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Weed detection and recognition
in complex wheat fields based
on an improved YOLOv7
Kaixin Wang, Xihong Hu, Huiwen Zheng, Maoyang Lan,
Changjiang Liu, Yihui Liu, Lei Zhong, Hai Li* and Suiyan Tan*

College of Electronic Engineering, South China Agricultural University, Guangzhou, China
Introduction: The precise detection of weeds in the field is the premise of

implementing weed management. However, the similar color, morphology, and

occlusion between wheat andweeds pose a challenge to the detection of weeds.

In this study, a CSCW-YOLOv7 based on an improved YOLOv7 architecture was

proposed to identify five types of weeds in complex wheat fields.

Methods: First, a dataset was constructed for five weeds that are commonly

found, namely, Descurainia sophia, thistle, golden saxifrage, shepherd’s purse

herb, and Artemisia argyi. Second, a wheat weed detection model called CSCW-

YOLOv7 was proposed to achieve the accurate identification and classification of

wheat weeds. In the CSCW-YOLOv7, the CARAFE operator was introduced as an

up-sampling algorithm to improve the recognition of small targets. Then, the

Squeeze-and-Excitation (SE) network was added to the Extended Latent

Attention Networks (ELAN) module in the backbone network and the

concatenation layer in the feature fusion module to enhance important weed

features and suppress irrelevant features. In addition, the contextual transformer

(CoT) module, a transformer-based architectural design, was used to capture

global information and enhance self-attention by mining contextual information

between neighboring keys. Finally, the Wise Intersection over Union (WIoU) loss

function introducing a dynamic nonmonotonic focusing mechanism was

employed to better predict the bounding boxes of the occluded weed.

Results and discussion: The ablation experiment results showed that the CSCW-

YOLOv7 achieved the best performance among the other models. The accuracy,

recall, and mean average precision (mAP) values of the CSCW-YOLOv7 were

97.7%, 98%, and 94.4%, respectively. Compared with the baseline YOLOv7, the

improved CSCW-YOLOv7 obtained precision, recall, and mAP increases of 1.8%,

1%, and 2.1%, respectively. Meanwhile, the parameters were compressed by

10.7% with a 3.8-MB reduction, resulting in a 10% decrease in floating-point

operations per second (FLOPs). The Gradient-weighted Class Activation Mapping

(Grad-CAM) visualization method suggested that the CSCW-YOLOv7 can learn a

more representative set of features that can help better locate the weeds of

different scales in complex field environments. In addition, the performance of

the CSCW-YOLOv7 was compared to the widely used deep learning models, and
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results indicated that the CSCW-YOLOv7 exhibits a better ability to distinguish

the overlapped weeds and small-scale weeds. The overall results suggest that the

CSCW-YOLOv7 is a promising tool for the detection of weeds and has great

potential for field applications.
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1 Introduction

Wheat is a commonly cultivated cereal worldwide that covers

approximately 237 million hectares annually, producing 765 million

tons of yield. However, weeds are threatening wheat yield by

competing with crops for resources (e.g., water, light, and

nutrients) and providing hosts for diseases and pests (Ying et al.,

2021). Up to 40% of global crop production is lost each year due to

weeds, pests, and diseases (Tang et al., 2023). Thus, it is important

to adopt weed management to reduce yield losses. Traditional weed

control strategies, such as mechanical and chemical approaches, are

known to be time-consuming, labor-intensive, and potentially

harmful to the surrounding environment (Scavo and Mauromicale,

2021; Sharma et al., 2021; Monteiro and Santos, 2022). Site-specific

weed management (SSWM) is an essential approach that helps to

counteract the issue of the overuse of herbicides. The precise

detection of weeds in the field is the premise of implementing

SSWM. However, the similar color, shape, and occlusion between

wheat and field weeds pose a challenge to the detection of weeds in

wheat fields.

The development of machine vision and image processing

technologies has enabled the application of more accurate and

efficient weed identification techniques. A variety of sensor

technologies, including RGB, multispectral, and hyperspectral

sensors, have been utilized to capture detailed image features of

crops and weeds. These images are then analyzed using different

segmentation, feature extraction, and classification techniques,

allowing for precise identification of weeds and mapping of weed

distribution with high accuracy. Sulaiman et al. (2022) presented

the application of hyperspectral remote sensing imagery (HRSI) for

the detection of weeds, listing common weed species and their

reflectance in specific bands and using the algorithms and models in

the analysis of weed discrimination. Xia et al. (2022) utilized

unmanned aerial vehicles (UAVs) to acquire multispectral and

RGB images. Image fusion technology was employed to augment

available information, and a weed spectral resistance index [WSRI =

(RE − R)/(RE − B)] was developed based on the disparity between

susceptible and resistant weed biotypes. Furthermore, a deep

convolutional neural network (DCNN) was deployed to evaluate

the viability of identifying resistant weeds in the field. Parra et al.

(2020) presented the use of edge-detection techniques to identify
02
weed presence. Twelve edge-detection filters were tested, using

aggregation techniques applied to three filters to reduce false

positives. The performance in ornamental was 80% and 83% in

terms of Pre and F1, respectively.

In terms of algorithms, machine learning technology has been

widely used in recent years to meet the growing demand for fast,

accurate, and non-destructive applications in weed identification. In

the traditional machine learning algorithms, texture, color, shape,

and thermal features, extracted from different sensor images, are

used alone or in combination and then adopted in the machine

learning algorithms to finish weed detection. Su et al. (2022)

proposed an integrated approach that combines UAV technology,

multispectral imagery, and machine learning techniques. Random

Forest classifier with Bayesian hyperparameter optimization was

used as the classification algorithm to enhance model simplicity and

empirical interpretability. Sohail et al. (2021) utilized texture and

color features extracted from images and used the Random Forest

algorithm to train a model using extracted feature descriptors. The

performance of the model was evaluated based on regression

metrics, precision, recall, and F1 scores. The results demonstrated

that the model achieved a high accuracy rate of 91% for weed

classification. Zamani and Baleghi (2023) collected 100 pairs of

visible and thermal images of rice and weeds. Through image

segmentation, feature vectors containing 15 morphological, 12

spectral, 10 textural, and 11 new thermal features were extracted.

To optimize feature selection, genetic algorithms (GAs) were

employed. Multiple late and early fusion structures were

developed at the decision level. Zheng et al. (2017) developed a

corn detection method based on color features using a post-

processing algorithm to differentiate between corn and weeds.

