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Regulation of tillage on grain
matter accumulation in maize
Li-Qing Wang, Xiao-Fang Yu*, Ju-Lin Gao*, Da-Ling Ma,
Hong-Yue Liu and Shu-Ping Hu

College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
Introduction: To address issues related to shallow soil tillage, low soil nutrient

content, and single tillage method in maize production in the Western Inner

Mongolia Region, this study implemented various tillage and straw return

techniques, including strip cultivation, subsoiling, deep tillage, no-tillage, straw

incorporation with strip cultivation, straw incorporation with subsoiling, straw

incorporation with deep tillage, and straw incorporation with no tillage, while

using conventional shallow spinning by farmers as the control.

Methods:We employed Xianyu 696 (XY696) and Ximeng 6 (XM6) as experimental

materials to assess maize 100-grains weight, grain filling rate parameters, and

grain nutrient quality. This investigation aimed to elucidate how tillage and straw

return influence the accumulation of grain material in different maize varieties.

Results and discussion: The results indicated that proper implementation of

tillage and straw return had a significant impact on the 100-grains weight of both

varieties. In comparison to CK (farmer’s rotary rotation), the most notable rise in

100-grains weight was observed under the DPR treatment (straw incorporation

with deep tillage), with a maximum increase of 4.84% for XY696 and 6.28% for

XM6. The proper implementation of tillage and straw return in the field resulted in

discernible differences in the stages of improving the grain filling rates of different

maize varieties. Specifically, XY696 showed a predominant increase in the filling

rate during the early stage (V1), while XM6 exhibited an increase in the filling rates

during the middle and late stages (V2 and V3). In comparison to CK, V1 increased

by 1.54% to 27.56% in XY696, and V2 and V3 increased by 0.41% to 10.42% in XM6

under various tillage and straw return practices. The proper implementation of

tillage and straw return had a significant impact on the nutritional quality of the

grains in each variety. In comparison to CK, the DPR treatment resulted in the

most pronounced decrease in the soluble sugar content of grains by 25.43% and

the greatest increase in the crude fat content of grains by 9.67%.
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Conclusion: Ultimately, the proper implementation of soil tillage and straw return

facilitated an increase in grain crude fat content and significantly boosted grain

weight by improving the grouting rate parameters at all stages for various maize

varieties. Additionally, the utilization of DPR treatment proved to bemore effective.

Overall, DPR is the most promising strategy to improve maize yield and the

nutritional quality of grain in the long term in the Western Inner Mongolia Region.
KEYWORDS
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1 Introduction

The Inner Mongolia Autonomous Region serves as a crucial

national grain production base, encompassing 11.5 million hectares

of arable land, which represents approximately 9.0% of the

country’s total arable land. According to statistical data, the

aggregate production of grain crops in Inner Mongolia amounted

to 3.66 million tonnes in 2021, positioning it as the sixth largest

producer in the country (Chen et al., 2021). Nevertheless, the

occurrence of issues including diminished soil fertility from

prolonged continuous cropping, autotoxicity resulting from plant

root secretions, and heightened susceptibility to microbial diseases

diminishes crop nutrient absorption and leads to decreased crop

yield per unit area (Rubio et al., 2021; Xing et al., 2022), thereby

significantly constraining the region’s agricultural sustainability.

Hence, it is imperative to investigate rational and practical

plowing techniques in the region to enhance the soil quality and

fertility, thereby safeguarding the national food security.

Prolonged reliance on traditional shallow rotary plowing in

farmland in the Western Inner Mongolia Region has led to the

formation of a compacted soil tillage layer, elevated soil bulk

density, constrained root growth, and hindered nutrient and water

absorption, thereby constraining crop growth and yield potential (Liu

et al., 2022a; Yu et al., 2023). Deep plowing, no tillage, strip tillage, and

other plowing techniques constitute crucial practices in agricultural

production. These methods have a direct influence on achieving high

and consistent crop yields and promoting sustainable development

through alterations in soil structure and physico-chemical properties

(Abu-Hamdeh, 2003; Zhang et al., 2021; Wang et al., 2022). Subsoiling

enhances soil porosity, facilitating deep rooting and nutrient uptake

without causing soil compaction or excessive drying. Deep tilling

breaks up the soil crusts and improves the soil permeability, thereby

enhancing the exchange of nutrients and gases between soil layers. It

also promotes the decomposition of deeply buried straw, resulting in

increased soil fertility and the reduction of pests and diseases (He et al.,

2021). Conservation tillage methods such as no tillage and minimum

tillage mitigate wind and water erosion, reduce evaporation, and

contribute to enhancing soil fertility, cost savings, and overall

efficiency in land cultivation (Yuan et al., 2018; Pecci et al., 2021).
02
Nevertheless, no tillage contributes to increased soil bulk density and

compactness (Blanco-Canqui et al., 2022), lowered soil temperature,

and constrained the growth of the maize root system, consequently

impacting the nutrient uptake in the deeper soil layers (Li et al.,

2022a). Strip rotary tillage improves the photosynthetic efficiency of

plant leaves during the late filling stage, enabling enhanced dry matter

translocation to the grains and stimulating post-anthesis dry matter

accumulation (Chu et al., 2016). Therefore, improvement in soil

structure, enhanced crop nutrient uptake, increased grain dry matter

accumulation, and enhanced crop yields can be achieved only through

the adoption of reasonable plowing measures (Zhai et al., 2021).

