultivars, the

main cultivars in the Haihe Plain in certain years, were selected as
Frontiers in Plant Science 03
treatments. The experimental materials were provided by the Hebei

Provincial Agricultural Biological Resources Preservation Center

(Table 1). The plot area was 30 m2 (6 m × 5 m; row spacing: 15

cm). Basal fertilizer consisting of 120 kg ha–1 N, 120 kg ha–1 P2O5,

and 120 kg ha–1 K2O was applied in ML and MZ at Zadoks Stage 0,

respectively. Wheat seeds were sown in ML and MZ at Zadoks Stage

0 (Zadoks et al., 1974) with a seeding rate of 375 seed m−2 and

harvested in ML andMZ on 6 June and 10 June 2021 and inML on 8

June 2022. Using the local irrigation system, irrigation was applied at

the jointing at Zadoks Stage 31 and anthesis at Zadoks Stage 65

(Zadoks et al., 1974) with 90 mm of groundwater each time (Fang

et al., 2017). Additionally, 120 kg ha–1 of N was applied during the

jointing stage with irrigation, and weed and pest control were

performed regularly during the growth period.
2.3 Sampling and laboratory analysis

2.3.1 Grain-filling rate determination
At anthesis (Zadoks Stage 65), 100 spikes with consistent

anthesis and similar growth without pests or diseases were

marked in each plot, and samples were taken every 3 days from 7

days after anthesis according to each cultivar’s anthesis date until

harvest. All grains were dried at 80°C for 72 h to a constant weight

to obtain the dry weight.
FIGURE 1

Location of experimental field sites.
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A logistic growth curve was fitted to the grain-filling rate using

Equation 1 (Figure 2) (Liu et al., 2022):

W =
A

1 + Be−Kt
(1)
Frontiers in Plant Science 04
where W is the single kernel weight in mg, A is the final kernel

weight (Zadoks Stage 92) in mg, t (d) is the number of days after

anthesis, and B and K are the regression coefficients.

The maximum grain-filling rate (Rmax, mg grain–1·d–1) was

calculated using Equation 2:

Rmax =
KWmax − KW2

max

A
(2)

The average grain-filling rate (Vmean, mg grain–1 d–1) was

calculated using Equation 3:

Vmean =
W3

T0:99
(3)

The effective duration of grain-filling (T0.99, d) was calculated

using Equation 4:

T0:99 =
(lnB + 4:59512)

K
(4)

The time required to reach the maximum grain-filling rate

(Tmax, d) was calculated using Equation 5:

Tmax =
lnB
K

(5)

The active grain-filling period (p, d) was calculated using

Equation 6:

p =
6
K

(6)

The duration of the initial grain-filling rate (T1, d) was

calculated using Equation 7:

T1 =
lnB − 1:317

K
(7)

The average grain-filling rate at the initial grain-filling stage (v1,

mg grain−1 d −1) was calculated using Equations 8, 9, as follows:

W1 =
A

1 + Be−KT1
(8)

v1 =
W1

T1
(9)

The duration of the rapid grain-filling rate (T2, d) was calculated

using Equation 10:

T2 =
lnB + 1:317

K
−
lnB − 1:317

K
(10)

The average grain-filling rate of the rapid grain-filling stage (v2,

mg grain−1 d−1) was calculated using Equations 11, 12, as follows:

W2 =
A

1 + Be−lnB−1:317
(11)

v2 =
W2 −W1

T2
(12)

The duration of the late grain-filling rate (T3, d) was calculated

using Equation 13:
TABLE 1 Winter wheat cultivars used in this study.