Feature selection using principal component analysis aimed to

reduce the effect of light, and finally support vector was used as a

classifier. The results showed that the color index used performed

consistently under different weather and time of day.

Unlike traditional machine learning, deep learning algorithms

are a new era of machine learning, and the step of feature extraction

is performed by the deep learning models themselves. Deep learning

algorithms have already achieved better results in object detection

than traditional machine learning algorithms. Zou et al. (2022)

proposed a modified U-net for segmenting wheat and weeds in

images and used an image classification task to select the backbone
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network for the encoding part. The results showed that the

Intersection over Union (IoU) of segmentation reached 88.98%.

Guo et al. (2023) proposed WeedNet-R to extend the sensory field

of the entire network by adding numerous context modules to

RetinaNet’s neck. The mean accuracy [mean average precision

(mAP)] of weed detection in sugar beet fields was improved by

4.65% to 92.30%. Jiang et al. (2020) proposed a graph convolutional

network (GCN) approach based on a CNN feature. A GCN graph

was constructed from the extracted weed CNN features and their

Euclidean distances and enriched the model by exploiting labeled

and unlabeled image features. The approach satisfied the real-time

requirement of the field of weed control. Kim and Park (2022)

proposed a multi-task semantic segmentation-convolutional neural

network for detecting crops and weeds (MTS-CNN) using one-

stage training. This approach heightened the correlations between

crop and weed classes by adding the crop, weed, and both (crop and

weed) losses. Xu et al. (2021) proposed a framework based on multi-

modal information fusion for accurate detection of weeds in wheat

fields in a natural environment, overcoming the limitation of single

modality in weed detection. Wang Y. et al. (2023) proposed a fine-

grained weed recognition method based on Swin Transformer and

two-stage transfer learning, which can improve the recognition

performance of weeds and crops with similar visual characteristics.

The results showed that the proposed method achieved a precision

of 99.33%. The YOLO series is a typical regression-based target

detection algorithm, which has now evolved to YOLOv8. Wang A.

et al. (2022) proposed a pixel-level synthesization data

augmentation method and a TIA-YOLOv5m network. This

model added a transformer encoder block to the backbone, used a

channel feature fusion with involution (CFFI) strategy, and

introduced adaptive spatial feature fusion (ASFF) for feature

fusion of different scales in the prediction head. The results

showed that mAP0.5was 90.0%. Zhang et al. (2022) proposed an

EM-YOLOv4-Tiny network incorporating multiscale detection and

attention mechanisms. An Efficient Channel Attention (ECA)

module was added to the Feature Pyramid Network (FPN) of

YOLOv4-Tiny, and the soft Non-Maximum Suppression (soft-

NMS) was adopted. Although the network improved the

recognition accuracy of the model compared with the original

YOLOv4-Tiny network, it also increased the volume of the model

to a certain extent. Wang H. et al. (2023) used the YOLOv6

algorithm to identify surface defects in the lock body workpiece,

and an improved algorithm based on the Canny-Devernay was also

used for sub-pixel edge detection to determine the size of the bead

hole of the lock cylinder; the results showed that the average

accuracy was 0.911 and the average inaccuracy was less than

0.03 mm. Wang C. et al. (2023) combined the YOLOv8 model

with monocular and binocular image processing techniques for the

identification and localization of lychee picking points and

developed intelligent control algorithms to actively remove

obstacles in conjunction with the obstacle situation at the picking

point. The results showed that the developed lychee-picking robot

can effectively realize obstacle removal.

Based on the above research, deep learning algorithms have

become the mainstream weed detection methods and have shown

promising performance. The one-stage network, YOLO, has the
Frontiers in Plant Science 03
advantages of high accuracy and speed and has been improved in

different ways to achieve better performance. However, challenges,

such as similar morphology of wheat and weeds, multi-scale weeds,

and occluded plants, still block the way in improving detection

accuracy in complex field environments. Therefore, an improved

YOLOv7, namely, the CSCW-YOLOv7, was proposed to identify

five types of weeds in complex wheat fields. The contributions of

this study are as follows. First, the dataset of five weeds, namely,

Descurainia sophia, thistle, golden saxifrage, shepherd’s purse herb,

and Artemisia argyi, that are commonly found in wheat fields were

constructed. Second, based on an improved YOLOv7, a wheat weed

detection model called the CSCW-YOLOv7 was proposed to

achieve the accurate identification and classification of wheat

weeds. In the CSCW-YOLOv7, the CARAFE operator was

introduced into the YOLOv7 network as an up-sampling

algorithm to improve the recognition of small targets. Then, the

SE was added to the Extended Latent Attention Networks (ELAN)

module in the backbone network and the concatenation layer in the

feature fusion module to enhance important weed features and

suppress irrelevant features. In addition, the contextual transformer

(CoT) module, a transformer-based architectural design, was used

to capture global information and enhance self-attention by mining

contextual information between neighboring keys. Finally, the Wise

Intersection over Union (WIoU) loss function, which introduces a

dynamic non-monotonic focusing mechanism, was employed to

better predict the bounding boxes of the occluded weed. After the

CSCW-YOLOv7 construction, the performance of the model was

comprehensively evaluated.
2 Materials and methods

2.1 Image acquisition and preprocessing

2.1.1 Image acquisition
In this study, wheat and its common accompanying weeds in

the natural environment were used as the experimental subjects,

and the image collection site was located in a wheat planting farm

near the Quma line in Potou Town, Jiyuan City, Henan Province,

PR China (112°27′37″E, 34°57′52″N). The best weeding period of

the wheat field is the regreening stage; therefore, the regreening

stage was selected for weed data collection. Weed images were

collected from March 10 to 25, 2023. The collected images included

five kinds of weeds that are commonly found in wheat fields,

namely, D. sophia, thistle, golden saxifrage, shepherd’s purse herb,

and A. argyi; their scientific names are D. sophia, Cirsium arvense

var. integrifolium, Euphorbia esula L., Capsella bursa-pastoris, and

A. argyi, respectively. A sample of each kind of weed in the dataset is

given in Figure 1. Smartphone ViVO Y52s with an image resolution

of 4,000 pixels × 3,000 pixels was adopted to capture the weed

images. To include diverse weed samples and construct a

comprehensive weed dataset, weed images were collected in the

natural field environment and under different conditions, and a

total of 2,614 original images were collected. First, weed images

were collected at different times of the day: 8:30–10:30, 13:30–15:30,

and 17:00–18:00. Second, images were collected at different weather
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conditions, including sunny and cloudy days. Furthermore, the

shooting angle was vertically downward with the height varying

from 30 to 60 cm from the ground.

