
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Andrés J. Cortés,
Colombian Corporation for Agricultural
Research (AGROSAVIA), Colombia

REVIEWED BY

Germano Costa-Neto,
Syngenta, United States
Zitong Li,
Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia

*CORRESPONDENCE

Moyses Nascimento

moysesnascim@ufv.br

Diego Jarquin

jhernandezjarqui@ufl.edu

RECEIVED 19 January 2024

ACCEPTED 12 June 2024
PUBLISHED 17 July 2024

CITATION

Nascimento M, Nascimento ACC,
Azevedo CF, Oliveira ACBd, Caixeta ET and
Jarquin D (2024) Enhancing
genomic prediction with Stacking
Ensemble Learning in Arabica Coffee.
Front. Plant Sci. 15:1373318.
doi: 10.3389/fpls.2024.1373318

COPYRIGHT

© 2024 Nascimento, Nascimento, Azevedo,
Oliveira, Caixeta and Jarquin. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 July 2024

DOI 10.3389/fpls.2024.1373318
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Camila Ferreira Azevedo1, Antonio Carlos Baiao de Oliveira3,
Eveline Teixeira Caixeta3 and Diego Jarquin2*

1Laboratory of Intelligence Computational and Statistical Learning (LICAE), Department of Statistics,
Federal University of Viçosa, Viçosa, Brazil, 2Agronomy Department, University of Florida, Gainesville,
FL, United States, 3Embrapa Coffee, Brazilian Agricultural Research Corporation (Embrapa),
Brası́lia, Brazil
Coffee Breeding programs have traditionally relied on observing plant

characteristics over years, a slow and costly process. Genomic selection (GS)

offers a DNA-based alternative for faster selection of superior cultivars. Stacking

Ensemble Learning (SEL) combines multiple models for potentially even more

accurate selection. This study explores SEL potential in coffee breeding, aiming to

improve prediction accuracy for important traits [yield (YL), total number of the

fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer)] in

Coffea Arabica. We analyzed data from 195 individuals genotyped for 21,211

single-nucleotide polymorphism (SNP) markers. To comprehensively assess

model performance, we employed a cross-validation (CV) scheme. Genomic

Best Linear Unbiased Prediction (GBLUP), multivariate adaptive regression splines

(MARS), Quantile Random Forest (QRF), and Random Forest (RF) served as base

learners. For the meta-learner within the SEL framework, various options were

explored, including Ridge Regression, RF, GBLUP, and Single Average. The SEL

method was able to predict the predictive ability (PA) of important traits in Coffea

Arabica. SEL presented higher PA compared with those obtained for all base

learner methods. The gains in PA in relation to GBLUP were 87.44% (the ratio

between the PA obtained from best Stacking model and the GBLUP), 37.83%,

199.82%, and 14.59% for YL, NF, LM and Cer, respectively. Overall, SEL presents a

promising approach for GS. By combining predictions frommultiple models, SEL

can potentially enhance the PA of GS for complex traits.
KEYWORDS

statistical and machine learning, prediction accuracy, plant breeding, ensemble
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1 Introduction

Coffee is one of the most globally beverages presenting

importance in terms of its potential health, socioeconomic, and

economic effects (Porto et al., 2019). These effects drive breeding

programs worldwide to develop high-yielding, adaptable cultivars

delivering superior bean quality (Barbosa et al., 2019). However,

traditional selection methods based on phenotypic observations of

the plants or their family history (pedigree) are expensive and time

consuming, especially for perennial crops as coffee.

An alternative approach denoted genomic selection (GS) has

been used as a successful tool in genetic improvement (Meuwissen

et al., 2001). GS helps increase genetic gain per generation by allowing

for earlier selection through improved prediction of the potential of

individual plants (Daetwyler et al., 2013; Nascimento et al., 2019;

Voss-Fels et al., 2019). In the field of coffee breeding, GS has been

utilized with the dual aim of accelerating genetic gain through early

selection and improving prediction accuracy (Sousa et al., 2019;

Alkimim et al., 2020; Sousa et al., 2021; Coelho de Sousa et al., 2022).

Among several prediction models, Genomic Best Linear

Unbiased Prediction (GBLUP) is the most widely used approach

for genomic prediction due to its advantages (Zhang et al., 2021).

Compared to other parametric methods, GBLUP allows to

accurately estimate narrow-sense heritability (Li et al., 2019) and

presents higher computational efficiency (Hernandez et al., 2020).

GBLUP modeling is also flexible. It can be modified to incorporate

additional genetic information beyond the typical single-nucleotide

polymorphism (SNP) markers. Specifically, this modeling allows to

account for non-additive genetic effects, environmental factors, and

even genotype-by-environment interactions, enriching the analysis

and potentially improving prediction accuracy (Jarquıń et al., 2014).

In the Artificial Intelligence Era, the interest in semi- and non-

parametric methods for GS is increasing (Larkin et al., 2019; Coelho

de Sousa et al., 2022; Seyum et al., 2022). These approaches, such as

Artificial Neural Networks and Decision Trees, do not require prior

assumptions about the relationships between inputs (SNP markers)

and the output (phenotypic observations), allowing great flexibility

to handle complex non-additive effects, such as dominance and

epistasis (McKinney et al., 2006; Abdollahi-Arpanahi et al., 2020;

Coelho de Sousa et al., 2022). In general, despite their potential,

these approaches do not outperform the traditional parametric

methods (e.g., GBLUP, Bayesian Alphabet - Gianola et al., 2009)

used to predict the genetic merit of individuals (Liang et al., 2021).