Year Cultivars Origin
Founder
parent

1955 Shijiazhuang407 Shenglimai/Yanda1817
Shenglimai/
Yanda1817

1962 Beijing8 Bima4/Zaoyangmai Bimamai/Biyumai

1965 Shijiazhuang54 Bima4/Zaoyangmai Bimamai/Biyumai

1965 Jinan2 Bima4/Zaoyangmai Bimamai/Biyumai

1976 Jimai1 Beijing8/H.H/Orofen Bimamai/Biyumai

1976 Jimai2 Beijing8/H.H/Orofen Bimamai/Biyumai

1978 Jimai3 H.HPZ41/Shijiazhuang54 Zaoyangmai

1984 Taishan1 Bima4/Zaoshu1/Orofen Bimamai/Biyumai

1988 Jimai26 Aiganzao/Lovelin10/Jinfeng1 Lovelin10

1992 Jimai30 78–3147/Shi4414
Ourou/
Zaoyangmai

1994 Jimai36
715017/Shanqian/75–
78/94354

Bimamai/Biyumai

1996 Jimai38 Zhi4001/Shi4212–10 Lovelin10

1997 Heng4041 Jimai26/211–4/Jimai 26 Lovelin10

1997 Shi4185
Zhi8094/Baofeng7228/
Shi84–7120

Lovelin10

1998 Han4589 Han86–4032/85Zhong47 Han4032

1998 Cang6001 Linfen6145/Jimai32
Shenglimai/
Yanda1817

2001 Heng95Guan26
Heng84Guan749/
Heng87–263

Lovelin10

2001 Han6172 Han4032/Zhongyin1 Han4032

2003 Shijiazhuang8 Shi91–5096/Shi9306 Lovelin10

2004 Shiluan02–1 9411/9430 Linzhangmai

2004 Hengguan35
Heng84Guan749/
Heng87–4263

Lovelin10

2006 Jimai22 935024/935106 Fengchan3

2007 Shimai15 Jimai38/92R137 Lovelin10

2008 Heng4399 Han6172/Hengsui28 Han4032

2013 Shimai22 Lin8014/Jimai 38/Shi4185 Lovelin10

2019 Shinong086 Lumai14/Han6172 Fengchan3

2021 Malan1 Jimai22/Jinhe9123 Fengchan3

2021 Malan6 Gaoyou2018/ShiU09–4366 Linzhangmai
Information on winter wheat cultivars of all decades was obtained from Chen et al. (2008) and
Li (2014). The information on wheat cultivars after the 2000s was from the Agricultural
Dominant Cultivars and Recommended Technologies released by the Department of
Agriculture and Rural Affairs of Hebei Province.
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T3 =
lnB + 4:59512

K
−
lnB + 1:317

K
(13)

The average grain-filling rate at the late grain-filling stage (v3,

mg grain–1 d–1) was calculated using Equations 14, 15, as follows:

W3 =
A

1 + Be−lnB−4:59512
(14)

v3 =
W3 −W2

T3
(15)
2.3.2 Yield and yield components
At maturity (Zadoks Stage 92), a 1-m2 area from each plot was

harvested to measure the spike number, thousand-kernel weight,

and grain yield. The kernel number per spike (kernel number) was

determined by dividing the grain yield by the product of the spike

number and average kernel weight. The grain moisture content was

adjusted to 13%. Data on the yield and yield components of the

officially approved cultivars were obtained from the First Seed

Production Industry (http://www.a-seed.cn/).
2.4 Statistical analysis

The logarithmic mean Divisia index (LMDI) method, which is a

well-known decomposition model, was used to decompose the

contribution of grain yield variation in different years to spike

number, kernel number per spike, and grain weight (Xie et al.,

2019). The grain yield (DY) changes from years t−1 to years t was

calculated using Equation 16, as follows:

DY = Yt − Yt−1 = DS� DG� DK (16)
Frontiers in Plant Science 05
where, DS, DG, and DK, respectively, represent the influence

of the spike number, kernel number per spike, and kernel weight

on the changes of grain yield, whose relevant decomposition

factors between t and t−1 was calculated using Equations 17–20,

as follows:

DS = L(Yt ,  Yt−1)� ln (
St
St−1

) (17)

DG = L(Yt ,  Yt−1)� ln (
Gt

Gt−1
) (18)

DK = L(Yt ,  Yt−1)� ln (
Kt

Kt−1
) (19)

where

L(Yt ,  Yt−1) =
Yt − Yt−1

lnYt − lnYt−1
(20)