The practice of returning straw to the field is an effective method

for comprehensively utilizing straw and plays a crucial role in

regulating the soil structure, enhancing the crop root structure and

function, and safeguarding the ecological environment (Zhang et al.,

2014; Qin et al., 2015). Returning straw to the field reduces soil bulk

density and enhances total soil porosity, significantly improving soil

aeration and facilitating the deeper penetration of crop roots (Yao

et al., 2015; Zhang et al., 2015). Upon returning the straw to the field,

the decomposition and release of organic matter from the straw

enhance the soil’s organic matter content and lead to increased

levels of available nitrogen, phosphorus, and potassium (Tan et al.,

2015). Variations in climatic conditions, soil properties, and tillage

management necessitate a judicious combination of straw return

methods and tillage practices to notably enhance the efficiency of

soil nutrient utilization by the crop root system. Most of the previous

studies have focused on the effects of tillage practices on soil and maize

plants—for instance, no tillage and straw return safeguard soil

structure and protect organic carbon aggregates from microbial

degradation, leading to augmented storage of soil organic carbon

(SOC), minimized SOC mineralization, and enhanced crop biomass

and yield (Sainju et al., 2009; Xu et al., 2019a). Additionally, it has been

suggested that deep tilling of straw can effectively address the issues

related to delayed straw decomposition and impediments to the

emergence of maize seedlings during the process of field straw

return. At the same time, it can significantly improve the

characteristics of soil structure and increase the soil nutrients (Xu et

al., 2019b; Jin et al., 2020; Zhang et al., 2023). Studies investigating the

impact of straw return on yield enhancement have found that deep
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plowing of returned straw indirectly affects maize yield and its

components by directly and preferentially influencing the levels of

total and readily available nitrogen in the soil (Wang et al., 2023a). In

the realm of intensive maize cultivation, grain weight plays a critical

role in enhancing maize yields, with a direct correlation to grain filling

characteristics that are significantly impacted by tillage techniques and

straw management (Shao et al., 2016; Ren et al., 2021).

A favorable soil micro-environment enhances organic carbon

mineralization and stable soil nutrient supply and thus also

contributes to improve the grain yield. Therefore, improving soil

structure and facilitating maize nutrient uptake through the

incorporation of straw into the field, along with appropriate

plowing practices, hold a crucial significance for the sustainable

utilization of farmland in the Western Inner Mongolia Region.

Prior research has extensively studied the impacts of various tillage

methodologies on soil conditions and their subsequent ecological

advantages. However, comparatively limited studies have endeavored

to elucidate the underlying mechanisms of yield variations seen

across these tillage techniques from the standpoint of grain filling.

Accordingly, this experiment employed a combination of continuous

positional tillage and straw return methods in the early stage of the

trial to examine the evolving patterns of maize grain filling traits,

aiming to establish a theoretical framework for optimizing soil tillage,

rational straw resource utilization, and maximizing maize yield in the

Western Inner Mongolia Region. The present study hypothesized
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that DPR (straw incorporation with deep tillage) could effectively

ensure the increase of grain weight and the improvement of grain

nutritional quality during maize cultivation in Western Inner

Mongolia. The objectives of this study were (i) to determine the

most suitable tillage practices based on changes in 100-grains weight

and grain nutrient quality, (ii) to understand the characteristics of

grain filling and the pattern of change in filling rate parameters under

different tillage practices, and (iii) to study the relationship between

different components of grain nutrient quality and filling rate

parameters, elucidating the potential mechanism by which these

components respond to 100-grains weight.
2 Materials and methods

2.1 Description of research location

The field experiments took place at the Tumoteyou Qi

Experimental Station of Inner Mongolia Agricultural University

(40°33′ N, 110°31′ E) in 2020 and 2021. The tillage method testing

platform was constructed in autumn 2017 and repeated each year

for the previous year’s tillage practices. The preceding crop was

maize, and the soil type was sandy loam. The nutrient data for the

plowed ground (0–30 cm soil layer) before sowing can be found

in Table 1. Figure 1 illustrates the primary meteorological factors
TABLE 1 Soil nutrients under different tillage methods in 2020 and 2021.

Tillage method Year

Alkali-
hydrolysable
N

Available P Available K
Organic
matter

(mg kg-1) (mg kg-1) (mg kg-1) (g kg-1)

Farmer rotary tillage (CK)
2020 53.44 2.52 64.79 17.36

2021 53.07 2.57 66.07 17.44

Strip cultivation (SC)
2020 53.20 3.35 71.54 20.13

2021 54.59 3.34 72.38 19.67

Subsoiling (SS(
2020 55.57 3.01 83.88 22.35

2021 57.91 3.10 85.81 22.50

Deep tillage (DP)
2020 61.27 2.68 89.98 22.52

2021 62.58 2.78 90.11 22.80

No-tillage (NT)
2020 65.09 4.42 79.86 20.96

2021 66.16 4.47 84.26 20.67

Straw incorporation with strip
cultivation (SCR)

2020 62.44 3.84 85.85 22.71

2021 63.12 3.91 87.90 23.18

Straw incorporation with subsoiling (SSR)
2020 72.84 3.32 94.45 23.76

2021 74.16 3.49 99.02 23.94

Straw incorporation with deep tillage (DPR)
2020 66.77 3.65 113.18 24.86

2021 70.34 3.83 117.03 25.37

Straw incorporation with no-tillage (NTR)
2020 74.11 4.60 84.28 24.06

2021 72.90 4.67 89.42 23.98
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that influenced maize growth during the study period. During the

maize growing period in 2020 and 2021, the average daily

temperature was 18.92°C and 21.19°C, the total rainfall was

328.40 and 310.30 mm, and the total sunshine hours was

1,761.58 and 1,362.02 h, respectively.
2.2 Experimental design

A split-zone experimental design was implemented, where the

plowing method was applied in the central zone. The farmer’s rotary

rotation served as the control (CK). Eight treatments were established

for comparison, comprising subsoiling (SS), deep tillage (DP), strip

cultivation (SC), no tillage (NT), straw incorporation with strip

cultivation (SCR), straw incorporation with subsoiling (SSR), straw

incorporation with deep tillage (DPR), and straw incorporation with

no tillage (NTR). There was a total of nine tillage treatments. In

combination with the tillage methods, two different densely tolerant

maize varieties (Xianyu 696 and Ximeng 6) were used, providing a

total of 18 treatments, each with three replicates. Xianyu 696 (XY696)

and Ximeng 6 (XM6) were provided by Dunhuang Seed Pioneer

Variety Co. Ltd., and Inner Mongolia Simon Seed Co. Ltd., which

have a fertility period of 125 and 130 days, respectively.