Aiming to enhance predictive ability (PA), Ensemble Learning

(EL) combines predictions from multiple models (base learners)

into a single prediction (meta-learner) (Mendes-Moreira et al.,

2012; Ganaie et al., 2022; Mienye and Sun, 2022). This approach

leverages the strengths of diverse models to potentially generate

more robust results compared to relying on a single learner (Liang

et al., 2021; Kalule et al., 2023). In the context of GS, EL has found

application through methods such as Random Forest (RF) and

Bagging (Bag) (Xu et al., 2019; Abdollahi-Arpanahi et al., 2020;

Sousa et al., 2021; Costa et al., 2022). These methods, categorized as

Homogenous Learning (HL), utilize a single framework to produce
Frontiers in Plant Science 02
a single prediction value. Conversely, the Stacking Ensembles

Learning (SEL) approach combines predictions from diverse

methods, potentially outperforming HL (Mendes-Moreira et al.,

2012). SEL has seen success in GS, improving PA in Chinese

Simmental cattle, Dutch cattle, and pine (Liang et al., 2021),

achieving higher accuracy than GBLUP for most evaluated traits.

Despite being interesting, EL approach arises some issues that

needs to be considered. First, since the same individuals are used to

fitting the model(s) in the EL approach, it is expected the existence

of correlation between the predictions derived from the different

methods. This well-known statistical problem is referred as

multicollinearity (Montgomery et al., 2021) and causes high

variability of the estimated effects. The second issue is related to

which dataset should be used to fit the meta-learner. One option is

to use directly the predicted values derived from the base learners.

In this case, the simple mean or some regression model that

accounts for multicollinearity problem (e.g., Ridge Regression)

can be implemented to makeup a single prediction. An alternative

option also could consider combining the predicted values with the

genomic covariates (i.e., SNP markers|predicted values from the

base learners) with the previous training data as new inputs. In this

regard, in addition to the multicollinearity, the course of the

dimensionality is another issue to consider mainly because these

are covariables of different type.

Liang et al. (2021) used the predicted values derived from a

multiple regression model as meta-learner. These authors obtained

good results to improve PA compared to the conventional genomic

prediction models on three different datasets. However, the use of

an expanded training data augmented by SNP markers could be

beneficial to further enhance the PA, and it emerges as an

interesting approach. In this case, a model that addresses both

multicollinearity and dimensionality problems should be used. One

of the possible solutions can be considered to use a two-kernel

GBLUP model as the meta-learner model. Another approach to

evaluate is to consider only the predicted values provided by the

best base learner models.

To date, no research has applied SEL to improve the prediction

accuracy of important traits in coffee cultivars. This approach

presents potential for coffee breeding, as it has been shown to

outperform standard methods in other applications (Liang et al.,

2021; Mohammed and Kora, 2023). By combining the strengths of

multiple prediction models, SEL could lead to more reliable and

accurate identification of valuable genetic traits in coffee plants,

accelerating the development of superior coffee varieties.

In light of the mentioned points, the objective of this study was

to use and evaluate the SEL to improve PA of important traits in

Coffea Arabica. For that, the GBLUP, multivariate adaptive

regression splines (MARS), Quantile Random Forest (QRF), and

RF models were used as the base learner. Several approaches were

considered as the meta-learner to construct the SEL framework.

Specifically, the expanded- and non-expanded datasets were used

for training. In addition, models that account for multicollinearity

(Ridge Regression) and multicollinearity and dimensionality jointly

(GBLUP) were also implemented.
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2 Materials and methods

2.1 Phenotypic and genotypic data

The data were collected from the C. arabica breeding program,

which is a joint partnership among the Agricultural Research

Company of Minas Gerais (EPAMIG), the Federal University of

Viçosa (UFV), and the Brazilian Agricultural Research Corporation

(EMBRAPA). An experimental area is maintained at the

Department of Phytopathology—UFV (20°44′25” S, 42°50′52” W).

The database is composed of 13 progenies derived from crosses

between three parents of the Catuaı ́ cultivar and three parents of the

Hıb́rido de Timor (HdT). Fifteen genotypes of the abovementioned

progeny set (totaling 195 individuals) were genotyped for 21,211 SNP

markers by Rapid Genomics, located in Gainesville Florida, USA.

Information about the probes design and SNP identification are

detailed in Sousa et al. (2017). The SNP markers set are widely

distributed in the genome and in all coffee chromosomes, being useful

for accurate studies on diversity and population structure, as well as

selection and genomic association in C. arabica (Sousa et al., 2017,

Sousa et al., 2019). The SNP quality control was carried out

considering genotypic call rate and minor allele frequency equal to

or greater than 90% and smaller than 5%, respectively. In this study a

pre-selected set of 5,970 markers that did not reduce the PA of

Arabica Coffee compared to the original set SNP markers in a

previous study was used (Arcanjo et al., 2024).