The genetic gain (GN) in grain yield and its components based

on cultivar release date was calculated using Equations 21, 22

(OrtizMonasterio et al., 1997):

yi = a + bxi + m (21)

ln(yi) = a + bxi + m (22)

where yi is the grain yield and its components of cultivar i, ln(yi)

is the natural log of yi, xi is the year in which cultivar i was released,

a is the estimated intercept of each equation, and m is the residual

error. The linear function (Equation 21) provides an estimate of the

grain yield and its components increase based on cultivar release

date in absolute terms (i.e., b measures grain yield and its

components gain), while the logarithmic function (Equation 22)
FIGURE 2

The schematic diagram of grain dry matter accumulation (red line) and grain-filling rate (black line) of winter wheat.
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gives the relative grain yield and its components increase (dyi/dxi)

such that 100b estimates the percentage grain yield and its

components gain per year. All parameters were estimated using a

restricted maximum likelihood linear mixed effects model (RMLM).

The RMLM was also used to evaluate the effects of cultivar

replacement and planting location on the grain yield, yield

components, and grain-filling parameters of winter wheat. Winter

wheat cultivar nested in the founder parent as a random effect for a

lack of independence within cultivar and founder parent between

year of cultivar release, experimental year, and site. The RMLM was

conducted in the “lme4” package of R (version 4.2.1) (Bates et al.,

2015). The variances of each fixed variable, random variable, and

unexplained factor were calculated using variance decomposition,

which was performed in the “partR2” package of R (Stoffel et al.,

2020). Additionally, redundancy analysis (RDA) was conducted

using the “vegan” package of R (Oksanen et al., 2023), with the

grain-filling parameters as independent variables, and cultivar

replacement and experimental location as dependent variables.

All figures were generated using ArcGIS 10.2, OriginPro 2021 and

the “ggplot2” package in R (Wickham, 2016).
Frontiers in Plant Science 06
3 Results

3.1 Effect of yield components on yield
during cultivar replacement

The results of the official cultivar approval showed that the yield

of wheat increased, the spike number per unit area decreased, and the

kernel number per spike and kernel weight increased over the

analyzed timespan (Figures 3A–D). The LMDI results indicated

that the spike number had a negative contribution yield increase,

except in the 2020s. Kernel number had a greater positive

contribution to yield before the 2000s, while the kernel weight

contributed positively to yield after the 2000s. Notably, the

contribution of kernel weight in the 2020s increased by 43.95%

compared to the 1980s (Figure 3I). Similarly, field experiment

results showed that the yield of main winter wheat cultivars in the

Haihe Plain has increased from the 1950s to the present. This increase

in yield was accompanied by a decrease in spike number, and an

increase in kernel number per spike and kernel weight (Figures 3E–

H). According to the LMDI results, except for the 2000s, the spike
A B C D

E F G H

I J

FIGURE 3

Wheat yield and its components in different years, and LMDI decomposition of the contribution of yield components to yield. (A–D, I) Wheat yield, its
components, and LMDI decomposition of official cultivar approval data; (E–H, J) wheat yield, its components, and LMDI decomposition of field data.
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number consistently had a negative contribution to yield increase.

The LMDI indexes for the spike number were −3,222.1, −486.7,

−767.7, −1,642.5, 1,137.1, −1,183.44, and −2,858.01 from the 1960s to

the 2020s, respectively. Kernel number had a greater positive

contribution before the 2000s, and the LMDI indexes for the kernel

number were 2,126.3, 289.9, 72.7, −333.7, 605.3, −105.7, and −491.9

from the 1960s to the 2020s, respectively. After the 2000s, kernel

weight contributed positively to yield, and the LMDI indexes for the

kernel weight were −282.8, 152.5, 1,384.4, −627.5, 310.2, 1,087.3, and

1,350.9 from the 1960s to the 2020s, respectively (Figure 3J).
3.2 Grain yield and its components