Consequently, the experiment consisted of a total of 54 plots, each

with an area of 65 m × 6 m. The tillage methods and varieties were

assigned to the main plot and subplots, respectively. In subplots,

varieties were randomly planted with a row spacing of 60 cm. The

nine methods of cultivation are shown in Table 2.
2.3 Crop husbandry

In 2020, maize was sown on April 25 and harvested on October 6;

in 2021, maize was sown on 22 April and harvested on 7 October. The

planting density was 82,500 plants ha-1. Basal fertilization included

the application of ammonium phosphate dibasic and potassium

sulfate before seeding. Ammonium dihydrogen phosphate (N 18%;

P2O5 46%) was applied at a rate of 375 kg ha
-1, and potassium sulfate
Frontiers in Plant Science 04
(K2O 51%) was applied at a rate of 150 kg ha-1. Urea (N, 46%) is

utilized as a supplementary fertilizer with application rates of 30% at

V6 (sixth leaf), 60% at V12 (12th leaf), and 10% at R2 (blister), with

an overall rate of 345 kg ha-1. Annually, during the entire growing

cycle of maize, the following fertilizer quantities were utilized:

226.2 kg ha-1 of pure nitrogen (N), 76.5 kg ha-1 of potassium oxide

(K2O), and 172.5 kg ha-1 of phosphorus pentoxide (P2O5). Drip

irrigation was administered four times throughout the growth stages:

at V6, V12, R1 (silking), and R2. Each irrigation event encompassed

an area of 750 m3 ha-1. All other management practices conformed to

the standard procedures used in large-scale farming operations.
2.4 Measurement

2.4.1 Determination of 100-grains weight
At physiological maturity, 10 ears were randomly chosen from

each plot and air-dried, and then 100 kernels were collected from

the middle of each ear, weighed, and subsequently standardized to

obtain the 100-grains weight at 14% moisture content.

2.4.2 Determination of grain filling rate
Starting from 15 days post-pollination, samples were collected

at 5-day intervals until the end of the filling period. At each

sampling point, three ears per plot were collected, and 100 grains

were sampled from the middle of each ear. The grains were then

weighed, placed into an oven at 105°C for 30 min, dried at 60°C

until reaching a constant weight, and subsequently re-weighed.

Filling rate(Gmean) = (W1−W2)
D=

where W1 = 100-grains dry weight of the current sample (g),

W2 = 100-grains dry weight of the previous sample (g), and D =

number of days between samples (d).

2.4.3 Determination of grain filling characteristics
Since the process of grain dry matter accumulation adheres to

the “S” type growth curve, we used the logistic equation to model
FIGURE 1

Main meteorological factors during the growing period in the experimental area.
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the process of grain dry matter accumulation. A logistic equation

was used to fit the grain filling process, calculate grain filling

characteristic parameters, and analyze grain filling growth. The

logistic equation was as follows:

W = A=(1 + Be−Ct)

In the equation above, t is the number of days after flowering

(blooming day t0 = 0),W is the 100-grains weight after flowering (grain

weight on flowering day = w0), A is the theoretical maximum 100-

grains weight, and B and C are shape parameters. The filling parameters

were derived from the first and second derivatives of the equation.

t1 (the start date of the filling peak period) = (lnB − 1.317)/C,

corresponding to the grain weight (w1) at this time: w1=A/(1 + Be−Ct1)

t2 (the end date of the filling peak period) = (lnB + 1.317)/C,

corresponding to the grain weight (w2) at this time: w2=A/(1 + Be−Ct2)

t3 (the grain weight reaches 99% after flowering, the effective

filling period) = (lnB + 4.59512)/C, corresponding to the grain

weight (w3) at this time.
Frontiers in Plant Science 05
The filling duration of the gradually increasing period was calculated

as T1 = t1− t0. The increase in grain weight during the rapidly increasing

period was calculated as w1 = W1− W0. The mean filling rate of the

gradually increasing period was calculated as V1 = w1/T1.

The filling duration of the rapidly increasing period was calculated

as T2 = t2− t1. The increase in grain weight during the rapidly

increasing period was calculated as w2 = W2 − W1. The mean

filling rate of the rapidly increasing stage was calculated as V2 = w2/T2.

The filling duration of the slowly increasing period was calculated

as T3 = t3− t2. The increase in grain weight of the slowly increasing

period was calculated as w3 = W3− W2. The mean filling rate of the

slowly increasing stage was calculated as V3 = w3/T3.
2.4.4 Determination of the nutrient quality
components of grains

At physiological maturity, a representative cob was chosen, and

the central grains of the cob were oven-dried at 105°C for 30 min,

followed by drying to a constant weight at 60°C, and then crushed
TABLE 2 Tillage methods’ operating procedures.