The genotypes were planted on February 11, 2011, using a

spacing of 3.0 m between rows and 0.7 m between plants

following an augmented (check varieties) blocks experimental

design. Nutritional management was carried out following the

requirements of the crop. The phenotypic evaluations were

performed in 2014, 2015, and 2016. A total of four traits were

scored, two associated with the productivity, yield (YL—liters of

fresh cherries harvested per plant) and total number of fruits

(NF) —and two more associated with disease resistance—leaf

miner infestation (LM) and cercosporiosis incidence (Cer) in

Coffea Arabica. The incidence of cercosporiosis and leaf miner

was evaluated using a score scale ranging from 1 to 5, in which 1

corresponded to genotypes without symptoms and 5 referred to

highly susceptible genotypes. A comprehensive description of

how the evaluations of each trait were performed can be found in

Sousa et al. (2019).
2.2 Phenotypic data analysis

The phenotypic data for YL, NF, LM, and Cer were analyzed

according to the following statistical model

y = Xu + Zg +Wp + Vr + Tb + Ri + e

where y represents the vector of observed phenotypes; u is the

vector referring to the general mean in each evaluation year; g is the

vector of genetic random effects corresponding to the progeny such

that g ∼N(0, Is2
g); p is the random permanent environmental effect

p ∼N(0, Is2
p); r is the population random effect r ∼N(0, Is2

r ); b is
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the plot random effect b ∼N(0, Is2
b); i corresponds to the random

effect of the interaction between progenies and the years i ∼N(0, I

s2
i ); and e is the experimental error assumed to be Independent and

Identically Distributed (IID) outcomes from a normal density such

that   e ∼N(0, Is2
e ). The genetic parameters, heritability and

correlation, were also estimated for the evaluated traits. The

individual heritability was estimated by h2 =
s2
g

s2
g+s2

p+s2
r+s2

i +s
2
e
 . In

addition, the adjusted phenotypes (y*, corrected BLUPs) for the

year, plot, and year × progenies interaction effects were calculated

and used for GS. The analyses were carried out using Selegen-REML/

BLUP software (de Resende, 2016).
2.3 Individual genomic prediction

2.3.1 GBLUP
The parameterization of the Genomic prediction G-BLUP

model can be defined as follows

y* = Xb + Zu + e

where y* is the vector of adjusted phenotypic observations as

previously detailed; b  is the vector of means; X is the incidence

matrix corresponding to the fixed effects; u  is the vector of

individual additive genomic effects such that u∼N(0,Gs2
g)  where

G  is the kinship matrix describing genomic similarities between

pairs of individuals, s2
g is the additive genetic variance, Z is the

incidence matrix that connect phenotypes with genotypes; e  is the

random error vector with e∼N(0, Is2
e )  where s2

e is the residual

variance. The additive genomic kinship matrix G was obtained as

described by VanRaden (2008)

G =
WTW

on
i=12pi(1 − pi)

where, W  is the centered (by columns) matrix of SNPs, which

specifies the marker genotypes for each individual as 0, 1 or 2; pi  is

the frequency of the second allele at the locus, that is,

Wij =

2 − 2pj ,     if  Mij = AA  

1 − 2pj,     if    Mij = Aa

−2pj,   if    Mij = aa

8>><
>>:

The BGLR function of the BGLR package (Pérez and de los

Campos, 2014) in R software (R Core Team, 2022) was used to

fitting GBLUP model.

2.3.2 Decision tree
The decision tree structure in this case is built using a regression

tree algorithm. The objective is to create regions (R1, R2,…, RM) that

minimize the difference between the predicted values and the

adjusted observed values. This difference is measured by the

Residual Sum of Squares (RSS). To achieve this, the algorithm

performs a recursive binary splitting process. At each step, it

considers all available features (Xj −   markers) and all possible

split points (cutoff values) within each feature. The split that results

in the lowest RSS for the resulting child nodes is chosen. This
frontiersin.org
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process continues recursively until a stopping criterion is met, such

as reaching a minimum number of data points in a region.

Mathematically, the two disjoint regions can be defined by

(Hastie et al., 2009)

R1(j, s) = XjXj < s
� �

 and R2(j, s) = XjXj ≥ s
� �

,

and the goal is to minimize:

o
i : xi∈R1(j,s)

(y*i − ŷ *R1
)2 + o

i : xi∈R2(j,s)

(y*i − ŷ *R2
)2

where ŷ *R1
  is the average of the adjusted phenotypic values of

the training observations belonging to the region R1(j,  s) =  

XjXj  <  s
� �

, ŷ *R2
is the average of the adjusted phenotypic values

of the training observations belonging to the region R2(j,  s) =

  XjXj  ≥  s
� �

 and y*i is the true value of each individual.

2.3.3 Random Forest
To construct a RF is necessary to create several datasets by

resampling (bootstrapping) from the training set. After that, the

bootstrap samples are used to build multiple trees considering a

subset of predictors (markers) randomly selected (Hastie et al.,

2009). Usually, for a continuous response, the number of predictors

used to find the best split at each node is a subset that is chosen by

m =   v3, with v being the total number of predictors. Also, usually,

the number of trees for the RF is set to 500. For the RF, the trees

grow to their maximum size without pruning, and the prediction is

done by averaging the trees. The function randomForest in

randomForest R-package (Liaw and Wiener, 2002) was used to

implement RF method.

2.3.4 Quantile Random Forest
For the construction of the QRF, as same as for RF, it is necessary

to obtain T regression trees generated from bootstrap samples

considering subsets of the markers under study (Hastie et al., 2009).

Then, for the tth generated tree (Tt), the conditional distribution is

obtained by weighting the observed values of the studied traits.

