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QTL mapping for plant height
and ear height using bi-parental
immortalized heterozygous
populations in maize
Haoxiang Yang, Ziran Zhang, Ning Zhang, Ting Li,
Junjie Wang, Qing Zhang, Jiquan Xue, Wanchao Zhu*

and Shutu Xu*

College of Agronomy, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of
Northwest Region, Yangling, Shaanxi, China
Introduction: Plant height (PH) and ear height (EH) are key plant architectural

traits in maize, which will affect the photosynthetic efficiency, high plant density

tolerance, suitability for mechanical harvesting

Methods: QTL mapping were conducted for PH and EH using a recombinant

inbred line (RIL) population and two corresponding immortalized backcross (IB)

populations obtained from crosses between the RIL population and the two

parental lines.

Results: A total of 17 and 15 QTL were detected in the RIL and IB populations,

respectively. Two QTL, qPH1-1 (qEH1-1) and qPH1-2 (qEH1-4) in the RIL, were

simultaneously identified for PH and EH. Combing reported genome-wide

association and cloned PH-related genes, co-expression network analyses

were constructed, then five candidate genes with high confidence in major

QTL were identified including Zm00001d011117 and Zm00001d011108, whose

homologs have been confirmed to play a role in determining PH in maize

and soybean.

Discussion: QTL mapping used a immortalized backcross population is a new

strategy. These identified genes in this study can provide new insights for

improving the plant architecture in maize.
KEYWORDS

maize, plant height, ear height, QTL mapping, bi-parental immortalized
heterozygous populations
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Introduction

Maize (Zea mays L.) is one of the world’s most important crops,

as it plays a key role in ensuring food security and promoting

economic development (Hossain et al., 2022). The “Green

Revolution” addressed the problems associated with the excessive

plant growth and lodging caused by extensive fertilization through

the development of dwarf varieties in crops, such as wheat and rice

(Khush, 2001; Evenson and Gollin, 2003; Hedden, 2003). Much

progress has been made in our understanding of the plant

architecture of crops, and ideal plant architecture traits have been

identified for various crops (Jafari et al., 2023).

Maize plants are ideal when they have high photosynthetic

efficiency and lodging resistance and the canopy structure is

optimized (Pan et al., 2017); these traits can directly or indirectly

affect grain yield (Zhou et al., 2016). Recent studies have suggested

that improving planting density and the mechanization level in

production have become critically important for achieving high and

stable maize yields (Assefa et al., 2018; Tao et al., 2019). However,

increasing planting density results in changes in the characteristics

of maize plant architecture, such as an elongated stem and reduced

stem strength, which weakens lodging resistance and decreases yield

(Wang et al., 2019; Fei et al., 2022). Exploring the genetic basis of

traits associated with plant architecture is thus important for

optimizing the architecture of maize plants and thus ensuring

that maize plants are adapted to a future of high-

density production.

Plant architectural traits, such as plant height (PH) and ear

height (EH), are typical polygenic traits in maize that are affected by

environmental changes. The use of molecular marker technology to

identify quantitative trait loci (QTL) for maize plant architecture

traits can shed light on the genetic basis of these traits. Various

populations and methods have been used to genetically dissect PH,

EH, and other plant architecture traits in maize. Numerous QTL

associated with these traits have been identified. Bai et al. utilized

maize near-isogenic lines and backcross populations for the QTL

mapping of PH and EH, and they detected nine QTL associated

with PH and 15 QTL associated with EH, which explained between

3.1% and 31.2% of the phenotypic variation (Bai et al., 2010). Li

et al. identified a candidate gene for PH and EH encoding a C2H2

zinc finger family protein (GRMZM2G114667) in the shared region

using linkage and association mapping (Li et al., 2016). Sa et al.

detected three QTL related to PH and five QTL related to EH using

a recombinant inbred line (RIL) population, which explained

between 3.79% and 19.85% of the phenotypic variation (Sa et al.,

2021). Fei et al. identified three candidate genes located in the three

consistent QTL regions using two populations, and these genes were

involved in the gibberellin (GA)-activated signal pathway,

brassinolide signal transduction pathway, and auxin-activated

signal pathway (Fei et al., 2022).

Additionally, maize is one of the best crops for heterosis

utilization, which required to clear the heterosis using F1 hybrids.