Abridge
Tillage
methods

Depth (cm) Methods of tillage practices

CK Farmer’s
rotary rotation

15 The straw was removed from the field after being mechanically harvested in autumn, shallowly tilled
using a rotary tiller (1BX-4.0, Xinjiang Xinyan Mushin Technology Co., China) in the following
spring, and then mechanically sown using a planter (Optina SX-12, Kverneland Group, German).

SC Strip cultivation 30 The straw had been removed from the field after mechanical harvesting in autumn and subsequently
mechanically sown in the following spring using a strip-deep rotary planter (none, Beijing Hehuinong
Agricultural Resources Co., China).

SS Subsoiling 35 After the mechanical harvest in autumn, the straw was removed from the field. Subsequently,
subsoiling was conducted using a subsoiler (Sub-tiller, HE-VA Group, Denmark), followed by shallow
cultivation with a rotary tiller (1BX-4.0, Xinjiang Xinyan Mushin Technology Co., China). Finally,
mechanical (Optina SX-12, Kverneland Group, German) seeding took place in the following spring.

DP Deep tillage 45 After the mechanical harvest in autumn, the straw was removed from the field. Subsequently, deep
tillage was conducted using a deep turner (ILFT550, Xinjiang Xinyan Mushin Technology Co., China),
followed by shallow cultivation with a rotary tiller (1BX-4.0, Xinjiang Xinyan Mushin Technology Co.,
China). Finally, mechanical (Optina SX-12, Kverneland Group, German) seeding took place in the
following spring.

NT No tillage The straw was removed from the field after mechanical harvesting in autumn and then mechanically
(1006NT, Grean Plant Group, USA) sown in the following spring using a no-till planter.

SCR Straw
incorporation with
strip cultivation

30 The straw was mechanically (4YZB-5AS, Xinjiang Xinyan Mushin Technology Co., China) harvested
in autumn, fully crushed, and returned to the field by covering it on the soil surface. It was then sown
in the following spring using a strip deep rotary planter (none, Beijing Hehuinong Agricultural
Resources Co., China).

SSR Straw
incorporation
with subsoiling

35 After having been mechanically (4YZB-5AS, Xinjiang Xinyan Mushin Technology Co., China)
harvested in autumn, the straw was thoroughly crushed and applied as a soil cover to be returned to
the field. Simultaneously, subsoiling was performed using a subsoiler (Sub-tiller, HE-VA Group,
Denmark), followed by incorporating the straw into the soil with a rotary tiller (1BX-4.0, Xinjiang
Xinyan Mushin Technology Co., China). Finally, during the subsequent spring season, seeds were
sown utilizing a precision seeder (Optina SX-12, Kverneland Group, German).

DPR Straw
incorporation with
deep tillage

45 After the mechanical (4YZB-5AS, Xinjiang Xinyan Mushin Technology Co., China) harvest in
autumn, the straw was thoroughly crushed and applied as a soil cover to be returned to the field.
Simultaneously, a deep tiller machine (ILFT550, Xinjiang Xinyan Mushin Technology Co., China) was
employed to incorporate the straw into the soil, followed by rotary tilling using a rotary tiller (1BX-
4.0, Xinjiang Xinyan Mushin Technology Co., China). Finally, in the subsequent spring season, seeds
were sown utilizing a planter (Optina SX-12, Kverneland Group, German).

NTR Straw
incorporation with
no-tillage

The straw was mechanically (4YZB-5AS, Xinjiang Xinyan Mushin Technology Co., China) harvested
in autumn, thoroughly crushed, and covered on the soil surface to be returned to the field. It was then
seeded in the following spring using a no-till planter (1006NT, Grean Plant Group, USA).
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for measurement. The total nitrogen content of the grains was

determined by employing the semi-micro Kjeldahl method, and the

crude protein content was calculated by multiplying the total

nitrogen content by a factor of 6.25. The determination of crude

fat content utilized the Soxhlet extraction–residue method (Atif and

Perveen, 2023), and the total starch and total soluble sugar content

were assessed following the method described by Yu et al. (2022).
2.5 Statistical analysis

The data were collected and organized using Microsoft Excel

2019 (Microsoft, Inc., Redmond, WA, USA). Data analysis was

conducted using SAS 9.4 (SAS Institute Inc., Raleigh, NC, USA) for

variance analysis, correlation analysis, stepwise regression, and

principal component analysis. A two-way ANOVA was carried

out to explore the impact of tillage methods on the 100-grains

weight and nutritional quality components across two varieties. The

significance test was performed using LSD (least significant

difference) at a significance level of 5%. Correlation analysis was

conducted using the Pearson correlation method. Sigmaplot 12.5

(Systat Software, Inc., San Jose, CA, USA) and Origin 2021

(OriginLab Corp., Northampton, MA, USA) were utilized to

generate graphs.
3 Results

3.1 Regulatory effects of tillage methods
on 100-grains weight of two
maize varieties

The ANOVA results (Table 3) indicated highly significant

differences in the 100-grains weight among tillage methods or

varieties in 2020 (p< 0.01). Similarly, in 2021, there were highly

significant differences in 100-grains weight among tillage methods

or varieties, and significant differences among tillage methods ×

varieties were observed (p< 0.05).