Specifically, given an observation, X  = x, it is defined for each

terminal node (adjusted tree leaf), F(x, Ttf  ), the following weighting

factor: wi(x, Ttf  ) =  
I x∈F(x,Ttf  ) f g

# m :  Xm∈F(x,Ttf  )f g , with on
i=1wi(x, Ttf  ) = 1,

I Xi∈F(xi ,Ttf  ) f g an indicator variable stating that the observed value

(X  = x) belongs to f th leaf and # m :  Xm ∈ F(x, Ttf  )f g represents the
number of observations on the f th leaf.

The prediction of a tree Tt, according to Meinshausen (2006),

for a new point, X  = xnew, is given by the weighted average of the

observations Yi, that is, m̂ (xnew) =on
i=1wi(x, Ttf  )Yi. In this way, the

prediction for a given observation, X  = x, after the construction of

T trees is given by m̂RF(x) =on
i=1wi(x)Yi where wi(x) =

1
ToT

t=1wi  

(x, Ttf  ). Taking into consideration that the estimated cumulative

distribution function is given by F̂ (yjX = x) =on
i=1wi(x)I Yi≤yf g,

where I Yi≤yf g is an indicator function, the predicted value for the

tth quantile is given by Qt(x) = inf  fy :  F̂ (yjX = x)  ≥  t g, for any
t,     0 < t < 1  .

The main difference between QRF and RF is that, for each node

in each tree, the RF maintains only the average of the observations

that fall into that node and discards any other information.
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Conversely, the QRF maintains the value of all node observations

(not just the average) and evaluates the conditional distribution

based on this information (Meinshausen, 2006). This study

evaluated nine Quantile Random Forest (QRF) for various

quantile levels. The quantile parameter (t) ranged from 0.1 to 0.9

in increments of 0.1. Therefore, the models were named QRF0.1,

QRF0.2,…, QRF0.9, reflecting the specific quantile they aimed to

predict. The function quantregForest in quantregForest R-package

(Meinshausen, 2017) was used to implement the QRF methods.
2.3.5 Multivariate adaptive regression splines
MARS (Friedman, 1991) forms reflexive pairs of base functions (BF)

for each input (marker) Xj, with nodes at each observed value xij of that

input. The model building strategy is like a progressive linear regression,

but instead of using the original inputs, it implements base functions

from the set C = (Xj − t)+,   (t − Xj)+
� �

 t ∈ x1j ,   x2j ,  …,   xNjf g j=1,2,…, p 

and/or its products. The MARS model, which is a linear combination

of the BF and/or their interactions, is given by (Hastie et al., 2009):

f (X) =  b0 + o
M

m=1
bmhm(X)

where b0 is the regression constant, bm with m = 1, 2,…,M, are

the regression coefficients, and hm(X) is a function in C, or a

product of two or more functions.

The estimation process of the parameters b0 and bm is based on

the minimization of the residual sum of squares. First, the forward

phase starts on the training data, building the model initially with

only the constant function h0(X) = 1, and all functions in the C set

are candidate functions. At each subsequent step, the base pair that

produces the maximum reduction in training error is added.

Considering a model with basic M functions, the next pair to be

added to the model is

b̂M+1hl(X)(Xj − t)+ + b̂M+2hl(X)(t − Xj)+,  hl ∈ M

where b̂M+1 and b̂M+2 are coefficients estimated by the least

square method (Hastie et al., 2009), together with all other M + 1

coefficients in the model. This process of adding BF continues until

the model reaches a predetermined maximum number, often

leading to a purposefully overparametrized model (Zhang and

Goh, 2016). The backward phase improves the model by

removing the least significant terms until finding the best sub

model. The model subsets are compared using the generalized

cross-validation (GCV) method. The GCV is evaluated with the

root-mean-square residual error divided by a penalty that depends

on the complexity of the model (Zhang and Goh, 2016) and it is

calculated as

GCV(l) =
1
NoN

i=1½yi − f̂ l(xi)�2
1 − C(M)

N

� �2

(Hastie et al., 2009) where M is the effective number of model

parameters, C(M) is a cost function for each basis function included

in the developed submodel, which by default adopts the value of 3,

N is the number of datasets used in CV and f̂ l(xi) denotes the

predicted MARS values. This study employed three Adaptive
frontiersin.org
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Regression Spline (MARS) models with varying degrees of

interaction (1, 2, and 3). The MARS 1 model represents an

additive model, meaning it captures only the linear effects of

markers. In contrast, MARS 2 and MARS 3 allow for the

inclusion of second and third-order interactions, respectively,

enabling them to capture more complex non-additive

relationships between markers. The function earth in earth R-

package (Milborrow, 2017) was used to implement MARS models.
2.4 Stacking Ensemble Learning for
genomic prediction

This study explores the SEL approach for improving the accuracy

of genomic prediction models. SEL leverages predictions frommultiple

individual models (base learners, Level 0) and combines them using a

meta-learner model (Level 1) to generate a final, potentially more

accurate prediction. The base learners used in this study were GBLUP,

different degrees of MARS (1, 2, 3), multiple QRFs (0.1 to 0.9), and RF.