Therefore, the constituted weed dataset brings great challenges to

the method of weed detection because of the diversity and complexity

of the phenotyping of weeds: 1) complex field background, including
Frontiers in Plant Science 04
water reflection, shade, and light (Figure 2A); 2) great variation of

weeds in size, color, and shape caused by light conditions, varieties,

and image shooting angles (Figure 2B); 3) mutual occlusion between

wheat and weeds (Figure 2C); 4) similar morphology of wheat and

weeds (Figure 2D); and 5) appearance of different weed species

(Figures 2E, F).
B C

D E F

A

FIGURE 2

Example images of weeds in wheat fields. (A) Light and shade. (B) Weeds of different sizes. (C) Mutual occlusion between wheat and weeds.
(D) Similar morphology of wheat and weeds. (E, F) Appearance of different weed species. different colors of the bounding boxes in the images
represent different weed species.
B C D EA

FIGURE 1

Sample of wheat weed data: (A) Descurainia sophia, (B) thistle, (C) golden saxifrage, (D) shepherd’s purse herb, and (E) Artemisia argyi.
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2.1.2 Image preprocessing and
dataset preparation

After image acquisition, the annotation tool LabelImg was used

for manual annotation to obtain the ground truth of weeds for

subsequent training. Weeds were labeled using bounding boxes

following the standard format of YOLO. Bounding boxes were

minimum external rectangles that contained all pixels of the weeds.

In case of weeds of irregular shape or patches of weeds, multiple

bounding boxes were drawn to include the entire weed features. In

addition, different colors of the bounding boxes were used to draw

and recognize the category of weed class. In our study, green,

purple, red, dark blue, and light blue boxes were used to label weeds

of D. sophia, thistle, golden saxifrage, shepherd’s purse herb, and A.

argyi, respectively. Figure 2 shows image annotations offive kinds of

weeds. Specifically, D. sophia, thistle, golden saxifrage, shepherd’s

purse herb, and A. argyi were labeled with 11,136, 11,234, 882,

1,675, and 1,884 annotation bounding boxes in the original images,

respectively. After labeling, a txt file was automatically generated

containing the category and coordinate information for each

labeled box in each image, recorded as the label id, the

coordinates of the center point of the labeled box (x, y), and the
Frontiers in Plant Science 05
width and height of the labeled box (w, h) in order to determine the

relative position of the weed target in the image.

Furthermore, data augmentation, a method of artificially enlarging

datasets, was conducted on the original images to enhance the

generalization ability of the weed detection models and prevent

overfitting. Five traditional image augmentation techniques including

brightness adjustment, rotation, image flipping, noise addition, and

image blur were adopted. Meanwhile, the bounding box information

was preserved during image augmentation. Examples of image

augmentation are shown in Figure 3. Due to the imbalance

distribution of weed species, data augmentation with different

magnifications was used for different weed species to reduce the

imbalance. After image augmentation, the number of D. sophia and

thistle was 2.6 times and 4.3 times larger than the original images,

respectively. Golden saxifrage, shepherd’s purse herb, and A. argyiwere

16 times, 10.8 times, and 13.4 times larger than the original images,

respectively. Finally, the augmented datasets were randomly divided

into training sets, validation sets, and test sets. The validation sets were

part of the training sets. Specifically, 80% were training sets, 20% of

which were validation sets, and the remaining 20% were test sets. The

training sets were used to train themodel and determine its parameters,
B C

D E F

A

FIGURE 3

Illustration of five image augmentations on weed images: (A) origin, (B) brightness adjustment, (C) rotation, (D) noise addition, (E) image flipping, and
(F) image blur. different colors of the bounding boxes in the images represent different weed species.
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while the validation sets were used to determine the network structure

and adjust the parameters of the model. The test sets aim to test the

generalization ability of the model. The detailed information on the

datasets is shown in Table 1.
2.2 Construction of wheat weed detection
model based on an improved YOLOv7

2.2.1 YOLOv7
YOLOv7, proposed by the original YOLOv4 research team in July

2022 (Bochkovskiy et al., 2020), is one of the most advanced one-
Frontiers in Plant Science 06
stage object detection algorithms that balance the conflict between the

number of parameters, computational consumption, and

performance, achieving satisfactory results in terms of speed and

accuracy (Wang C.-Y. et al., 2022). The significant improvements of

YOLOv7 lie in four aspects, including efficient ELAN module, re-

parametrization modules, label assignment strategies, and auxiliary

head training strategy. The main structure of YOLOv7 consists of

four components, Input, Backbone, Neck, and Head, as shown in

Figure 4. In the Input, images after preprocessing and enhancement,

including mixup and mosaic, are rescaled to 640 pixels and then fed

into the Backbone. The Backbone, responsible for feature extraction,

is composed of 51 layers (Layer0–50) andmainly includes modules of
TABLE 1 Distribution table of wheat weed dataset.

Weeds Origin
images

Number of
annotation

boxes

Image
after

augmentation

Number of
training
dataset

Number of
annotation
boxes in
training
dataset

Number of
test dataset

Number of
annotation
boxes in

test dataset

Descurainia
sophia

1,841 11,136 4,811 3,739 8,675 1,072 2,461

Thistle 639 11,234 2,753 2,134 8,605 619 2,629

Golden
saxifrage

19 882 304 236 696 68 186

Shepherd’s
purse herb

62 1,675 668 519 1,287 149 388

Artemisia
argyi

53 1,884 710 555 1,468 155 416
FIGURE 4

YOLOv7 network structure diagram.
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standard CBS (Conv-BN-SiLU), ELAN, and max pooling layers