Researchers have utilized various genetic designs to explore

heterosis-related QTL for maize PH and EH. Li et al. Identified

14 QTL for PH and EH using two IB populations and found that

overdominance (OD) effects were the major contributors to the
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heterosis observed in PH and EH (Li et al., 2017). Xiao et al.

employed the Complete-diallel design plus Unbalanced Breeding-

like Inter-Cross (CUBIC) population to conduct Genome-Wide

Association Studies (GWAS) for PH traits and the corresponding

mid-parent heterosis (MPH). They detected two significant peaks in

maternal populations and F1 populations for MPH of PH, and

demonstrated the epistatic interactions that Brachytic2 represses

the Ubiquitin3 for PH (Xiao et al., 2021).

Several genes affecting PH and EH in maize have been

successfully cloned, and most of these genes are associated with

hormones such as auxin, GA, and brassinolide. The representative

gene Dwarf1(D1), which was also referred to as ZmGA3ox2, affects

PH by influencing GA biosynthesis (Phinney, 1956; Spray et al.,

1996; Teng et al., 2013). Multani et al. cloned the ZmBr2 gene,

which shortens maize internodes and controls PH and EH (Multani

et al., 2003). Subsequently, Xing et al. confirmed that ZmBr2 altered

PH by influencing the polar transport of auxin and reducing the

number of longitudinal cells in maize (Xing et al., 2015). Li et al.

confirmed that ZmRPH1 overexpression reduces maize PH and EH,

which enhances resistance to lodging (Li et al., 2020). Liu et al.

found that ZmGA2ox3 influences GA biosynthesis, and the loss of

function of this gene results in maize dwarfism (Liu et al., 2024).

The main commercially cultivated varieties of maize currently

used are single-cross hybrids showing heterosis. The use of hybrid

varieties to construct genetic populations might facilitate the

identification of loci and genes, as well as characterization of gene

function; such studies can also provide valuable insights that could

aid the breeding of single-cross hybrids with desirable plant

architecture traits.

Here, the commercial hybrid Shaandan 650 (KA105×KB024)

and its advanced generation recombinant inbred lines (RILs) were

used as experimental materials. Two permanent backcross

populations (IB) were constructed by back-crossing RILs with the

two parents following the NC III genetic mating design. Using

phenotypic data from four different locations, QTL mapping was

performed on the two IB populations and the RIL population using

GAHP software. Five candidate genes associated with PH and EH

were identified using data from multiple public databases. The

results of this study can be used to identify the key genes

determining plant architecture traits in maize.
Materials and methods

Plant materials and field experiment

One RIL population consisting of 183 F2:9 lines was developed by

crossing inbred lines of KA105 from the Shaan A group with KB024

cultivated from the Shaan B group. Next, the 183 RILs were back-

crossed with the two parent lines (KA105 and KB024) based on the

NC III design, and two immortalized backcross populations (IB) both

contained 183 F1. The IB population generated by crossing with

KA105 was called IB1, and the IB population generated by crossing

with KB024 was called IB2 (Zhang et al., 2022).

The two parent lines, F1 (Shaandan650, a nationally approved

variety in China), the RIL population, and IB1 and IB2 populations
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were all planted at four different locations including Sanya (SY,

18.24°N, 109.51°E), Yangling (YaL, 34.28°N, 108.06°E), Yulin (Yul,

34.48°N, 109.58°E), and Weinan (WN, 34.96°N, 109.34°E). This

experiment adopts a randomized block design. For each material,

planting is carried out in a single row with a length of 4 m. The

distance between every two plants within each row is approximately

22 cm, and the distance between every two rows is approximately

0.6 m. The overall density is 75,000 plants/ha row.
Analysis and collection of phenotypic data

At harvest, phenotypic data, including PH and EH, were

collected from 10 representative plants of each material. Basic

descriptive analysis of PH and EH of the three populations was

conducted across four environments using IBM SPSS Statistics v23

software (https://www.ibm.com/products/spss-statistics). The R

package “corrplot” was used to calculate the correlation

coefficients between environments and traits (Wei et al., 2017).