The 100-grains weight of XM6 exceeded that of XY696 under

the farmer’s rotary tillage treatment (CK) by 3.11% in 2020 and

6.05% in 2021 (Figure 2). Various tillage and straw return methods

led to changes in the 100-grains weight of each maize variety, with
Frontiers in Plant Science 06
straw incorporation with subsoiling (SSR) and straw incorporation

with deep tillage (DPR) showing superior performance. In 2020, the

100-grains weight of XY696 significantly increased by 4.66% and

4.80% under SSR and DPR treatments, respectively, compared to

CK; similarly, XM6’s weight increased by 4.73% and 4.84%. In 2021,

under similar contrast conditions, the 100-grains weight of XY696

saw a significant increase by 6.05% and 6.28%, while XM6’s weight

increased by 2.95% and 3.15%.
3.2 Regulatory effects of tillage methods
on the grain filling rate of two
maize varieties

Figure 3 illustrates a quadratic trend in the grain filling rate

under each treatment, characterized by an initial increase followed

by a decrease. In CK, the peak grouting rate of XM6 surpassed that

of XY696, and the time of peak grouting rate occurrence was also

delayed. In comparison to CK, the peak grouting rate (y) and its

occurrence time (x) differed across the other treatments. The peak

grouting rate of XY696 under SSR and DPR treatments increased by

9.49% and 11.57% in 2020 and 11.01% and 14.50% in 2021, and the

time of occurrence of peak grouting rate was prolonged by 11.18%

and 14.04% in 2020 and 10.50% and 14.57% in 2021, in turn, as

compared to CK treatment. Under the same comparison

conditions, the peak grouting rate of XM6 changed sequentially

by -3.04% and 0.12% in 2020 and -4.86% and -1.98% in 2021, and

the time of peak grouting rate occurrence changed sequentially by -

2.86% and 1.09% in 2020 and -5.91% and -2.57% in 2021.
3.3 Regulatory effects of tillage methods
on the parameters of grain filling rate in
two maize varieties

The logistic curve equation divided maize grain filling into three

periods: gradual increase, fast increase, and slow increase. The

duration of filling in each stage followed the order: slow increase

period > fast increase period > gradual increase period. The average

filling rate in each stage followed the sequence: fast increase

period > gradual increase period > slow increase period

(Figure 4). In the conditions of farmers’ shallow spinning (CK),

XM6 exhibited a lower asymptotic grouting duration (T1) and a

higher asymptotic grouting rate (V1) than XY696. Nevertheless, the

pattern of change in grouting duration (T2, T3) and grouting rate

(V2, V3) between varieties during fast and slow growth periods was

not consistent across the two growing seasons.

Regarding grouting rate, V1 of XY696 exhibited an increase

under SSR and DPR treatments compared to CK: 2.36% and 2.74%

in 2020 and 27.56% and 27.55% in 2021, while V2 changed by

1.43% and 1.47% in 2020 and -13.30% and -13.14% in 2021, and V3

changed by 1.43% and 1.47% in 2020 and -13.30% and -13.14% in

2021. In similar contrasting conditions, XM6 exhibited a preference

for adjustments in mid- to late-stage grouting rates (V2 and V3),

exemplified by V2 increasing by 10.42% and 1.91% in 2020 and by

2.19% and 2.51% in 2021 and V3 exhibiting growth by 10.42% and
TABLE 3 Variance analysis of the effect of tillage method and variety on
the 100-grains weight.

Sources of variation 2020 year 2021 year

Tillage method (M) 13.08** 19.21**

Error I MS 0.010 0.170

Varieties(V) 113.73** 408.64**

M × V 0.02 2.94*

Error II MS 0.009 0.090
*Significant at p< 0.05.
**Significant at p< 0.01.
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1.91% in 2020, followed by 2.19% and 2.51% in 2021. Concerning

grouting duration, in comparison to CK, the T1 of XY696 under

each SSR and DPR treatment exhibited changes of 7.65% and 8.45%

in 2020, and -14.86% and -14.10% in 2021, while T2 increased by

8.63% and 9.80% in 2020 and 25.27% and 26.14% in 2021, and T3

increased by 8.63% and 9.80% in 2020 and 25.27% and 26.14% in

2021 sequentially. Under similar comparison conditions, XM6

demonstrated a preference for alterations in the pre-grouting

duration, exemplified by T1 increasing sequentially by 21.40%

and 6.40% in 2020 and by 6.21% and 7.11% in 2021.
3.4 Regulatory effects of tillage methods
on the nutritional quality of grains of two
maize varieties

The ANOVA results (Tables 4, 5) indicated a highly significant

difference in grain crude fat content among tillage methods and a

highly significant difference in grain total soluble sugar content

among tillage methods, varieties, or their interactions in 2020. In

2021, highly significant differences were observed in grain crude fat

content between the tillage method and varieties and in grain total

soluble sugar content among tillage methods and varieties.

From Figure 5, it can be seen that, compared to CK, the changes in

crude protein and total starch content of the grains under the other tillage

treatments are relatively small, while there are significant differences in
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crude fat and soluble sugar content of the grains. In 2020, compared to

CK, the crude fat content of XY696 grains only significantly increased

under the DPR treatment (4.34%); the soluble total sugar content of the

grains showed the largest decrease under the deep tillage (DP) and DPR

treatments (22.42% and 17.23%, respectively). Under the same

comparative conditions, the crude fat content of XM6 grains

showed the largest increase under the SSR and DPR treatments

(7.81% and 8.87%, respectively); the soluble total sugar content of the

grains also showed the largest decrease under the SSR and DPR

treatments (16.04% and 18.01%, respectively). In 2021, compared to

CK, the crude fat content of XY696 grains significantly increased

under the SSR and DPR treatments (3.49% and 4.71%, respectively);

the soluble total sugar content of the grains showed the largest

decrease under the SSR and DPR treatments (17.93% and 19.18%,

respectively). Under the same comparative conditions, the crude fat

content of XM6 grains showed the largest increase under the SSR and

DPR treatments (8.52% and 9.67%, respectively); the soluble total

sugar content of the grains also showed the largest decrease under the

SSR and DPR treatments (23.96% and 25.43%, respectively).
3.5 Correlation between 100-grains dry
weight and parameters of grain filling rate