(MP). The CBS employs three different convolutional kernel sizes

and step sizes to generate features at various scales. The ELAN

module continuously enhances the network’s learning ability by

controlling the shortest and longest gradient path. Simultaneously,

it encourages the network to learn more diverse and discriminative

features by enhancing the interaction between each feature layer

through expansion, random combination, and splicing. The MP

module integrates two down-sampling branches with pooling and

convolution, and it utilizes max-pooling operations to reduce the

spatial dimension of the feature maps. At last, the Backbone layer

outputs feature information of different sizes, which are located in the

24th, 37th, and 50th layers. The Neck is designed to perform feature

extraction and fusion. First, the Spatial Pyramid Pooling, Cross Stage

Partial Channel (SPPCSPC) network employs four max pooling

layers of different kernel sizes to obtain different receptive fields,

thereby helping to better extract features of different scales. Then,

feature fusion is performed by up-sampling and down-sampling

features of different scales obtained from the backbone, following

the PANet structure in the YOLOv5m network. The Neck outputs

feature maps of different sizes in the 75th, 88th, and 101st layers. The

reparameterized RepConv network structure is introduced to the

Head for training and achieves recognition and classification of

images (Ding et al., 2021). Moreover, the Head module for the first

time adds an auxiliary head for loss calculation in the middle of the

network to assist training, namely, the auxiliary head training

strategy, improving the performance by multi-way branching

during the training process.
2.2.2 CSCW-YOLOv7 construction based on an
improved YOLOv7

In practice, the in-field wheat weed recognitions are still facing

many challenges: 1) complex field background, including water
Frontiers in Plant Science 07
reflection, shade, and light; 2) great variation of weeds in size, color,

and shape caused by light conditions, varieties, and image shooting

angles; 3) mutual occlusion between wheat and weeds; and 4) similar

morphology of wheat and weeds. These challenges motivate the

development of wheat weed detection algorithms that can operate

over images taken under a variety of conditions. This study adopts

YOLOv7 as the baseline model and investigates further optimizations

to enhance its performance on wheat weed detection and classification.

The proposed CSCW-YOLOv7 model is shown in Figure 5. First, the

CAREFE up-sampling method is adopted to improve the recognition

of small targets. Second, to enhance important weed features and

suppress irrelevant features, the SE attention mechanism is used. Then,

the ELAN-M module is replaced with the CoT module to capture

global information and enhance self-attention by mining contextual

information between neighboring keys. Finally, theWIoU loss function

is employed to improve the accuracy of the detection results and the

convergence speed of the network.

2.2.3 CARAFE operator
YOLOv7 adopts the nearest-neighbor interpolation up-

sampling method, which shows the advantages of simplicity and

low computational cost. However, nearest-neighbor interpolation

only considers adjacent pixels and does not fully utilize the semantic

information of the feature map, resulting in discontinuous grayscale

values after resampling and loss of image quality. To obtain a larger

receptive field and better detect the small wheat weed, the CARAFE

(Xu et al., 2021) operator is employed in the up-sampling method in

this paper, which is proven to have the advantages of having a large

receptive field and being content-aware and lightweight. The

CARAFE can dynamically generate an adaptive kernel based on

the input feature map without introducing too many parameters

and calculations, thus making better use of the surrounding pixel

information while maintaining lightweight.
FIGURE 5

Improved YOLOv7 network structure diagram. The ☆ indicates for modifications.
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CARAFE consists of two modules: a kernel prediction module

and a content-aware reassembly module. The CARAFE structure is

shown in Figure 6. The kernel predictionmodule falls into three steps:

channel compression, content encoding, and kernel normalization.

First, the feature map with the shape of H ×W × C is compressed to

H × W × Cm using a 1 × 1 convolution, where Cm is the number of

compressed channels. The channel compression reduces the amount

of computation in subsequent operations. Then, a convolutional layer

of kernel size Kencoder × Kencoder is utilized to generate reassembly

kernels based on the compressing feature. Assuming that the number

of input channels is Cm and the number of output channels is s2k2up,
the channel dimension is expanded in the spatial dimension to obtain

an up-sampling kernel with the shape of sH × sW × kup × kup.

Finally, the softmax function is employed to normalize the predicted

up-sampling kernels and make the convolutional kernel weights add

up to 1. In the content-aware reassembly module, each position in the

output feature map is mapped back to the input feature map, and a

feature map of size sH × sW × C is obtained by taking a region of

size of kup × kup centered on it. A dot product operation is performed

with the up-sampling kernel of the predicted point. Different

channels in the same position share the same up-sampling kernel.
2.2.4 SE attention mechanism
To better extract the target information and suppress the

background information, the attention mechanism technique has

been widely used in deep learning models. The SE attention

network, proposed by Hu et al. (2017), is an architectural unit

composed of squeeze and excitation blocks to use global

information to selectively emphasize informative features and

suppress less useful ones, and it follows three steps including the

squeeze operation, excitation operation, and rescaling operation.

The SE attention network was added to the ELAN module in the
Frontiers in Plant Science 08
backbone network in this paper. The structure of the SE network is

depicted in Figure 7.

SE block is built upon a transformation Ftr mapping an input X ∈
RH0�W 0�C0
 to feature maps U ∈ RH�W�C: Ftr is a convolutional

operator, and V = ½v1, v2,…, vC� was used to denote the learned set

of filter kernels, where vC refers to the parameters of the cth filter.

Then, the outputs were written as U = ½u1, u2,…, uC�, where

Equation 1:

uc = vc  * X =o
C 0

s=1
vsc * x

s (1)

Then, the squeeze operation was followed. The global spatial

information was squeezed into a channel descriptor using global

average pooling. Therefore, a feature map of size H × W × C was

compressed into a size of 1 × 1 × C. Formally, a statistic z ∈ Rc is

generated by shrinking U through its spatial dimensions H × W

such that the cth element of z is calculated by Equation 2:

zc = Fsq(uc) =
1

H �Wo
H

i=1
o
W

j=1
uc(i, j) (2)

Furthermore, a simple gating mechanism with a sigmoid

activation was employed to make use of the information aggregated

in the squeeze operation and fully capture channel-wise

dependencies. The gating mechanism follows the following

Equation 3:

s = Fex(z,W) = s (g(z,W)) = s (W2d (W1z)) (3)

where d refers to the ReLU function, W1 ∈ R
C
r�C and W2 ∈

RC�C
r .

At last, the scale operation of the channel-wise multiplication

between the scalar sc and the feature map uc ∈ RH�W was followed

by the Equation 4:
FIGURE 6

CARAFE operator structure diagram.
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Fscale(sc , uc) = exc = sc � uc (4)

where ~X = ½ex1, ex2,…, exc�.
2.2.5 Contextual transformer networks

In this work, a new transformer-style architecture, named CoT

block, was employed and replaced with standard convolutions in

the Neck of the YOLOv7 to exploit the contextual information

among input keys and facilitate self-attention learning. Unlike the

conventional self-attention mechanism of the transformer, the CoT

block, designed by Li et al. (2021), combines context mining among

neighbor keys and self-attention learning over a feature map with a

favorable parameter budge.