Their predictions, referred to as Genomic Estimated Breeding Values

from Base Learners (GEBV-BL), formed the core metadata for the

meta-learner. In practice, it is necessary to prepare a dataset with both

the observable characteristics (phenotype) and the genetic information

(SNP markers) of individuals. Then, diverse machine learning models

(base learners) are trained on these data to make initial predictions.
Frontiers in Plant Science 05
These predictions from the base learners become the new features for a

final model, the meta-learner. Finally, the meta-learner is trained using

these base learner predictions as input and the original phenotype data

as the target variable. In our work, four different combinations of

metadata were explored: (i) GEBV-BL, only predictions from the base

learners (standard approach); (ii) GEBV-BL+SNP, predictions

combined with the original Single Nucleotide Polymorphism (SNP)

markers (larger input dataset); (iii) GEBV-BL-Best; and (iv) GEBV-BL-

Best + SNP, Similar to the previous cases, but only predictions from

high-performing base learners (those exceeding the average predictive

accuracy) were included. For GEBV-BL and GEBV-BL-Best datasets,

six meta-learner methods were evaluated: Simple Mean (SSM);

Weighted Regression (SWR); Regression (SR); Ridge Regression

(SRR); Random Forest (SRF). For GEBV-BL + SNP and GEBV-BL-

Best + SNP datasets, which included SNP markers, a two-kernel

GBLUP model (S2KGBLUP) was additionally employed as the meta-

learner. The SEL scheme for genomic prediction is illustrated in

the Figure 1.
2.5 Cross-validation

The PA of the models used as base-learners and the entire SEL

process considered a CV scheme that was implemented as follows.

First, the complete dataset under study was randomly divided into
FIGURE 1

The stacking ensemble learning framework for genomic prediction from original data to the base learners, creating metadata for the meta-learner.
Base-Learner (Level 0) is composed of the GBLUP, MARS (1°, 2°, and 3°), QRF considering nine quantiles (from 0.1 to 0.9, in steps of 0.1) and RF
model. Four different meta-data were obtained: (i) GEBV-BL, only predictions from the base learners (standard approach); (ii) GEBV-BL+SNP,
predictions combined with the original Single Nucleotide Polymorphism (SNP) markers (larger input dataset); (iii) GEBV-BL-Best; and (iv) GEBV-BL-
Best + SNP, similar to the previous cases, but only predictions from high-performing base learners (those exceeding the average predictive
accuracy). Meta-Learners: for GEBV-BL and GEBV-BL-Best metadata, six meta-learner methods were evaluated. Simple Mean (SSM), Weighted
Regression (SWR), Regression (SR), Ridge Regression (SRR), Random Forest (SRF), and for GEBV-BL + SNP and GEBV-BL-Best + SNP datasets, which
included SNP markers, a two-kernel GBLUP model (S2KGBLUP).
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two sets (training and testing). The training set was composed by

70% of the individuals while the remaining 30% was assigned to the

testing or validation set. The training set was used to calibrate the

base-learners and the SEL for predicting the GEBVs of the

individuals in the training set. This procedure was repeated 10

times. Then, for each approach, the average PA across replicated

was computed. The PA was computed as the Pearson correlation

between predicted GEBV and the adjusted phenotype values. The

standard error (SE) was also computed. In addition, the mean

square error (MSE) between the observed and predicted values was

calculated. Finally, the agreement coefficient was used to compute

the percentage of individuals with a performance above the 90th

percentile in fields given the top 10% of the GEBVs obtained with

the different genomic prediction approaches.
3 Results

3.1 Phenotypic data analysis

The across environments mean (�X) and standard deviation

(SD) of the evaluated traits are summarized in Table 1.

The estimates of the heritability (proportion of phenotypic

variability explained by the genetic component) for YL (0.30), NF

(0.49), LM (0.30), and Cer (0.38) were moderate. The Spearman’s

correlation (lower triangle) between the adjusted phenotypic values of

each pair of traits were positive and presented low to moderate values

varying from 0.02 to 0.52. The higher and the lower correlation values

were observed between YL and NF (0.52) and between NF and Cer

(0.02, not statistically significant), respectively (Figure 2). The

correlation between YL and LM, Cer and NF and LM, Cer were

not statistically significant (Supplementary Figure S1).
3.2 Comparison between the base learners

Overall, none of the evaluated base learner methods

outperformed the predictive performance of the others for all the

evaluated traits. The estimated predictive abilities (PA) and

corresponding standard deviations for the four traits (YL, NF,

LM, and Cer) ranged from −0.01 (0.01) to 0.24 (0.01) and are

presented in Figure 3. Specifically, for YL, NF, LM, and Cer, the
Frontiers in Plant Science 06
highest PA values were 0.15 (0.01), 0.24 (0.01), 0.15 (0.01) and 0.24

(0.02), and these were obtained with MARS2 and QRF0.3, QRF0.7

and GBLUP methods, respectively (Figure 2).

GBLUP presented lower values of EQM (Supplementary Table S1).

Specifically, the MSE were equal to 16.05 (1.01), 2,329.00 (368.94), 0.21

(0.02), and 0.57 (0.07) for YL, NF, LM, and Cer, respectively.

The extreme QRF models QRF0.1, and QRF0.9 returned the

highest MSE values across all the evaluated traits (Supplementary

Table S1). In general, the MSE decreased as the fitted quantile

model was approaching to the median model (QRF0.5).
3.3 Comparison between the Stacking
Ensemble Learning approaches and GBLUP

The estimates of the PA obtained with the SEL models and the

traditional genomic prediction method GBLUP model are shown in

Figure 3. The results of the GBLUP model were used as benchmark

since as it was mentioned it is the most convenient and used

implementation in genomic prediction.

The estimated PA ranged from 0.05 (0.01) to 0.32 (0.02)

(Figure 4). For YL, NF, LM, and Cer, the highest PA values were

0.20 (0.01), 0.32 (0.01), 0.19 (0.01), and 0.27 (0.01), respectively.