Next, we used the R package “lme4” to perform the best linear

unbiased prediction (BLUP) to mitigate the effects of environmental

factors (Bates et al., 2014). The formula was as follows: Pheno ~ (1|

Loc) + (1|Line), where Pheno represents the trait data, Loc refers to

all environments, and Line refers to each material (inbred lines or

backcross F1 hybrids). The parentheses indicate random effects. The

model matrix and grouping factors are separated by the vertical bar

character “|”. In addition, the broad-sense heritability (H2) of the

traits in RIL, IB1, and IB2 across all locations was estimated using

the formula H2 = s 2
g / (s 2

g + s 2
e /n), where s 2

g represents the

genotypic variance, s 2
e represents the error variance, and n

represents the number of environments (Fu and Wang, 2023).
Genotype detection and genetic linkage
map construction

Leaf samples at the five-leaf stage were collected from the 183

RILs and two parental lines (KA105 and KB024) for genomic DNA

extraction and analysis. Genomic DNA was extracted using an

improved CTAB method (Murray and Thompson, 1980), and the

quality of the DNA products was assessed using agarose gel

electrophoresis and a UV spectrophotometer. The qualified DNA

samples were genotyped using the Maize 6H-60k SNP chip in

Beidahuang (Beidahuang Kenfeng Seed Co., Ltd.). The chip was

designed using the maize inbred line B73 version 3 (Ref3) genome

as a reference by the Maize Research Center of Beijing Academy of

Agriculture and Forestry Sciences.

The genotype of the RILs and parents was used to construct the

linkage map via the following steps: 1) selection of polymorphic

markers in KA105 and KB024; 2) filtering of markers using

IciMapping v4.2 (Meng et al., 2015) based on a missing rate ≥

10% and distortion value P ≥ 0.0001; 3) division of selected effective

markers into bins using the “BIN” function; and 4) construction of

the genetic linkage map using the “MAP” function with

default parameters.
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QTL analysis

QTL analysis was performed separately for PH and EH in the

RIL, IB1, and IB2 populations using the inclusive composite interval

mapping method and the “QHP” function in GAHP v1.0 software,

which was specifically designed to perform QTL mapping in the IB

population (Zhang et al., 2022). At the same time, this software

allows for QTL combined analysis involving RIL, IB1, and IB2

populations (Zhang et al., 2022). For the sake of convenience in

description, we consider this combined analysis as one population

and refer to it as the IBL population. In GAHP, QTL identified in

the RIL population can be used to estimate additive effect (a). IB1

and IB2 populations can be used to estimate a-d and a+d,

respectively. The IBL population can be used to estimate the

additive effect (a) and dominance effect (d). Therefore, for QTL

identified in the IBL population, the mode of action of the QTL can

be determined by calculating the dominance ratio |d/a| (Stuber

et al., 1987). The classification criteria are as follows: 1) additive

effect (Add): 0< |d/a| ≤ 0.20; 2) partial dominance (PD): 0.20< |d/a|<

0.80; 3) dominance (Dom): 0.80 ≤ |d/a|< 1.20; and 4)

overdominance (OD): |d/a| ≥ 1.20 (Jiang et al., 2015).

The LOD value and the related LOD threshold were determined

by performing 1,000 permutations, with the Type I error rate set to

0.05 and the PIN set to 0.005. If the detected QTL intervals for the

same trait are identical or overlapping, and they exhibit consistent

effects, they are considered the same QTL. QTL that were

consistently detected for different traits in one given population

were considered pleiotropic QTL (Frascaroli et al., 2007). The QTL

were named following the standard nomenclature, which involves

using the prefix “q” followed by the capitalized abbreviation of the

trait, the chromosome number, and the position number (Tanksley

and McCouch, 1997). For example, the first QTL for the trait “PH”

located on chromosome 1 would be denoted “qPH1-1”.
Filtering and annotation of
candidate genes

QTL with high PVE (≥10%), or detected in at least two

environments or two traits, were denoted as major-QTL.

According to the RefGen_v3 reference genome map from Maize

GDB (https://maizegdb.org/), we identified all genes within the

major-QTL regions. Subsequently, the obtained gene IDs were

converted from the third version (v3) to the fourth version (v4)

for the purpose of facilitating subsequent comparisons with the

database (https://maizegdb.org/).

Candidate genes were identified using integrated network

datasets and genome-wide association study (GWAS) results.

After converting the genes within the major-QTL intervals to the

maize genome v4, a comprehensive comparison was conducted

with genes associated with significantly correlated SNPs related to

PH and EH in the GWAS Atlas (https://ngdc.cncb.ac.cn/gwas/) and

genes that have been proven to be related to maize PH and EH,

along with their interacting genes, in the maize gene integrated

network (Feng et al., 2023; Han et al., 2023) (v4 version). Genes
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present in all three sets were considered as candidate genes.