In this study, the average grain yields from the 1950s to the 2020s

were 6,311.1, 6,029.8, 6,299.1, 7,742.8, 7,662.2, 8,146.3, 8,536.5, and

9,014.2 kg ha–1, respectively. The average spike number was 638.7,

501.7, 527.4, 509.5, 432.9, 461.1, 453.1, and 373.7 ×104 ha–1,

respectively, from the 1950s to the 2020s. The average kernel

number per spike was 32.8, 36.4, 35.9, 38.3, 39.9, 37.9, 39.1, and

39.4, respectively, from the 1950s to the 2020s. The average thousand

kernel weight was 41.9, 39.6, 42.4, 43.5, 44.8, 44.9, 48.4, and 52.7 g,

respectively, from the 1950s to the 2020s. The results of RMLM

showed that grain yield significantly increased by 39.12 kg ha–1 and

kernel weight significantly increased by 0.15 g year–1, respectively,

spike number significantly declined by 24,350 hm–2 year–1 (p < 0.001),

but the kernel number per spike did not significantly increase (p >

0.05) (Figures 4A–D). Genetic gain refers to the improvement in

average genetic value in a population or the improvement in average

phenotypic value due to selection within a population over cycles of

breeding. In this study, genetic gain specifically refers to the annual
Frontiers in Plant Science 07
percentage increase or decrease in yield and yield components. GN of

grain yield, spikes per unit area, kernel number per spike, and kernel

weight were 0.629%, –0.574%, 0.158%, and 0.332%, respectively

(Figures 4A–D). Furthermore, the results of variance decomposition

showed that the year of release accounted for 25.6% of the variation in

grain yield, whereas planted location, unexplained factors, and

experimental year accounted for 11.8%, 50.9%, and 7.38% of the

variation, respectively (Figure 4E). This finding indicates that in

addition to varietal replacement, cultivation conditions, experimental

year, and other factors have a large impact on grain yield. Kernel

weight was affectedmore by the year of release, accounting for 37.5% of

the variation, and spike number was affected more by the experimental

year, accounting for 53.2% of the variation. Kernel number was mainly

affected by the experimental location, accounting for 15.7% of the

variation (Supplementary Table S1; Figure 4).
3.3 Grain-filling characteristics

The logistic regression model accurately captured the trends in

the wheat grain-filling process (R2 > 0.9) (Supplementary Table S2).

Kernel weight growth showed an “S”-shaped increase in kernel

weight during the grain-filling process when visualized. With the

replacement of cultivars, the kernel weight of modern cultivars was

higher than that of earlier cultivars (Supplementary Figure S2A). The

grain-filling rate increased first and then decreased. The grain-filling

rate indicated that the grain weight initially increased until it reached

Tmax, the time to reach the maximum grain-filling rate, after which it

began to decrease. The Tmax advanced with the replacement of

cultivars, which were 20.3, 19.1, 20.1, 19.7, 18.9, 18.9, 18.3 and 17.1

days for the 1950s–2020s, respectively. Rmax also increased gradually,
FIGURE 4

The relationship between grain yield of winter wheat and yield component with year of release by RMLM. (A–D) The relationship between grain yield
of winter wheat and yield component with year of release; (E) Year, site, ex-year, random, and unexplained contributions to the variation in wheat
yield and its components. The black dashed lines with edges represent the 95% confidence interval, and the red solid line is the fitted line.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1374453
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1374453
except in the 1950s, with values of 2.7, 2.2, 2.2, 2.1, 2.2, 2.2, 2.3, and

2.4 mg grain–1 d–1 in the 1950s–2020s, respectively (Supplementary

Figure S2B; Supplementary Table S3).