The CoT framework is illustrated in Figure 8. The input data X

is of size H × W × C, where H, W, and C are height, width, and

number of channels, respectively. The keys, queries, and values are

defined as follows Equation 5:

K = X,Q = X,V = XWn (5)

k × k group convolution is first performed on all neighbor keys

to extract the static contextual information, and K1 is denoted as the
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static context representation of input X. Then, K1 and Q are

concatenated, and two consecutive 1 × 1 convolutional

operations, namely, the Wq with a ReLU activation function and

Wd without an activation function, are performed subsequently:

A = ½K1,Q�WqWd (6)

From Equation 6, A is learned based on the query feature Q and

the contextualized key feature K1, thereby enhancing self-attention

learning under the additional guidance of the mined static contextK1.

After that, feature map K2 captures the dynamic feature interactions

among inputs by aggregating all values V and multiplying A, where

K2 is considered a dynamic context. The final output Y is the fusion of

the static context K1 and dynamic context K2.

2.2.6 WIoU loss
The Complete Intersection over Union (CIoU) loss function is the

default bounding box regression loss function in YOLOv7 and

considers differences between the ground truth and predicted

bounding boxes in terms of overlap area, center distance, and aspect

ratio. However, CIoU exhibits several drawbacks. First, it does not

focus on the balance between targets of different scales. Second, in case

the aspect ratios of the ground truth and predicted boxes are the same

but their width and height values are of great difference, the penalty

term fails to accurately reflect the disparity between these two boxes.

Third, CIoU increases computational consumption because of the

adopted inverse trigonometric function. Therefore, in this study, the

CIoU function is replaced with the WIoU loss function, which

introduces a dynamic non-monotonic focusing mechanism. The

WIoU loss function, proposed by Tong et al. (2023), has developed

into three versions: the WIoUv1, WIoUv2, and WIoUv3.

In the WIoUv1 algorithm, distance attention is constructed

based on the distance metric, obtaining a two-layer attention

mechanism. WIoUv1 follows Equations 7–9:

LIoU = 1 − IoU = 1 −
WiHi

wh + wgthgt −WiHi
IoU (7)

RWIoU = exp
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )

 !
(8)

LWIoUv1 = RWIoULIoU (9)

FIGURE 8

Contextual transformer networks.
FIGURE 7

SE attention mechanism.
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where RWIoU ∈ ½1, e)  significantly amplifies LIoU of the ordinary-

quality anchor box. LIoU ∈ ½0, 1) reduces RWIoU of the high-quality

anchor box and its focus on the distance between central points when

ground truth matches well with predicted boxes.

Based on the WIoUv1, WIoUv2 is designed by constructing the

monotonic focus coefficient L*IoU , which effectively reduces the

contribution of simple samples to loss values, enabling the model

to focus on low-quality samples and achieve improved classification

performance. The formula of WIoUv2 is shown in Equation 10:

LWIoUv2 =
L∗IoU

LIoU

� �g
LWIoUv1 (10)

WIoUv3 is designed based on theWIoUv1 by constructing the non-

monotonic focus coefficient b . Tomake themodel focus on the average

quality samples and improve the overall performance, WIoUv3 adopts

a reasonable gradient gain allocation strategy to dynamically optimize

the weight of high- and low-quality anchor boxes in the loss. The

formula of WIoUv3 is shown in Equations 11 and 12:

b =
L∗IoU
LIoU

∈½0, +∞) (11)

LWIoUv3 = rLWIoUv1, r =
b

dab−d (12)

Compared with WIoUv1 and WIoUv2, WIoUv3 achieved

significant improvement on the MS-COCO dataset. In this study,

the WIoUv3 was employed and replaced the CIoU in YOLOv7.
2.3 Performance evaluation

The output of the CSCW-YOLOv7 is a list of detection boxes

that contain all weeds with recognition of weed categories. To

comprehensively evaluate the performance of the CSCW-YOLOv7,

evaluation metrics including precision (P), recall (R), mean average

precision (mAP), parameters, and floating-point operations per

second (FLOPs) were adopted in this paper. The evaluation

metrics are defined as follows:

P =
TP

TP + FP
� 100% (13)

R =
TP

TP + FN
� 100% (14)

AP =
Z 1

0
P(R)dR (15)

mAP = o
n
i=1AP(i)

n
(16)

In Equation 13, P is calculated for a particular weed class by

dividing true positives by all positive predictions. In Equation 14,

the Recall of a weed class is determined by dividing true positives by

the sum of true positives and false negatives. P and R represent the

accuracy of the trained model. In Equation 15, AP refers to the area

under the curve of P–R with values ranging from 0 to 1. The higher
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the AP, the better the performance of the deep learning network. In

Equation 16, mAP is the average of AP, where i represents a weed

category, AP(i) is the AP value of the ith weed category, and n

represents the number of weed categories. Parameters, the number

of model parameters, indicate model size and complexity. With a

larger number of parameters, models generally require more

memory consumption, computation cost, and inference times.

FLOPs are used to measure the amount of computation cost of

the model, indicating algorithm complexity.
2.4 Experimental environment and
parameter settings

The processing platform used in this paper is DELL’s Precision

T5820X tower graphics deep learning workstation, where the

hardware system environment is equipped with Intel i9–10920X

CPU (3.5 GHz), NVIDIA GeForce RTX 2080Ti GPU (11 GB of

video memory), and 64 GB of RAM. The running environment is

Windows 10, in combination with pytorch1.8.1, python3.7,

tensorflow-gpu2.3.0, cuda10.2, and cudnn7.6.5 for deep learning

model training and testing. The parameters of deep learning models

conducted in this experiment are shown in Table 2.
3 Results and analysis

3.1 Ablation experiments

To evaluate the performance of different modules of the

proposed CSCW-YOLOv7 network, an ablation study was

conducted, and the results are shown in Table 3. The compared

components included the CARAFE operator introduced in the up-

sampling method, the SE attention network added in the ELAN

module, CoT replacing the ELAN module in Neck, and the WIoU

loss function. C-YOLOv7, with the adoption of the content-aware

CARFE up-sampling operator, achieved 95.5%, 97%, and 94.3% in

precision, recall, andmAP values, respectively, with a 2% increase in

mAP values compared with the baseline YOLOv7. In addition, C-

YOLOv7 resulted in a 0.4 M and 0.3 G increase in parameters and

FLOPs, respectively. This enhancement can be attributed to

CARAFE deployment of adaptive up-sampling kernels for diverse

feature layers, which accentuates global information and thus

improves the mAP value. Nevertheless, employing adaptive

kernels yielded a slight rise in the number of parameters and
TABLE 2 Experimental parameters.