These results were obtained by implementing SMBest method,

which corresponds to the simple mean considering GEBV-BL-

Best metadata. The “best” fitted model was SMBest, and it

outperformed the PA of the GBLUP model by 87.44% (the ratio

between the PA obtained from SMBest model fit and the GBLUP),

37.83%, 199.82%, and 14.59% for YL, NF, LM, and Cer,

respectively (Figure 3).

Regarding the different data sets used as input in the SEL

approach, combining the predicted values obtained from base

learners (GEBV-BL) with training data used to fitting the models,

did not improve PA of these methods (Figure 3). Additionally, the

results considering only the predicted values provided from

those base learners with PA higher than mean of all base learner

(GEBV-BL-Best) as input in the Level 1, returned the highest

results (Figure 3).

For the four traits, the GBLUP model presented the lowest MSE

values (Supplementary Table S2). As expected, since the Ridge

Regression model (SRR) depends on a regularization parameter it

presented a significant higher MSE (Supplementary Table S2). For

this model, the MSE values were equal to 69.28 (9.18), 8390.68

(518.49), 6.65 (0.80), and 3.45 (0.36) for YL, NF, LM, and

Cer, respectively.

The Spearman’s correlation between the GEBVs obtained with

the different prediction models, including the baseline GBLUP

model and all the SEL models, presented positive values and these

vary from low 0.25 to high 0.97 across the evaluated traits

(Figures 4–7, lower triangular matrix). Low values of the

Spearman’s correlation were observed between the GBLUP and

the other SEL methods and these were 0.25, 0.33, 0.28, and 0.30 for

YL, NF, LM, and Cer, respectively (Figures 4–7, lower triangle). On

the other hand, the highest correlation value (0.97) was observed

between the GEBVs obtained by the Stacking Regression (SR) and

the Stacking Ridge Regression (SRR) for LM (Figure 6).
TABLE 1 Across environments phenotypic mean ( �X) and standard
deviation (SD) for yield (YL), total number of fruits (NF), leaf miner
infestation (LM), and cercosporiosis incidence (Cer) of a coffea arabica
L. population composed of 195 individuals observed in years 2014, 2015,
and 2016 in Viçosa, Brazil.

Trait �X SD

YL 5.16 3.84

NF 2.32 0.55

LM 2.05 0.69

Cer 2.48 0.70
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For each prediction method, the predicted values were ordered

based on rankings then the percentage of common individuals in

the top 10% between pairs of methods was computed. Overall, the

GBLUP presented lower agreement with the SEL evaluated

approaches (Figures 4–7, upper triangle). For instance, the

agreement coefficient between the GBLUP and the SRB, SR, SR,

and S2KGBLUP methods presented values varying from 0.31 to

0.48 for all evaluated traits (Figures 4–7, upper triangle).

Regarding the different data sets used as input in the SEL

approach, the highest Spearman’s correlations and agreements

were observed between those methods that used the same kind of

metadata as input in the fitting. Overall, considering these two

measures, the methods were grouped into three groups

(Supplementary Figures S6-S13). In general, the GBLUP was

allocated into a single group. The only exception was for

cercorporiosis (Cer) considering the agreement measure. Is this

case, the GBLUP was allocated together with those methods that’s

considers only the predicted values provided from those base
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learners with PA higher than the mean of all base learner

(GEBV-BL-Best) as input in the SEL approaches (Supplementary

Figure S12).
4 Discussion

In this study, we used the SEL approach to improve PA of four

important traits in Coffea Arabica. Two of these traits are associated

with the productivity (YL and NF) and the remaining two with

disease resistance (LM and Cer). The population under study is

comprise of 195 genotypes of Coffea Arabica genotyped for 5,970

SNP markers. We compared the PA of different approaches used in

the Level 1 of the SEL to the results obtained with the base learners

[GBLUP, MARS considering degrees equal to 1, 2, and 3, QRF

considering nine quantiles (from 0.1 to 0.9, every 0.1) and RF].

Since the GBLUP is the most implemented prediction model

(Zhang et al., 2021), their results were used as benchmark. The
FIGURE 2

Predictive ability (PA) for yield (YL), total number of fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer) measured in an Arabica
coffee population composed of 195 individuals using a holdout validation scheme repeated 10 times. The fitted models used as base learners are:
Genomic Best Linear Unbiased Predictor (GBLUP); Multivariate Adaptive Regression Splines with degrees equal to 1, 2, and 3 (MARS 1, MARS 2 and
MARS 3); Quantile Random Forest evaluated at nine quantiles [(t): 0.1 to 0.9, every 0.1] – (QRF 0.1, …, QRF 0.9), and Random Forest (RF).
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PA of the different approaches was assessed using a CV scheme

repeated 10 times. The Spearman’s correlation and the agreement

(based on the top 10%) coefficients between the GEBV values of the

different models were also estimated. The genetic parameters were

also estimated for the evaluated traits (YL, NF, LM, and Cer).

The heritability estimates for YL (0.55), NF (0.49), LM (0.30),

and Cer (0.38) were consistent with those reported in the literature

for this specie and same traits. Specifically, the heritability estimates

varied between (0.1–0.74) [Alkimim et al. (2020) and Alemayehu,

2019], (0.30–0.55) [Gokavi et al., 2023 and Weldemichael et al.,

2017], (0.30–0.51) [Chrigui et al., 2020 and Ferrão et al., 2023], and

(0.09–0.61) Alkimim et al., 2021 and Ferrão et al., 2023] for the YL,

NF, LM, and Cer, respectively. Although the Pearson correlation

between YL and the disease resistance traits were not statistically

significant, a significant and positive genetic correlation (0.52) was

obtained between YL and NF.