The correlation analyses, as depicted in Figure 6, revealed highly

significant, positive correlations (0.87, 0.75, and 0.76, p< 0.01)
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FIGURE 2

Effects of tillage methods on the 100-grains weight of two maize varieties. Different lowercase letters indicate significant differences at the 0.05 level
between different tillage methods for the same variety.
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FIGURE 3

Effects of tillage methods on the grain filling rate of two maize varieties.
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between the grain dry weight and the rate of grain filling at each

stage (V1–V3), with relatively smaller correlations observed with

the duration of grain filling at each stage. Significant positive

correlations (0.48, 0.49, 0.48, and 0.49, p< 0.01) were observed

between V1 and V2, T2, V3, and T3. Additionally, V2 exhibited a

significant negative correlation (-0.39, p< 0.05) with T3 and a highly

significant positive correlation (0.99, p< 0.01) with V3.
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3.6 Correlation between nutritive quality
components and 100-grains dry weight
of grains

The results of the correlation analysis depicted in Figure 7

indicate highly significant negative correlations between the dry

weight of grain and the content of grain crude protein and total
FIGURE 4

Effects of tillage methods on the grain filling rate parameters of two maize varieties.
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soluble sugar (-0.79 and -0.85, p< 0.01) as well as highly significant

positive correlations with total starch and crude fat content of grain

(0.86 and 0.81, p< 0.01).
3.7 Principal component analysis of grain
filling rate parameters and grain
nutritional quality

The principal component analysis accounted for 81.9% of the

total variance, with 53.4% contributed by PCA1 and 28.5% by

PCA2 (Figure 8). Notably, the rate of grouting in the tapering

stage (V1) exhibited a highly significant and positive correlation

with the total starch content of the grain (Starch), whereas the

duration of grouting in the fast-growing stage (T2) showed a

highly significant and positive correlation with the duration of

grouting in the slow-growing stage (T3), resulting in a substantial

overlap in the principal component loadings. The contributions of

grain crude fat content (Fat), V1, Starch, grain crude protein

content (Protein), grain total soluble sugar content (Sugar), and

the duration of asymptotic grouting (T1) were higher in the

direction of PCA1. Conversely, toward PCA2, the fast-

accelerating rate of grouting (V2), slow-accelerating rate of

grouting (V3), T2, and T3 made more significant contributions.

In relation to grouting rate, the correlations of the grouting rate

parameters (V1, V2, and V3) at each stage showed a stronger

association with Fat and Starch and a weaker association with

Protein and Sugar. Regarding grouting duration, the correlation of

T2 and T3 displayed a stronger connection with Fat and Starch,

while the correlation of T1 exhibited a stronger association with

Protein and Sugar.
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3.8 Regression analyses of grain filling rate
parameters and grain nutritional quality

Based on the results of the principal component analysis,

stepwise regression and multiple linear equations were utilized to

fit the grain filling rate (V1, V2, and V3) parameters at each stage

with the total starch content and the crude fat content of grain. The

analysis revealed that only V1 significantly influenced the total

starch content of grain, while V1, V2, and V3 had substantial effects

on the crude fat content of grain. The linear function equation for

the total grain starch content with V1 from Figure 9 is represented

as y = 65.62 + 10.86x, showing a positive correlation with the total

grain starch content. Additionally, the multivariate linear function

equations representing the grain crude fat content and parameters

of grain grouting rate at each stage (V1, V2, and V3) were expressed

as y = 2.99 + 2.34x1 - 4.21x2 + 18.43x3. Notably, V1 and V3

exhibited a positive correlation with grain crude fat content, while

V2 showed a negative correlation (Table 6).
4 Discussion

4.1 Effects of ploughing and straw return
on grain filling characteristics of different
maize varieties

Grain filling is a vital biological process during maize growth and

development, significantly influencing the final grain weight and

yield. Grouting rate and grouting duration are dynamic traits

involved in the formation of grain weight. They respond to the

process of grain weight formation, and their interaction collectively
TABLE 4 Variance analysis of the effect of tillage method and variety on the nutritional quality of maize grains in 2020.

Sources of variation
Crude
protein content

Total starch content
Crude fat content Total soluble

sugar content

Tillage method (M) 0.46 1.54 13.19** 118.32**

Error I MS 0.012 0.613 0.007 0.017

Varieties(V) 4.25 1.12 0.22 551.63**

M × V 0.01 0.02 1.47 8.01**

Error II MS 0.007 0.884 0.005 0.024
**Significant at p< 0.01.
TABLE 5 Variance analysis of the effect of tillage method and variety on the nutritional quality of maize grains in 2021.

Sources of variation
Crude
protein content

Total starch content
Crude fat content Total soluble

sugar content

Tillage method (M) 0.34 1.82 27.75** 24.43**

Error I MS 0.008 0.709 0.005 0.085

Varieties (V) 0.25 0.80 63.08** 222.86**

M × V 0.00 0.01 2.12 0.18

Error II MS 0.013 0.855 0.005 0.123
**Significant at p< 0.01.
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determines the magnitude of grain weight. Fang et al. (2020)

demonstrated that the filling rate of maize grain governs the

accumulation of dry matter in the grain, consequently impacting

the yield at harvest. Moreover, they highlighted that employing

proper planting practices can enhance the filling rate of the grain.

Daynard et al. (1971) observed that extending the duration of grain

filling could lead to an increase in 100-grains dry weight. Gasura et al.

(2013) proposed that increasing the average grouting rate while

extending the active grouting period is more advantageous for

maize grain yield. The characteristics of maize grain filling are

influenced by the genotype of the variety and the environmental

conditions during growth (Wang et al., 2021; Wang et al., 2023b).