RDA was used to determine the response of the grain-filling

characteristics to the replacement of cultivars, planting locations,

and experimental year. These three constraining variables explained

61.0% of the variation in grain-filling characteristics (Supplementary

Table S4). The results showed that RDA1 accounted for 51.4% and

RDA2 for 7.3% of the total variation in the grain-filling characteristics

(Figure 5A). From left to right (MZ to ML, 2021/2022 to 2022/2023),

v1, T3, p, T2, T0.99, and Tmax decreased as the cultivation ecological

environment deteriorated, whereas vmean, v2, Rmax, v3, and T1 increased

(Figure 5A). Moreover, T0.99, T3, p, vmean, T2, v1, v2, and Rmax values

were positively correlated with the year of cultivar release, whereas

Tmax, T1, and v3 were negatively correlated with the year the cultivars

were released (Figure 5A). RDA was also used to determine the

response of grain yield and kernel weight to grain-filling

characteristics (Figure 5B). Grain yield and kernel weight explained

72.3% of the variation in grain-filling characteristics (Supplementary

Table S4). The results showed that RDA1 accounted for 67.5% and

RDA2 accounted for 4.8% of the total variation in grain yield and

kernel weight, respectively, but RDA2 was not significant (p > 0.05).

From right to left, T0.99, T2, T3, Tmax, and v1 increased as grain yield and

kernel weight increased, whereas T1, v2, v3, Rmax, and vmean decreased.

3.4 Relationships between grain-filling
characteristics and year of release

To further demonstrate the relationship between wheat-filling

parameters and year of release, RMLM was performed (Figure 6).
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During the year of release, p, T2, T3, and v1 increased significantly,

whereas Tmax and T1 decreased significantly (p < 0.05). However,

there were no significant relationships between T0.99, Rmax, vmean, v2,

and v3 and the year of release (p > 0.05) (Supplementary Table S2).

The results showed that the replacement of wheat cultivars in the

Haihe Plain had an impact on grain-filling characteristics.

Specifically, it has extended the active grain-filling period,

particularly during the rapid filling stage, with durations of 5.7,

6.6, 7.1, 7.6, 7.7, 7.8, 8.2, and 8.0 days for the 1950s–2020s,

respectively, and the late grain-filling stage, with durations of 8.9,

13.3, 15.8, 16.9, 17.7, 18.1, 19.0, and 20.0 days for the 1950s–2020s,

respectively. Additionally, it has enhanced the average grain-filling

rate, with values of 1.1, 1.0, 1.0, 1.1, 1.0, 1.0, 1.1, and 1.3 mg grain−1

d−1 for the 1950s–2020s, respectively. However, it has also

shortened the duration of the initial grain-filling stage, with

durations of 15.5, 13.6, 13.1, 12.3, 11.6, 11.4, 10.5, and 9.5 days

for the 1950s–2020s, respectively.
4 Discussion

4.1 Grain yield and its components during
wheat cultivar replacement

Domestic and foreign studies have shown that grain yield

gradually increases with the replacement of the wheat crop in

general; however, conclusions regarding yield components have

been inconsistent (Zhou et al., 2007b; Feng et al., 2018; Qin et al.,

2018, 2019; Sakuma and Schnurbusch, 2019). For foreign wheat

cultivars, Sakuma and Schnurbusch (2019) showed that wheat yield
A B

FIGURE 5

Ordination plots of the results from the redundancy analysis (RDA) to identify the relationships between winter wheat grain-filling characteristics with
planting location and year of release (A) and between grain yield and kernel weight with grain-filling characteristics (B). Rmax is the maximum grain-
filling rate, Vmean is the average grain-filling rate, T0.99 is the effective duration of the grain-filling, Tmax is the time to reach the maximum grain-filling
rate, p is the active grain-filling period, T1 is the duration of the initial grain-filling rate, T2 is the duration of the rapid grain-filling rate, T3 is the
average grain-filling rate in the late grain-filling stage, v1 is the average grain-filling rate at the initial grain-filling stage, v2 is the average grain-filling
rate of the rapid grain-filling stage, and v3 is the average grain-filling rate at the late grain-filling stage. The red arrows represent the explanatory
variables, while the black arrows represent the grain-filling parameters. The length of the arrow indicates the magnitude of influence; the smaller the
angle between the arrows, the stronger the positive correlation between them. Conversely, a larger angle represents a negative correlation. The
angle between the arrows and the ordination axes indicates the correlation with the axes; a smaller angle indicates a stronger correlation, while a
larger angle indicates a weaker correlation.
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was strongly influenced by changes in kernel number per spike;

however, the effects of spike number and kernel weight were not

significant. However, other studies have shown that a steady

increase in the 1000-kernel weight and HI leads to a sustained

increase in wheat yield and higher yield potential (Lo Valvo et al.,
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2018). Haihe Plain is located in northern China. In Northern China,