The machine learning methods as base learners have been

already used in genomic prediction (Long et al., 2011; Lenz et al.,
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2019; Montesinos-López et al., 2019; Coelho de Sousa et al., 2022;

Costa et al., 2022). However, generally these methods do not

outperform significantly the traditional genomic prediction

approach based on parametric models such as GBLUP and

Bayesian Alphabet (Liang et al., 2021).

Liang et al. (2021) used the SEL for improving PA in three real

datasets on average by 7.70%, compared to GBLUP. The SEL uses

predicted values from different machine learning implementations

to obtain a single prediction value. These authors integrated/

combined the results of three machine learning implementations

(Support Vector Machine, Kernel Ridge Regression and Elastic Net)

to compute the GEBVs.

In contrast to Liang et al. (2021), in our study, the GBLUP

approach was used as one of the base learner methods for the SEL

too. The GBLUP was considered since it is widely used for genome

prediction (Zhang et al., 2021) due to its reduced computational

demand and simplicity (Hernandez et al., 2020) compared to the

other parametric methods (e.g., Bayesian Alphabet, Gianola et al.,
FIGURE 3

Predictive ability (PA) for yield (YL), total number of fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer) measured in an Arabica
coffee population composed of 195 individuals using a holdout validation scheme repeated 10 times. The fitted models used as base learners are:
Stacking Simple Mean (SSM), Stacking Weighed Regression (SWR), Stacking Regression (SR), Stacking Ridge Regression (SRR), and the Stacking two-
kernel GBLUP model (S2KGBLUP). The models named as best (SSMBest, SWRBest, SRBest, SRRBest, S2KGBLUP, and RFBest) used in the fitting only
the results provided by those methods that presented predictive ability higher the mean in the Level 0.
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2009). The MARS that allows automatically selecting and modeling

nonlinear relationships and interaction effects of the predictor

variables was also considered as base-learner method (Costa et al.,

2022). In addition, the RF (James et al., 2023) and the QRF

(Meinshausen, 2006) were also set as base learner methods.

Specifically, the RF is a machine learning approach used to

increase the predictive power and reduce the variance of the

predicted values by averaging uncorrelated quantities (James

et al., 2023). The QRF combines interesting characteristics from

RF and Quantile Regression (QR) approaches. QR (Koenker and

Bassett, 1978) allows fitting all the portions of the probability

distribution of the trait, enabling a more complete picture of the

conditional distribution than a single estimate of the center

(Briollais and Durrieu, 2014; Nascimento et al., 2019).

Overall, for each evaluated trait (YL, NF, LM, and Cer), a

different model presented the highest PA. These results show that

there is not a single approach that outperforms the others in the

evaluated data sets. Also, it could be case of a model performing

better than the others in a given dataset but another model could

perform better in a similar dataset (James et al., 2023). For example,
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the MARS models with 2° and 3° (model with interactions)

presented higher PA for YL. These results are in line with those

obtained by Coelho de Sousa et al. (2022). Using artificial neural

networks to predict the genetic merit of genotypes of Coffea

canephora these authors showed a larger dominance markers

effect for YL when compared to the GBLUP additive dominant

model based on additive marker effects.

Another interesting result was obtained modeling the QRF

where the distribution of the adjusted phenotypic values for YL

and NF. These presented a higher concentration in the first

quantiles (0.1–0.3) (Supplementary Figure S2) and positive

skewness (Supplementary Figure S3). For YL, the best models

were the QRF0.1 and QRF0.2 , and QRF0 .3 for NF

(Supplementary Figure S2). The distribution of the adjusted LM

values presented tree major portions (Supplementary Figure S4).

The QRF modeling was able to distinguish these three different

groups (Figure 2). Finally, since the distribution of adjusted Cer

phenotypic values did no present a specific pattern to highlight

(Supplementary Figure S5) all of the QRF models present similar

PA (Figure 2). A similar trend was shown by Nascimento et al.
FIGURE 4

Spearman’s correlation between the genomic estimated breeding values [GEBV] (lower diagonal matrix) and the concordance coefficient between
the top 10% of the selected individuals (upper triangular matrix) considering all the different fitted models including the GBLUP model and the meta-
learners for yield (YL). The fitted models used as base learners are: Stacking Simple Mean (SSM), Stacking Weighed Regression (SWR), Stacking
Regression (SR), Stacking Ridge Regression (SRR), and the Stacking two-kernel GBLUP model (S2KGBLUP). The models named as best (SSMBest,
SWRBest, SRBest, SRRBest, S2KGBLUP, and RFBest) used in the fitting only the results provided by those methods that presented predictive ability
higher the mean in the Level 0.
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(2017). These authors found that the Quantile Regression approach

outperform the traditional genomic prediction methods of not

normal distributed traits.

An interesting approach to address the non-normality

assumption is using multiple models to conduct the predictions,

and then combine the predicted values to makeup a single

prediction through the SEL approach. In general, the SEL

outperforms the methods based on base learners only (Liang

et al., 2021; Kandel et al, 2021; Kalule et al., 2023). In our study,

the SEL approach outperformed all base learner methodologies

(Figures 2, 3). However, it is important to emphasize that these

results were observed by those SEL models that used only the

predicted values provided from the base learners with PA higher

than mean of all the base learners. Specifically, the Stacking Mean

Best (SMB) presented the highest PA for all of the evaluated traits.