Subsequently, Deng et al. (2023) discovered that the grouting

duration of DH605 exceeded that of ZD958 across various grouting

stages, although the grouting rate exhibited inconsistency.

Furthermore, Olmedo and Vyn (2021) indicated that a higher

nitrogen supply led to an extension in maize grain filling duration

regardless of the timing of nitrogen application and planting density
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but presented inconsistencies in the effect on effective filling rate. In

this study, under CK condition, XM6 exhibited a higher peak

grouting rate compared to XY696, and the time of its peak

grouting rate appeared to be prolonged. However, the changing

pattern of each stage’s grouting rate parameter was significantly

influenced by the growing season.

In China, soil management and sowing are primarily conducted

using small tractors. Without deep plowing, the soil’s surface

capacity and resistance to water infiltration increase, posing

unfavorable conditions for crop growth. Therefore, the plowing

method plays a crucial role in influencing the soil system (Godde

et al., 2016; He et al., 2021). Straw return significantly influences soil

water, fertilizer, air and heat conditions as well as nutrient

accumulation and transformation, impacting crop growth and

yield formation. Nevertheless, improper straw return can lead to

diminished seeding quality and other adverse effects. Therefore,

employing suitable tillage practices along with integrated straw

return is not only fundamental for efficient farmland production
FIGURE 5

Effects of tillage methods on the grain nutrient quality of two maize varieties.
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but also a substantial approach for enhancing soil quality (Li et al.,

2022a; Li et al., 2022b). Previous research has indicated that

employing suitable tillage practices can enhance maize yield by

improving the grain filling characteristics (Zhai et al., 2017; Zhai et

al., 2021; Yue et al., 2022). The study revealed that compared to
Frontiers in Plant Science 12
shallow rotary tillage, both the peak grouting rate and the time at

which the peak grouting rate occurred exhibited varying degrees of

change in all deep tillage and no-tillage treatments. Additionally,

the grouting rate and duration differed significantly among different

maize varieties in response to the stage of tillage and straw return.
FIGURE 7

Correlation analysis between the nutrient quality components of grain and dry weight of 100-grains. **, significant at p< 0.01.
FIGURE 6

Correlation between the 100-grains dry weight and grain filling rate parameters. Y represents the dry weight of 100 grains. *, significant at p< 0.05.
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Specifically, V1 showed an increase of 1.54%–27.56% in XY696,

while V2 and V3 increased by 0.41%–10.42% each in XM6 under all

other treatments compared to the shallow rotary tillage. Moreover,

for grouting duration, T2 and T3 increased by 1.79%–26.14% for

XY696 and 0.11%–21.40% for T1 for XM6 under all other

treatments compared to CK.

Numerous prior studies have explored the potential

mechanisms through which tillage practices affect dry matter

accumulation in maize grains—for instance, subsoiling could
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promote the grain filling of inferior kernel of summer maize by

regulating the soil water content, soil water consumption, and

photosynthetic capacity (Zhai et al., 2021). Conservation tillage

could promote summer maize photosynthetic capacity and grain

filling of inferior kernels by regulating the soil water content and

root system morphology (Wang et al., 2021). The SRS (strip rotary

tillage without subsoiling) treatment resulted in the highest post-

anthesis dry matter accumulation and contribution to grain, and

such effect was attributed to the high photosynthetic activity at the

later grain filling stage (Chu et al., 2016). In our study, we also found

that differences in grain filling rate parameters were significant

between the various tillage treatments within the different growing

seasons—for example, in 2020, the differences in grain filling rate

under different tillage treatments for XY696 were relatively small,

whereas in 2021, they significantly increased. We believe that this

may be related to meteorological resources during the growth

season, as longer periods of sunshine are conducive to

photosynthesis in leaves. In other words, superior meteorological

conditions during the grain filling process will inevitably lead to an

increase in the grain filling rate at the current grain filling stage and

will also enhance the regulatory role of some appropriate farming

practices on the grain filling rate. Therefore, we believe that, in

future research, it may be beneficial to pay moderate attention to the

allocation of meteorological resources during the grain filling

process and achieve efficient utilization of light and heat resources

by adjusting the sowing dates or the application of varieties.
4.2 Effect of ploughing and straw return on
the nutritional quality of grain of different
maize varieties

High crop yields have long been the focus of China’s

agricultural development due to the large population, limited

land, and persistent scarcity of agricultural products. However,

this focus has overshadowed the attention on agricultural product

quality. As China’s agricultural production and product availability

grow, there will be an increasing demand for higher-quality

agricultural products. Crop quality results from both genetic and

non-genetic factors. In their study, Wang et al. (2023b) compared

high-yielding maize hybrids planted in China over different periods

and found that newer varieties exhibited a higher starch content but

a lower grain protein content than the older varieties. Our study

observed that, under CK treatment, XM6 showed a lower grain

crude fat and total soluble sugar content compared to XY696, while
TABLE 6 Regression analysis of grain filling rate parameters and grain
crude fat content.

Variate Index
Standard
error

F-value Pr > F

Intercept 2.99 64.14 89.77 <0.0001

V1 (x1) 2.34 1.06 11.53 0.0018

V2 (x2) -4.21 0.74 3.31 0.0782

V3 (x3) 18.43 1.20 4.82 0.0355
FIGURE 8

Principal component analysis of grain filling rate and grain nutrient
quality. “Protein” stands for crude protein content in grains, “Starch”
stands for total starch content in grains, “Fat” stands for crude fat
content in grains, and “Sugar” stands for total soluble sugar content
in grains.
FIGURE 9

Regression analysis of the grain filling rate parameters and total
starch content in grains. *, significant at p< 0.05.
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no significant difference was found in grain crude protein and total

starch content.