Concurrently, based on the maize integrated network, an

interaction network analysis was performed for candidate genes

and their interacting genes. Genes were annotated using the

following databases: Ensembl Plants (http://plants.ensembl.org/

index.html), Maize GDB, GWAS Atlas, and NCBI (https://

www.ncbi.nlm.nih.gov/). Finally, Gene Ontology (GO) analysis of

the candidate genes was performed using the agriGO web server

(http://bioinfo.cau.edu.cn/agriGO/index.php), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis was performed using the Kobas web server

(http://kobas.cbi.pku.edu.cn/), with a p-value ≤ 0.01 and false

discovery rate (FDR)< 0.05 (Kanehisa et al., 2012; Tian et al., 2017).
Results

Phenotypic variation of PH and EH in the
RIL and IB populations

Investigation of the PH and EH of two parents (KA105 and

KB024) and their F1 progeny at multiple locations revealed

significant differences in PH and EH among hybrids (Figure 1A).

KA105 and KB024 were used to construct the RIL population and

corresponding backcross populations (IB1 and IB2) for dissecting

the genetic mechanism of PH and EH (Figure 1B). Finally, 183

individuals were obtained in each population. All individuals were

planted in four locations, and the BLUP of the PH and EH data was

used in subsequent analyses. The average PH was 185.56 cm, 234.16

cm, and 212.07 cm for RIL, IB1, and IB2, respectively (Table 1,

Figure 2). The average EH was 60.70 cm, 77.72 cm, and 69.37 cm for

RIL, IB1, and IB2, respectively (Table 1; Figure 2). The absolute

values of the skewness and kurtosis of PH and EH in the RIL and
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two IB populations were all less than 1 (Table 1), indicating that PH

and EH were normally distributed and typical quantitative traits.

In the three populations, transgressive segregation of PH and

EH was observed at all four locations and in the BLUP (Table 1,

Figure 2A). In IB1 and IB2, the PH of 97.27% and 90.71% of

individuals was significantly higher than that of their parents,

respectively. In IB1 and IB2, the EH of 91.80% and 85.25% of

individuals was significantly higher than that of their parents,

respectively. This indicates a clear hybrid advantage for both PH

and EH in the heterozygous populations (IB1 and IB2). Significant

correlations in PH and EH between all population were observed

(Supplementary Figure S1). This suggests that PH and EHmay have

a similar genetic basis within each population. Furthermore, the PH

and EH were higher in IB1 than in IB2 across all four locations, also

for those in BLUP; this is consistent with the backcross parents

(KA105 and KB024) (Figure 1B), suggesting that the hybrid

progeny inherited the high PH and EH of KA105. The broad-

sense heritability (H2) for PH was 0.94 in RIL, 0.85 in IB1, and 0.89

in IB2; the H2 for EH was 0.90 in RIL, 0.80 in IB1, and 0.82 in IB2.

The H2 for both traits was higher in the RIL population than in the

two IB populations, and this might be caused by the higher purity of

individuals in the RIL than in the IB populations (Table 1). In sum,

PH and EH in these are typical quantitative traits with high

heritability, indicating that genetic factors have a significant effect

on PH and EH and thus that they are suitable for QTL analysis.
Detection of QTL

Filtering of the SNP markers from the 6H60K SNP chip via

IciMapping v4.2 yielded a total of 4,555 high-quality SNPs for the

construction of the linkage map. These SNPs were evenly

distributed across 10 chromosomes (Supplementary Figure S2)
A B

FIGURE 1

(A) represent the PH and EH performance of the hybrid SD650 and its parents KA105 and KB024; a, b, and c represent significant differences at p <
0.001. (B) The population construction process. PH, plant height; EH, ear height. ⨂ indicated self-pollinated.
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TABLE 1 Description statistics of phenotypic traits for RIL populations and two IB populations under four environments and BLUP.