Parameters Values

Learn rate 0.01

Epochs 200

Batch size 16

Workers 8

Image size 640 × 640
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FLOPs. Afterward, the SE attention network was added to the

ELAN module in the backbone network. The corresponding CS-

YOLOv7 achieved 97.5%, 98%, and 94.4% in precision, recall, and

mAP values, respectively. Compared with the C-YOLOv7, CS-

YOLOv7 improved precision, recall, and mAP values by 2%, 1%,

and 0.1%, respectively, but obtained an increase of only 0.1 M and

0.2 G in parameters and FLOPs, respectively. The results show that

the fusion of SE modules into the ELAN network with the

integration of image channel features significantly improves the

accuracy and robustness of model detection. Furthermore, the CoT

network replaced the ELAN network in the Neck of YOLOv7,

forming the CSC-YOLOv7. Compared with the CS-YOLOv7,

though the precision and mAP values of CSC-YOLOv7 slightly

decreased by 0.1%, and 0.3%, respectively, the parameters of CSC-

YOLOv7 were reduced by 12%, equating to a 4.3-M parameter

reduction, which resulted in a 10.4% decrease in FLOPs. The results

indicate that the dynamic context mining and self-attention

learning mechanisms of the CoT network are efficient with

favorable parameter budge. Finally, the CIoU was substituted

with WIoU in CSC-YOLOv7, and the corresponding CSCW-
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YOLOv7 achieved the best performance among the other models.

The accuracy, recall, and mAP values of the CSCW-YOLOv7 were

97.7%, 98%, and 94.4%, respectively. Compared with those of CSC-

YOLOv7, the accuracy and mAP were improved by 0.3% and 0.3%,

respectively, while the parameters and FLOPs remained the same.

These results suggest that the fusion of SE modules into the ELAN

network is critical for improving the model’s precision, while the

replacement of ELAN with CoT saves some consumption costs. The

ablation experiments verified the modified components ’

effectiveness in improving the weed detection performance.

mAP@0.5 is the index of mean average precision with an IoU

value of 0.5. Figure 9 shows the training curves of mAP@0.5 for the

improved YOLOv7 models in terms of weed detection accuracy.

Overall, these models showed promising training performance in

terms of fast convergence and high detection accuracies, with more

than 92% mAP@0.5 attained within 100 training epochs. The

training curves showed that the accuracies leveled off beyond 50

epochs for all the models, confirming that training for 100 epochs

was sufficient in this study. In Figure 9, the improved YOLOv7

models all outperform the YOLOv7. In particular, the proposed
TABLE 3 Results of ablation experiments.

Model CARAFE SE CoT WIoU Precision Recall mAP Parameters (MB) Model size (MB) FLOPs (G)

YOLOv7 – – – – 95.9% 97% 92.3% 35.4 71.3 105.2

C-YOLOv7 √ 95.5% 97% 94.3% 35.8 72 105.5

CS-YOLOv7 √ √ 97.5% 98% 94.4% 35.9 72.3 105.7

CSC-YOLOv7 √ √ √ 97.4% 98% 94.1% 31.6 63.7 94.7

CSCW-YOLOv7 √ √ √ √ 97.7% 98% 94.4% 31.6 63.7 94.7
C-YOLOv7 adopting CARAFE module; CS-YOLOv7 adopting CARAFE module and SE attention; CSC-YOLOv7 adopting CARAFE module, SE attention, and CoT; CSCW-YOLOv7 adopting
CARAFE module, SE attention, CoT, and WIoU.
CoT, contextual transformer; WIoU, Wise Intersection over Union; FLOPs, floating-point operations per second.
"√" indicates that the component is used. "-" indicates that it is not used.
FIGURE 9

Training curves of mAP@0.5 for the improved YOLOv7 models for weed detection.
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CSCW-YOLOv7 and the CS-YOLOv7 showed better performance

than the C-YOLOv7 and CSC-YOLOv7. Compared with the CS-

YOLOv7, the proposed CSCW-YOLOv7 performed slightly better.

Figure 10 displays the precision–recall (PR) curves of five kinds

of wheat weeds of the proposed CSCW-YOLOv7 network in the

training dataset. Among the five weed species, the closed area

composed of the D. sophia PR curve is larger than that of the

other four species, which indicates that the improved CSCW-

YOLOv7 model shows better detection accuracy in D. sophia.

Figure 11 shows the confusion matrix of the CSCW-YOLOv7

evaluated on the test datasets. The CSCW-YOLOv7 showed

satisfactory results. Accuracies of D. sophia, thistle, golden

saxifrage, shepherd’s purse herb, and A. argyi were 97%, 96%, 95%,

92%, and 89%, respectively, resulting in 93.8% average accuracy. A.

argyi obtained the lowest accuracy of 89% presumably because A.

argyi in images is overall comparably small and has a small number of
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annotations in the training dataset. In particular, FN represents false

negatives, that is, weeds that were missed detected in our study. FP

represents false positives, which means that background or wheats

were incorrectly detected as one of the five weed species. FNs in five

weed species account for a small percentage, which was lower than

7%. This result indicated that the CSCW-YOLOv7 has a strong ability

to recognize the weed species. However, backgrounds or wheats were

likely to be incorrectly detected as weed species. Among the FP

values, most of the incorrect detections were attributed to D. sophia

and thistle, with 53% being incorrectly detected as thistle and 31%

being incorrectly detected as D. sophia. One of the important factors

is the similarity in appearance between thistle and wheat. Figure 12

shows that a wheat leaf was mistakenly detected as a thistle (the red

circle) since the wheat leaf is similar to the thistle.
3.2 Performance comparison with classical
deep learning algorithms