Feng et al. (2018) reported that a significant increase in wheat yield

was caused by an increase in kernel number per spike and kernel

weight, although there was little change in spike number per unit

area. Zhou et al. (2007a) also showed that there was a gradual
A B C
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FIGURE 6

The relationships between winter wheat grain-filling parameters and year of release. The red solid lines represent significant relationships, whereas
the dotted red lines represent non-significant relationships (p < 0.05). The black dotted lines represent the 95% confidence interval. The green
triangles represent the wheat grain filling data from the MZ Experimental Station during the 2021-2022 growing season, the green circles represent
the wheat grain filling data from the ML Experimental Station during the 2021-2022 growing season, and the brown circles represent the wheat
grain filling data from the ML Experimental Station during the 2022-2023 growing season. (A) The relationship between the effective duration of
grain-filling (T0.99) and the year of release. (B) The relationship between the time to reach the maximum grain-filling rate (Tmax) and the year of
release. (C) The relationship between the maximum grain-filling rate (Rmax) and the year of release. (D) The relationship between the active grain-
filling period (p) and the year of release. (E) The relationship between the average grain-filling rate (Vmean) and the year of release. (F) The relationship
between the duration of the initial grain-filling rate (T1) and the year of release. (G) The relationship between the duration of the rapid grain-filling
rate (T2) and the year of release. (H) The relationship between the duration of the average grain-filling rate in the late grain-filling stage (T3) and the
year of release. (I) The relationship between the average grain-filling rate at the initial grain-filling stage (v1) and the year of release. (J) The
relationship between the average grain-filling rate of the rapid grain-filling stage (v2) and the year of release. (K) The relationship between the
average grain-filling rate at the late grain-filling stage (v3) and the year of release.
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increase in kernel weight during the replacement of wheat cultivars.

Qin et al. (2015) showed that the replacement trends of wheat

cultivars differed under different cultivation environments.

Therefore, although previous studies have agreed that the

replacement of wheat cultivars resulted in increased grain yield,

differences in the timescales of studies and cultivation environments

prevented consistent conclusions on the contribution of yield

components to yield increases, but the increase in wheat yield in

the Haihe Plain is closely related to kernel weight. This study

demonstrated that both yield and grain weight increased

significantly with the replacement of wheat cultivars. However,

there are inconsistent conclusions regarding the reasons for the

increase in yield during the process of cultivar replacement (Zhou

et al., 2007b; Feng et al., 2018). In our study, the increase in kernel

number was not significant, whereas kernel weight increased

significantly during the cultivar replacement process. In contrast,

Philipp et al. (2018) found that kernel number was the main reason

for the increase in wheat yield. This discrepancy may be due to the

different statistical methods used for measuring kernel number: the

study used kernel number per square meter (Gonzalez-Navarro

et al., 2016), while we measured kernel number per spike.

Additionally, wheat cultivars have strong regional characteristics,

which may also contribute to different reasons for yield increases

during cultivar replacement in different areas. Given the significant

increase in kernel weight observed in this study, it is necessary to

further investigate the factors contributing to the increase in kernel

weight during cultivar replacement.