IB1 IB2

H2 Range
Mean
±sd

CV
(%) Ske Kur H2

Range
Mean
±sd

CV
(%) Ske Kur H2

0.94
184.00-
282.40

245.53
±18.89 7.70 -0.72 0.68 0.85

165.00-
258.40

215.08
±18.26 8.49 -0.13 -0.15 0.89

197.80-
265.75

231.10
±13.82 5.98 -0.08 -0.33

177.67-
245.00

210.60
±12.99 6.17 0.22 0.12

177.33-
244.00

212.62
±12.36 5.81 -0.15 -0.19

137.10-
227.71

192.76
±16.49 8.56 -0.55 0.96

208.50-
288.00

248.14
±14.15 5.70 -0.03 -0.04

182.25-
269.67

229.64
±16.04 6.99 -0.21 0.68

199.95-
264.59

234.16
±10.72 4.58 -0.27 0.27

182.30-
243.35

212.07
±12.30 5.80 0.16 -0.18

0.90
53.00-
110.00

78.88
±9.93 12.59 0.09 -0.18 0.80

42.20-
90.67

64.20
±9.78 15.23 0.45 -0.17 0.82

56.30-
106.20

74.57
±8.13 10.90 0.38 0.61

54.25-
96.30

71.29
±7.92 11.11 0.40 -0.11

53.00-
89.43

70.12
±7.33 10.45 0.14 -0.19

46.40-
83.00

64.12
±7.29 11.38 0.05 -0.20

63.68-
110.00

87.47
±9.51 10.87 -0.16 -0.07

56.40-
106.00

77.92
±9.67 12.41 0.23 0.03

64.95-
98.96

77.72
±5.52 7.10 0.23 0.60

56.42-
88.27

69.37
±5.78 8.33 0.47 0.04

Y
an

g
e
t
al.
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9
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n
tie

rsin
.o
rg

0
5

Trait Env
KA105 KB024 RIL

Mean
±SD

Mean
±SD

Range
Mean
±sd

CV
(%) Ske Kur

PH SY
191.90
±7.87

158.83
±7.17

142.80-
259.75

189.73
±24.57 12.95 0.32 -0.42

WN
211.50
±10.43

149.00
±9.22

133.00-
222.20

178.25
±17.71 9.94 0.05 -0.42

YaL
194.61
±10.77

146.48
±9.02

120.88-
226.90

173.35
±21.82 12.59 -0.02 -0.26

YuL
215.52
±7.42

184.23
±6.25

147.00-
257.10

199.83
±22.63 11.33 0.06 -0.34

BLUP
205.43
±6.74

165.07
±5.32

146.77-
241.10

185.56
±19.08 10.28 0.14 -0.50

EH SY
62.89±7.99 48.53±8.37

32.67-
91.00

59.96
±10.83 18.06 0.12 -0.16

WN
67.47±4.39 46.45±7.26

30.60-
89.54

58.51
±9.97 17.04 0.17 0.13

YaL
57.45±5.53 47.33±4.67

30.50-
80.33

56.89
±9.30 16.35 0.17 0.31

YuL
83.54±8.03 57.32±5.81

38.56-
108.00

70.36
±12.95 18.41 0.16 -0.15

BLUP 68.74±3.49 51.25±3.76
34.97-
93.49

60.70
±9.11 15.00 0.31 0.37
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and used to construct the linkage map with a total length of 4640.53

cM; the average distance between every pair of markers was 1.04 cM

(Supplementary Table S1). Next, GAHP v1.0 was used to perform

QTL mapping of PH and EH in the RIL and two IB populations.

QTL mapping was performed for the RIL, IB1, and IB2 and the

integrated IBL population. We identified a total of 49 QTL affecting

PH and EH; they were distributed across all 10 chromosomes, and

the phenotypic variation explained (PVE) was 0.23–37.26% (PVE)

(Figures 3, 4A; Table 2). All 15 QTL identified in the IBL can be

identified from the RIL or IB populations, and five QTL were co-
Frontiers in Plant Science 06
located in the RIL and IBL, four QTL were co-located in the IB1 and

IBL, five QTL were co-located in the IBL and IB2, and one QTL was

co-located in the IBL, IB1, and IB2 (Figure 4B). In addition, two

QTL simultaneously regulated PH and EH in maize, including

qPH1-1/qEH1-1, and qPH1-2/qEH1-4 (Table 2).

In the RIL population, we identified 10 PH QTL and seven EH

QTL, which had PVE values ranging from 2.00% to 19.23% and

from 0.59% to 37.26%, respectively. In the IB1 population, six PH

QTL and four EH QTL were identified, with PVE ranging from

0.96% to 13.77% and from 3.89% to 8.83%, respectively. In the IB2

population, three PH QTL with PVE values of 4.21–9.55% were

identified, and four EH QTL with 1.15–10.59% PVE were detected.

A total of nine PH QTL and six EH QTL were detected in the IBL

population, and the PVE ranged from 0.43% to 3.80% and from

0.23% to 3.78%, respectively (Table 2).