To comprehensively evaluate the effectiveness of the CSCW-

YOLOv7 model, the CSCW-YOLOv7 model proposed in this paper

was compared with other classical deep learning models, namely,

Faster RCNN, YOLOv5m, and YOLOv7. Faster RCNN is a classical

two-stage deep learning model, while the YOLOv5m and YOLOv7

are classical one-stage deep learning models. All models were

trained and tested on the same dataset, and all the experiments

were carried out under the same environment and parameter

settings. The comparison results are shown in Table 4. The two-

stage model, Faster RCNN, obtained average performance, with

precision, recall, and mAP values of 60.2%, 79.8%, and 79.2%,

respectively. However, the one-stage models outperform the Faster

RCNN. For instance, YOLOv5m demonstrated precision, recall,

and mAP of 96.5%, 98%, and 91.3%, respectively, representing an

increase of 36.3%, 18.2%, and 12.1% in comparison to Faster R-

CNN. In addition, the CSCW-YOLOv7 was superior to other one-

stage models. Table 4 shows that the precision andmAP value of the
FIGURE 10

Precision–recall curve of five weed species of the proposed CSCW-
YOLOv7 with the horizontal and vertical axes representing recall and
precision, respectively.
FIGURE 11

Confusion matrix for CSCW-YOLOv7 evaluated on the test dataset.
The rows represent the true labels, while the columns represent the
predicted classes.
FIGURE 12

False-positive detection with a wheat leaf incorrectly detected as
Descurainia sophia. The red colored circle represents
false detection.
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TABLE 4 Performance comparison of CSCW-YOLOv7 and other deep learning models.

Model Precision Recall mAP Parameters
(MB)

Model
size (MB)

FLOPs (G)

Faster RCNN 60.2% 79.8% 79.2% 136.7 108 401.7

YOLOv5m 96.5% 98% 91.3% 20.8 40.2 48.3

YOLOv7 95.9% 97% 92.3% 35.4 71.3 105.2

CSCW-YOLOv7 97.7% 98% 94.4% 31.6 63.7 94.7
F
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FLOPs, floating-point operations per second.
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FIGURE 13

Comparison weed detection results of different deep learning models: (A) original image, (B) Faster RCNN, (C) YOLOv5m, (D) YOLOv7, and
(E) CSCW-YOLOv7. Colors of boxes represent different weed species. Yellow, red, and white arrows point out missed detection, false detection, and
repeated detection, respectively.
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CSCW-YOLOv7 improved by 1.2% and 3.1%, respectively,

compared with the YOLOv5m and improved by 1.8% and 2.1%

compared with the YOLOv7.

In the aspect of computational complexity, YOLO models

occupied much less memory than the Faster RCNN. Compared

with YOLOv5m, YOLOv7 constructs a deeper network structure

and adopts a new training strategy; thus, YOLOv7 achieved better

detection results but consumed more computation resources and

time needed for training. YOLOv7 occupied 71.3 MB of memory,

while the YOLOv5m occupied 40.2 MB of memory. The model size

of YOLOv5m had compressed by 44% with a 31.1-MB reduction,

compared with YOLOv7. Meanwhile, improvement was made on

the baseline of the YOLOv7; the improved CSCW-YOLOv7

resulted in a certain degree of compression in model size and

improvement in efficiency.

Accordingly, Figure 13 shows part of the weed detection

performance of four deep learning models, namely, Faster

RCNN, YOLOv5m, YOLOv7, and CSCW-YOLOV7. In the first

weed image, YOLOv7 and CSCW-YOLOV7 can precisely detect

A. argyi in the middle of the image. However, Faster RCNN and

YOLOv5m detected part of A. argyi, resulting in repeated

detection. In addition, Faster RCNN missed the detection of D.

sophia, which was overlapped by wheat, and YOLOv5m falsely

recognized an unknown weed as thistle. In the second image,

Faster RCNN also missed the detection of D. sophia, which was

overlapped by wheat, and YOLOv5m yielded a false detection of

an unknown weed as thistle. In the third image, Faster RCNN

incorrectly detected a leaf of wheat as a thistle, causing a false

detection. YOLOv5m missed the detection of a thistle that was

occluded by wheat. In the fourth image, several small patches of

golden saxifrage were scattered in the wheat field, partially

obscured by wheat leaves. YOLOv7 and CSCW-YOLOV7 can

precisely detect all the golden saxifrage patches. However, Faster

RCNN and YOLOv5m failed to correctly detect all the golden

saxifrage patches, and some of them were undetected. The first

four images demonstrate that the YOLOv7 and CSCW-YOLOV7

show satisfactory ability in the detection of small-scale and

occluded weeds. The fifth image shows a complex wheat field

environment; D. sophia was densely scattered in the wheat field,

and some patches were partially obscured by wheat leaves.

Compared with the YOLOv7, the CSCW-YOLOV7 succeeded in

recognizing the four densely grown D. sophia (in the middle of the

image), but the YOLOv7 only detected three of them and failed to

detect one.

In summary, occlusion and small scale of weeds are two main

factors that affect the recognition of weed species, especially when

the detection is performed in a complex field environment. In the

case of weeds densely growing in the field, the deep learning models

are prone to misclassify the agglomerated entity as one plant

(weed); thus, it is easy for weeds to be undetected. In the case of

background (leaves of wheat) occlusion, repeated and missed

detection are prone to occur. Table 3 and Figure 13 demonstrate

that the CSCW-YOLOV7 is more sensitive to the weed species and

achieves more excellent detection performance in both cases

mentioned above.
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4 Discussion

4.1 Analysis of the improvement
of YOLOv7

In the study, the weed species dataset constitutes a complicated

scene with occlusion, overlapping, and weeds of different scales. The

results of the ablation studies show the effectiveness of the improved

architecture of the CSCW-YOLOV7, including the CARAFE operator

introduced in the up-sampling method, SE attention network added in

the ELAN module, ELAN module substitution with CoT in Neck, and

theWIoU loss function. In Table 3, results suggest that improvement in

the backbone network and neck is critical for improving the model’s

accuracy. To further investigate the impact of different strategies on

weed feature extraction, the Gradient-weighted Class Activation

Mapping (Grad-CAM) method was adopted. This visualization

method can visually display the regions that the backbone network

focuses on during the classification process (Selvaraju et al., 2020) by

generating a heatmap, helping to gain a deeper understanding of the

network’s decision-making process and better explain the mechanisms

of the model. In the heatmap generated by the Grad-CAM, the value of

each pixel represents its importance to the final target decision. The

thermodynamic features of different colors revealed the “attractiveness”

of the regional network. Warm colors represent an important impact

on the target decision, while cold colors represent a relatively small

impact on the target decision. Figure 14 depicts the Grad-CAM

visualizations for different layers of YOLOv7, CS-YOLOv7, and

CSC-YOLOv7, presented separately. It is difficult to distinguish two

or more weeds when they densely scatter in the field. The yellow circle

depicts that the feature network of improved YOLOv7 can discriminate

four densely growing D. sophia by four bright areas in the Grad-CAM.