Phenotype characteristics of wheat are influenced by both

genetics and the environment; therefore, while wheat yield

increased significantly with the year of release, there was also

some influence of environmental factors, such as temperature,

precipitation, and solar radiation, and soil factors such as topsoil

thickness, soil water content, organic matter, nutrients, and trace

elements in different ecological regions, differentially affecting the

yield of the same wheat cultivar planted (Motzo and Giunta, 2004;

Lobell et al., 2009; Subira et al., 2014). In the Haihe Plain, ML was

located in the Heilonggang Plain zone, and MZ was located in the

Piedmont plain of Mt. Taihang zone; the ecological conditions of

the Piedmont plain for wheat planting were better than those of the

Heilonggang Plain (Wu et al., 2023), which was further verified by

comparison of soil characteristics in this study (Supplementary

Table S5). Combining the two wheat growing seasons, the variance

decomposition results showed that the spike number was more

affected by the experimental year, which was due to the

environmental factors of frost damage in the second year, which

reduced the spike number compared to the first year, whereas the

kernel weight was more affected by the year of release.
4.2 Grain-filling characteristics as year
of release

For the wheat crop in general, Madani et al. (2010) showed

that with the year of release, the increase in kernel weight was due
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to an increase in sink activity in modern wheat cultivars. Álvaro

et al. (2008) found that the increase in the size of the sink in

modern cultivars led to an increase in the capacity of the wheat

stem to transport substances to the grain, thereby limiting the

source capacity and lowering the kernel weight of early cultivars.

Near the Haihe Plain, Zhou et al. (2007a) reported a significant

increase in winter wheat yield caused by an increase in kernel

weight. The mechanism was then established by Tian et al. (2011)

who showed that the coordination of the source–sink relationship

and increased pre- and post-anthesis transport capacity were the

main reasons for the steady increase in kernel weight. Therefore,

the kernel weight of modern wheat cultivars has increased because

of the coordination of the source–sink relationship and the

enhancement of sink activity in the Haihe Plain. In this study,

the grain-filling rate gradually accelerated with the replacement of

wheat cultivars in the Haihe Plain, which was consistent with

previous studies. However, the grain-filling rate of wheat in the

1950s differed from that of other cultivars. It had a fast grain-

filling rate but a short grain-filling duration, which may be

attributed to the limitation of source capacity (Smith et al.,

2018). Therefore, this study focused solely on sink activity and

did not consider source capacity, which should be addressed in

future research.

Furthermore, Khodarahmi et al. (2023) found that the average

grain-filling rate increased gradually with the year of release;

however, there was no significant association between grain-filling

duration and the year of release. Other studies have also shown that

the extension of grain-filling days is the main reason for higher

kernel weights and yields of modern cultivars (Wiegand and

Cuellar, 1981). For example, Wang and Shangguan (2015)

showed that the key to increasing kernel weight is extending the

duration of rapid and late grain-filling. The grain-filling rate in the

rapid period was three times faster than that in the initial and late

periods and, thus, had the greatest contribution to kernel weight

(Xie et al., 2015). Wang et al. (2021) also showed that an increase in

the grain-filling rate in the late period and a reduction in its

fluctuation were key to increasing kernel weight, and the wheat

grain-filling process is dominated by the regional ecological

environment, especially temperature and light. Grain-filling

characteristics vary depending on environmental conditions

(Mirosavljević et al., 2018).

In the present study, with year of release, the duration of the

initial grain-filling period became shorter whereas the filling rate

increased, and the time to reach the maximum grain-filling rate

advanced. Therefore, although the duration of the initial grain-

filling stage of modern cultivars was shortened, the increase in

filling rate resulted in an increase in kernel weight during the

initial grain-filling stage. In addition, the significantly longer

durations of the rapid and late grain-filling stages resulted in a

longer active grain-filling period, which increased the kernel

weight. This may be related to the fact that the North China

Plain is often subjected to hot and dry winds, and the early

cultivars are prone to early senescence in the middle and late

filling stages (Cai et al., 2022). Furthermore, the Heilonggang
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Plain exhibited more rapid rates of grain-filling, including

maximum and average rates, as well as during the rapid and late

stages of grain-filling. In contrast, the Piedmont plain of Mount

Taihang boasted longer durations for grain-filling periods, such as

the effective grain-filling duration, the active grain-filling period,

and the durations of both the rapid and late grain-filling stages. In

addition, because of the lowest temperature of −9.3°C in the

second year, which was close to the temperature of mild

freezing damage (CMA, 2018), wheat suffered freezing damage,

resulting in a shorter duration of filling period and active filling

period in the second year. However, compared with the first year,

the average and maximum filling rates increased. Beche et al.