In the IBL population, we can detect additive and dominant

effects, as well as explore the genetic effects and mode of action for

each QTL. The PVEA for QTL mapped in the IBL population was

higher than the PVED (Supplementary Table S2). However, the

absolute values of the add-effects and dom-effects were not

consistent with this trend. In some specific QTL, the absolute

values of dom-effects were greater than those of add-effects, such

as qPH7-3, qPH7-4, qPH8-1, qPH8-2, qPH8-3, qPH8-4, qEH1-2,

qEH1-3, qEH7-3, and qEH9-2. To better understand the mode of

action, we calculated the |d/a| for these 15 QTL from the IBL

population and found that 60.00% (nine) of the QTL exhibited OD

effects (Figure 4C). For PH, six QTL exhibited OD effects, one

exhibited a PD effect, and two exhibited an Add effect. For EH, three

QTL exhibited OD, one exhibited a Dom effect, one exhibited PD,
FIGURE 3

Chromosomal distribution of the identified QTL for PH and EH. The
width of the lines shows the length of the confidence interval. The
blue and red lines represent the detected PH QTL and EH QTL,
respectively. Rectangles of different colors represent different
groups. The height of the histogram indicates the frequency of
the loci.
A

B

C

D

FIGURE 2

The phenotype variation and distribution of PH and EH in RIL and two IB populations. (A) The phenotypic variation of PH in three populations under
four locations. (B) The phenotypic variation of EH in three populations under four locations. (C) The phenotypic distribution of PH BLUP in the RIL,
IB1, and IB2 populations. (D) The phenotypic distribution of EH BLUP in the RIL, IB1, and IB2 populations. PH, plant height; EH, ear height. *** indicates a
significant difference at P < 0.001.
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and one exhibited an Add effect. These results suggested that OD is

the main mode of action underlying heterosis for PH and EH in our

populations (Figure 4C). Consistent with the bi-parental phenotype,

the favorable allele of the most identified QTL was inherited from

KA105, and the PH and EH were higher in KA105 than in KB024,

respectively (Figure 4D).
Identification of candidate genes for PH
and EH

QTL with high PVE (≥10%), or detected in at least two

environments or for two traits, were designated as major-QTL.

Finally, six major-QTL were retained for further analysis, including

qPH1-1 (qEH1-1), qPH1-2 (qEH1-4), qPH7-2, qPH8-6, qEH3-1, and

qEH9-2. All genes within these major-QTL intervals were extracted

for comparison with the reported genes identified by GWAS

(https://ngdc.cncb.ac.cn/gwas/) (Liu et al., 2023b). Classic PH and

EH genes and their interacting genes were obtained from the maize

integration network (Feng et al., 2023; Han et al., 2023). Five shared

gene s were id en t ified , inc lud ing Zm00001d030614 ,

Zm00001d034007, Zm00001d011117, Zm00001d011118, and

Zm00001d011167 (Figure 5A). In addition, Zm00001d011108 near

qPH8-6 interacted with Zm00001d030614, Zm00001d011167, and

Zm00001d011118 in the network (Figure 5B; Table 3). Therefore,

we designated these six genes as candidate genes that potentially

affect plant architecture.

To further determine the biological functions of the five key

candidate genes and interacting genes (1,415 genes) in the network,

we conducted GO analysis of these genes and found that they were
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enriched in 211 GO terms, including 113 in Biological Process, 70 in

Cel lu lar Component , and 28 in Molecular Funct ion

(Supplementary Table S2). The top 20 GO terms were mainly

related to cell proliferation and cell division, including cellular

component organization or biogenesis, organelle organization,

cellular component organization, macromolecular complex

subunit organization, cell cycle process, and cell cycle

(Figure 6A). We also performed KEGG pathway analysis and

identified 15 significantly enriched pathways, including DNA

replication, photosynthesis, homologous recombination,

spliceosome, ribosome biogenesis in eukaryotes, mismatch repair,

nucleotide excision repair, nucleocytoplasmic transport, base

excision repair, and RNA polymerase (Figure 6B).
Discussion

The advantages of GAHP in QTL detection
for bi-parental immortalized
heterozygous populations

Genetic dissections of complex quantitative traits have been

conducted in an increasing number of populations and species, and

this has been driven by the improvement of algorithms and models.