Numerous studies and production practices demonstrate that

various cultivation measures implemented during the growth and

development of crops can significantly influence the yield and quality,

with particular emphasis on crop rotation (Smith et al., 2017), planting

density (Zheng et al., 2021), fertilization (Dragicěvic et al., 2022), and

irrigation (Hussain et al., 2020). In our study, tillage practices had a

significant impact on the crude fat and total soluble sugar content of

maize grains, with a lesser influence on crude protein and total starch

content. We suggest that this outcome may be attributed to the

enhancement of soil moisture through tillage practices and the

associated ecological benefits. The tillage effects on the examined

traits were generally less pronounced than the effects of environment,

variety, and input level and could be demonstrated conclusively in

interaction with input levels (Šıṕ et al., 2013). In this context, our study

yielded diverse experimental findings—for instance, the total soluble

sugar content of grain exhibited the highest variability of 17.27%

among varieties and 25.43% among tillage methods. The tillage

method and varietal interaction significantly affected the nutrient

quality of maize grains (Harish et al., 2022). Upon comparing to

CK, the other tillage methods resulted in varying degrees of changes in

the nutrient quality components of the grains, with different patterns

observed for different varieties. Upon comparing with CK, the other

treatments resulted in varying degrees of changes in the nutrient

quality components of the grains, with different patterns observed for

different varieties. Tillage and straw return treatments led to a

reduction in the crude protein and total soluble sugar content of

XY696 and XM6 grains, although the decrease in crude protein

content was not significant for both varieties; the total soluble sugar

content decreased by 4.98%–25.43% and 5.75%–22.42%, respectively.

Additionally, the tillage and straw return treatments increased the

grain crude fat content of XY696 and XM6 by 4.34%–8.87% and

3.49%–9.67%, respectively. Notably, XM6 exhibited a higher range of

increase of grain crude fat content in response to tillage and straw

return treatments compared to XY696.
4.3 Relationship between grain filling
characteristics and nutritional quality

The chemical composition and quality of crop grains are shaped

during the accumulation of dry matter and the growth, development,

and maturation of organs or tissues. The accumulation of nutrients in

cereal crop grains does not occur at a uniform rate; there is a slight

increase in dry matter at the beginning of grain filling, the fastest

accumulation of dry matter at the milk ripening stage, and a slower

increase at the wax ripening stage (Sala et al., 2007). During this stage,

there is a significant transport of soluble sugars and non-protein

nitrogenous compounds (mainly amino acids) from the plant’s

nutrient organs to the reproductive organs, where they are

synthesized into starch and proteins in the grains (Yang et al.,

2018; Liu et al., 2022b). During grain filling, the majority of sugars

originate from the upper leaves, particularly the flag leaves, while
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protein accumulation is primarily dependent on nitrogenous

compounds transported by the nutrient organs, with minimal

reliance on materials absorbed by the root system after flowering

(Mu et al., 2018; Sun et al., 2022). The quantity and quality of

nitrogen-containing compounds undergo further changes as the seed

matures (Zhao et al., 2022). In terms of the relationship between grain

filling characteristics and nutritional quality, this study identified a

strong correlation between grain crude fat and total starch content

and the filling rate parameters at all stages (V1, V2, and V3) as well as

a high correlation with the duration of the middle and late filling

stages (T2 and T3). The differences in the correlation between grain

nutrient quality fractions and filling rate parameters suggest

variations in the physiological mechanisms involved in synthesizing

nutrient quality fractions, leading to different outcomes. Specifically,

under normal ripening conditions, protein synthesis primarily occurs

at the beginning of the grain filling period, while starch synthesis is

limited. As the milk-to-wax ripening period commences, sugar

transport to the grain intensifies, and starch synthesis becomes

more dominant than protein synthesis. Toward the end of the

grain development period, sugar transport to the grain weakens or

ceases, while nitrogen inputs continue (Kim et al., 2020). This study

also revealed that certain parameters of the grain filling rate, which

exhibited a high correlation with grain crude fat and total starch

content, played varying roles in influencing the increase of grain

crude fat and total starch content, particularly regarding the degree of

influence and the regulatory direction.

In our study, we found that differences in grain nutrient quality

components among different tillage treatments did not show

significant variations between different growth seasons. Taking

into consideration the relationship between grain filling

characteristics and the content of grain nutrient quality

components, we believe that ripening of the grains may have

mitigated the impact of grain filling rate and duration at different

stages on the component content of grain nutrients. Furthermore,

notable studies have successfully predicted maize yield and grain

nutritional quality in the absence of crop damage (Guo et al., 2021,

Guo et al., 2022, Guo et al., 2023). As such, we aim to incorporate

this research aspect into our forthcoming field trials to achieve

efficient and high-throughput acquisition of experimental data.
5 Conclusion

The appropriate application of tillage measures can significantly

affect the 100-grains weight of maize and regulate the content of

various nutrient components in grains. The change in grain filling

rate significantly influences the variation in the content of nutrient

components in grains. Among them, the grain filling rate during the

gradual increasing phase is the most important parameter affecting

the total starch content of grains, while the grain crude fat content is

closely related to the grain filling rates during the gradual increasing

and slow increasing phases. The DPR tillage method showed greater

improvement in the characteristics of grain filling and grain

nutrient quality components, so we suggest that the DPR tillage
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method should be adopted during maize cultivation in the Western

Region of Inner Mongolia. Moreover, we recommend that future

research should further investigate the regulation of dry matter

accumulation in grains after the long-term implementation of

tillage methods. It is advisable to study the effects of proper tillage

method implementation on agro-economic aspects.
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