In addition, the red and white circles show that the feature network of

improved YOLOv7 can recognize the weed that is obscured by wheat.

The purple circles indicate that the improved YOLOv7 has advantages

in suppressing background features. The Grad-CAM shows that the

improved YOLOv7 has a better ability of feature extraction and thus

can successfully distinguish the obscured and small-scale weeds.
4.2 Result comparison with
existing solutions

Weed detection based on deep learning goes beyond traditional

machine learning techniques that rely on manual design and

extraction of features. Table 5 summarizes the applications of deep

learning in weed detection in wheat fields in recent years. Xu et al.

(2024) proposed a dual-path weed detection network based on multi-

modal information with a weed detection accuracy of 62.3% in a

natural wheat field. Haq et al. (2023) implemented deep learning

models for weed detection using different frameworks with accuracies

of 0.89 and 0.91 for wheat crop weeding. Pérez-Porras et al. (2023)

compared six YOLO (v3–v5) DL object-detection models trained on

proximal RGB images; YOLOv5s was the top-performing model with

test scores of 75.3% F1 scores, 76.2% mean average precision, and

77% accuracy. Saqib et al. (2023) manipulated the dataset by
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TABLE 5 Deep learning-based weed detection methods for wheat fields.

Modality Algorithms Weed species
Scale

of dataset
Accuracy Reference

RGB and
depth images

Faster RCNN 6 7,368 62.3% (Xu et al., 2024)

RGB images
YOLOv3-Tiny, YOLOv4-

Tiny, YOLOv5
1 6,000 91% (YOLOv3-Tiny) (Haq et al., 2023)

RGB images YOLOv3-YOLOv5 1 6,319 77% (YOLOv5s) (Pérez-Porras et al., 2023)

RGB images
YOLOv3, YOLOv3-Tiny, YOLOv4,

YOLOv4-Tiny
4 1,065 73.1% (YOLOv4) (Saqib et al., 2023)

RGB images PSPUSegNet 6 5,090 96.98% (Mishra et al., 2024)
F
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FIGURE 14

(A) Original image. The Grad-CAM of different layers (1-3) of (B) YOLOv7, (C) CS-YOLOv7,and (D) CSC-YOLOv7. The yellow circle depicts that the
feature network of improved YOLOv7 can discriminate four densely growing D. sophia by four bright areas in the Grad-CAM. In addition, the red and
white circles show that the feature network of improved YOLOv7 can recognize the weed that is obscured by wheat. The purple circles indicate that
the improved YOLOv7 has advantages in suppressing background features.
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performing image transformation techniques and then trained it on

four YOLO models, which showed a mAP value of 73.1%. Mishra

et al. (2024) proposed a deep learning segmentation model named

“Pyramid Scene Parsing Network-USegNet” (PSPUSegNet), and by

comparing with UNet, SegNet, and USegNet, etc., PSPUSegNet

obtained 96.98% accuracy, 97.98% recall, and 98.96% data accuracy

in Deep Weed dataset. Compared to the above studies, the proposed

CSCW-YOLOV7 shows promising performance, though the five

weed datasets constructed in this paper present a complex

phenotype scene with similarity between wheat and weeds, multi-

scale weeds, and overlapping weeds.
4.3 Limitation and future application

Although the research object of this study is weeds in wheat, the

proposed method is applicable not only to wheat weed detection but

also to other types of weeds. By constructing a boarder range of

weed datasets, which is then fed into the proposed models for

training using transfer learning, it can be used for other types of

weed detection. In addition, since most of the weeding robots use

embedded devices in the field working environment, further

research will be conducted on how to save computational

resources under limited hardware configuration to achieve real-

time accurate recognition and then migrate the detection model to

the embedded device for practical in-field application.
5 Conclusion

Weeds are threatening wheat yield by competition with crops

for water, light, and nutrients. It is important to adopt weed

management to reduce yield losses. However, the similar color,

shape, and occlusion between wheat and weeds pose a challenge to

the detection of weeds in wheat fields. Therefore, the precise

detection of weeds in the field is the premise of implementing

weed management. The conclusions are as follows:

1) A dataset was constructed for five weeds that are commonly

found in wheat fields, namely, D. sophia, thistle, golden saxifrage,

shepherd’s purse herb, and A. argyi. A CSCW-YOLOv7 based on

improved YOLOv7 architecture was constructed to detect and

recognize the weeds under the complex field environment. In the

CSCW-YOLOv7, the CARAFE operator was introduced into the

YOLOv7 network as an up-sampling algorithm to improve the

recognition of small targets. Then, the SE network was added to the

ELANmodule in the backbone network and the concatenation layer

in the feature fusion module to enhance important weed features

and suppress irrelevant features. In addition, the CoT module, a

transformer-based architectural design, was used to capture global

information and enhance self-attention by mining contextual

information between neighboring keys. Finally, the WIoU loss

function introducing a dynamic non-monotonic focusing

mechanism was employed to better predict the bounding boxes of

the occluded weed.

2) To verify the practicability of the CSCW-YOLOv7, model

performances were comparatively evaluated and compared with
Frontiers in Plant Science 16
classical deep learning models. The ablation experiment results

showed that the proposed CSCW-YOLOv7 achieved the best

performance among the other models. The precision, recall, and

mAP values of the CSCW-YOLOv7 were 97.7%, 98%, and 94.4%,

respectively, which were 1.8%, 1%, and 2.1% better than the baseline

YOLOv7. Meanwhile, the parameters were compressed by 10.7%

with a 3.8-MB reduction, resulting in a 10% decrease in FLOPs. The

Grad-CAM visualization method suggested that the CSCW-

YOLOv7 can learn a more representative set of features that

helped better locate the weeds of different scales in complex field

environments. In addition, the performance of the CSCW-YOLOv7

was compared to the widely used state-of-the-art deep learning

models, and results indicated that the CSCW-YOLOv7 exhibits

better ability to distinguish the overlapped weeds and small-scale

weeds. The overall results suggest that the CSCW-YOLOv7 is a

promising tool for the detection of weeds in wheat fields and has

great potential for field applications.
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