The average of the predictions from several fitted models has been

successfully implemented with Bagging and RF approaches

(Breiman, 1996 and Breiman, 2001). The SEL approach allow to

use several models to combine the predicted values, for example,

XGBoost (Ghasemieh et al., 2023), Penalized methods (Kalule et al.,
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2023), Linear Regression (Liang et al., 2021). Similar to the single

model approach, the performance of the different SEL

implementation can vary from one data set to another with no

one of these outperforming the others in all data sets. Thus, as it was

recommended by these authors it is important to evaluate several

models as meta-learners as well.

Regarding the MSE, as expected, the penalized models, showed

larger values compared to the other evaluated methods. By design

these methods induce bias aiming to reduce the variance of the

estimations (Montgomery et al., 2021; Chan et al., 2022). However,

these cannot guarantee the increasing of the PA compared to other

methods. The SMB, which resulted to return the best results in

terms of PA, also presented large values for the MSE. This can be a

consequence that SMB-SEL uses predicted values derived from base

learners that return large MSE values (Supplementary Table S1).

Overall, the SEL models presented moderate to high Spearman’s

correlation between them (Figures 4–6). On the other hand, these

were low to moderate between SEL approaches and the GBLUP

model. Additionally, among the 10% of genotypes with the highest

GEBVs for YL, NF, LM, and Cer, the agreement coefficient between
FIGURE 5

Spearman’s correlation between the genomic estimated breeding values [GEBV] (lower diagonal matrix) and the concordance coefficient between
the top 10% of the selected individuals (upper triangular matrix) considering all the different fitted models including the GBLUP model and the meta-
learners for total number of fruits (NF). The fitted models used as base learners are Stacking Simple Mean (SSM), Stacking Weighed Regression (SWR),
Stacking Regression (SR), Stacking Ridge Regression (SRR), and the Stacking two-kernel GBLUP model (S2KGBLUP). The models named as best
(SSMBest, SWRBest, SRBest, SRRBest, S2KGBLUP, and RFBest) used in the fitting only the results provided by those methods that presented
predictive ability higher the mean in the Level 0.
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the SEL and GBLUP models showed values varying from moderate

to high, suggesting differences in the obtained classifications with

these. In general, the cluster analysis of these results showed that the

methods can be grouped into three distinct groups (Supplementary

Figures S6-S13) with the GBLUP forming a group by itself.

Altogether, these results show that the use of SEL to predict the

individual genetic merit of four important traits in Arabica Coffee is

worth to investigate. The SEL approach showed higher estimates of

PA compared with all evaluated base learning methods, in special to

the traditional GBLUP method. In practice, SEL’s ability to combine

methods with diverse characteristics facilitates a more comprehensive

exploration of the relationships between variables leading to more

accurate selection of breeding. This approach considers a wider range

of factors and reduces the reliance on any single model’s limitations.

However, evaluating phenotypes across multiple environments can

pose challenges for SEL. Unlike GBLUP, which presents higher

computational efficiency (Hernandez et al., 2020), many base

learners in SEL methods are based on machine learning requiring

significant computation time in certain scenarios. Studies have

explored the use of single machine learning methods for multi-

environment trials (METs). For example, Barreto et al. (2024) applied

machine learning to predict hybrid performance in METs and
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achieved similar PA compared to GBLUP with non-additive effects.

As highlighted by Montesinos López et al. (2022) in their study using

RF for METs, training any machine learning model can be

computationally demanding, especially for datasets where the

training data sets are very large. The hyperparameter tuning for

individual base learners within a SEL framework is a well-established

approach to enhance model performance. However, it is important to

acknowledge that SEL ensembles can achieve strong results even with

default base learner parameters (Friedel et al., 2023). This aligns

perfectly with the core principle of ensemble learning, that is,

leveraging predictions from multiple models can outperform any

single model. In our study, the high dimensionality of the data

presented significant computational challenges for hyperparameter

tuning. Additionally, the observed superiority of the SEL approach

compared to traditional methods suggested that tuning might not be

as critical for achieving good results.
5 Conclusion

The SEL method was able to predict the PA of important traits

(YL, NF, leaf miner infesting, cercosporiosis resistance) in Coffea
FIGURE 6

Spearman’s correlation between the genomic estimated breeding values [GEBV] (lower diagonal matrix) and the concordance coefficient between
the top 10% of the selected individual’s upper triangular matrix) considering all the different fitted models including the GBLUP model and the meta-
learners for leaf minor infestation (LM). The fitted models used as base learners are: Stacking Simple Mean (SSM), Stacking Weighed Regression
(SWR), Stacking Regression (SR), Stacking Ridge Regression (SRR), and the Stacking two-kernel GBLUP model (S2KGBLUP). The models named as
best (SSMBest, SWRBest, SRBest, SRRBest, S2KGBLUP, and RFBest) used in the fitting only the results provided by those methods that presented
predictive ability higher the mean in the Level 0.
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Arabica. In addition, SEL presented higher PA compared with those

obtained for all base learner methods (GBLUP, MARS considering

degrees equal to 1, 2, and 3, QRF considering nine quantiles, from

0.1 to 0.9, every 0.1 and RF).
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