(2018) investigated the duration of developmental phases and eco-

physiological traits related to grain yield in Brazilian wheat

cultivars released across different decades, findings that suggest

that longer durations in the growth and development stages can

improve grain-filling characteristics and yield.

Kernel weight is one of the determinants of grain yield

(Olmedo Pico et al., 2023). Maeoka et al. (2019) showed that the

kernel weight of modern wheat cultivars increased by 27.28% and

the spike number decreased by 14.83% compared with those of

older cultivars. Similarly, Zhou et al. (2007a) showed that the

kernel weight of modern cultivars in China increased by 49.31%

and spike number decreased by 27.96% compared to those of

earlier cultivars. Zheng et al. (2011) also showed that in the

northern wheat region, the genetic gains for spike number,

kernel number, and kernel weight were –0.62%, 0.75%, and

0.96%, respectively. In this study, kernel weight of modern

cultivars reached 53.9 mg for Malan1, which was 26.7% higher

than that in 1950s cultivars, but the spike number decreased

gradually with the year of release, while modern cultivars

decreased more rapidly by 62.6% compared to the 1950s. Sadras

and Slafer (2012) showed that the number of spikes per unit area

and kernel number exhibited greater phenotypic plasticity.

Therefore, in the future, more attention should be paid to spike

traits and canopy architecture.
5 Conclusion

The replacement of wheat cultivars in the Haihe Plain resulted

in a significant increase in grain yield, in which the spike number

decreased significantly and kernel weight increased significantly;

however, there was no significant effect on kernel number.

Additionally, with the release year, the duration of the initial

grain-filling stage decreased, the rate increased, and the time to

reach the maximum grain-filling rate advanced, whereas the kernel

weight in the initial grain-filling stage increased. Moreover, owing

to the extension of the duration of the rapid and late grain-filling

stages, the active filling period was also significantly extended,

which ultimately led to a larger kernel weight in modern

cultivars. However, because of the large plasticity of spike and

kernel numbers, they are also more sensitive to the environment

than kernel weight, and their roles need to be emphasized in the

selection of wheat cultivars, improvement of cultivation practices,

and prevention of environmental disasters in the future.
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Daily distribution of precipitation and temperature during the winter wheat

growing seasons in 2021–2023.
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SUPPLEMENTARY FIGURE 2

Fitted (lines) grain dry matter accumulation (A) and simulated grain-filling rate
(B) in winter wheat under different years of release.

SUPPLEMENTARY TABLE 1

The results of linear mixed effects model of grain-filling characteristics. t00:
Founder parent; t00: Founder parent: Cultivars; t11: Cultivars; s2: residuals;
t00: Founder parent: Cultivars; t11: Cultivars; ICC: intraclass correlation

coefficient; N1: number of random effects; N2: number of founder parent.

SUPPLEMENTARY TABLE 2

Fitted parameters of the logistic growth function for grain weight during the

filling period for different cultivars of winter wheat in ML and MZ and anthesis
dates of different wheat cultivars.
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SUPPLEMENTARY TABLE 3

Grain-filling parameters for different winter wheat cultivars in ML and MZ.
T0.99 is the effective duration of the grain-filling, Tmax is the time to reach the

maximum grain-filling rate, Rmax is the maximum grain-filling rate, p is the

active grain-filling period, and Vmean is the average grain-filling rate.

SUPPLEMENTARY TABLE 4

The RDA ordination summary and first two ordination axes to quantitatively

identify the relationships between winter wheat grain-filling characteristics
with planting location and year of release and between grain yield and kernel

weight with grain-filling characteristics.

SUPPLEMENTARY TABLE 5

The soil characteristics of the experimental stations in the 0- to 20-cm
soil layer.
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