In maize, the new representative genetic populations include multi-

parent advanced generation inter-cross (MAGIC), complete-diallel

plus unbalanced breeding-derived inter-cross (CUBIC), F1, and

testcross populations. Dell et al. identified the genetic basis of

complex agronomic traits using MAGIC populations derived

from eight genetically diverse parents (Dell Acqua et al., 2015).
A B

C D

FIGURE 4

QTL localization and effect analysis. (A) The bar chart represents the number of QTL localized in the four populations; (B) The overlap of QTL
localized in the four populations using Venn diagrams, with different colors indicating different populations. (C) The bar chart shows the modes of
action of QTL affecting PH and EH traits in the IBL population; (D) Indicates the effect sources of QTL affecting PH and EH localized in the RIL and
IBL populations, with red indicating effects from the parent KA105 and blue indicating effects from the parent KB024.
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TABLE 2 The detail information about the QTLs identified in the four populations.

add-dom add+dom dom |d/a| Mode

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

– – – – –

-5.32 – – – –

-11.43 – – – –

7.58 – – – –

20.25 – – – –

-15.87 – – –

5.58 – – – –

-2.93 – – – –

3.48 – – – –

-2.67 – – – –

4.03 – – – –

(Continued)
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Name Pop Chr Trait Interval LOD LODA LODD PVE PVEA PVED add

qPH1-1 RIL 1 PH 106.55-147.17 24.25 – – 19.23 – – -10.84

qPH1-2 RIL 1 PH 275.98-279.44 16.50 – – 10.26 – – 8.00

qPH2-1 RIL 2 PH 189.18-189.18 6.73 – – 3.69 – – -4.80

qPH2-3 RIL 2 PH 213.88-214.05 4.02 – – 2.11 – – 3.62

qPH3 RIL 3 PH 141.31-149.28 7.48 – – 4.08 – – -5.02

qPH7-1 RIL 7 PH 24.83-25.83 4.29 – – 2.31 – – 3.85

qPH7-2 RIL 7 PH 160.18-161.47 10.62 – – 6.13 – – 6.16

qPH8-5 RIL 8 PH 170.42-170.96 5.40 – – 2.94 – – -4.24

qPH8-6 RIL 8 PH 127.66-137.30 3.79 – – 2.00 – – -3.53

qPH10-2 RIL 10 PH 144.63-144.91 5.51 – – 2.90 – – 4.23

qEH1-1 RIL 1 EH 106.55-147.17 6.19 – – 1.04 – – -2.76

qEH1-4 RIL 1 EH 275.98-279.44 4.17 – – 0.62 – – 2.15

qEH3-1 RIL 3 EH 43.62-45.24 80.27 – – 37.26 – – 16.49

qEH3-2 RIL 3 EH 149.83-149.83 5.13 – – 0.78 – – -2.39

qEH6 RIL 6 EH 161.33-162.22 4.46 – – 0.67 – – 2.25

qEH7-1 RIL 7 EH 138.72-138.92 3.90 – – 0.59 – – 2.11

qEH10 RIL 10 EH 136.96-137.28 5.75 – – 0.87 – – 2.53

qPH2-2 IB1 2 PH 207.81-208.02 3.74 – – 0.96 – – –

qPH7-3 IB1 7 PH 167.26-167.26 14.57 – – 4.26 – – –

qPH7-4 IB1 7 PH 168.13-168.44 7.24 – – 1.93 – – –

qPH8-1 IB1 8 PH 22.51-22.56 35.08 – – 13.77 – – –

qPH8-2 IB1 8 PH 23.89-24.13 24.40 – – 8.54 – – –

qPH10-1 IB1 10 PH 6.87-8.15 3.96 – – 1.06 – – –

qEH7-2 IB1 7 EH 167.77-167.88 4.55 – – 4.66 – – –

qEH7-4 IB1 7 EH 174.54-174.58 6.24 – – 6.61 – – –

qEH9-1 IB1 9 EH 11.46-12.72 3.78 – – 3.89 – – –

qEH9-2 IB1 9 EH 141.03-142.46 7.87 – – 8.83 – – –
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TABLE 2 Continued

A PVED add add-dom add+dom dom |d/a| Mode

– – – 6.55 – – –

– – – 6.87 – – –

– – – -9.75 – – –

– – – 3.83 – – –

– – – -2.99 – – –

– – – -7.45 – – –

– – – 9.09 – – –

0.00 -5.45 – – 0.15 0.028 A

0.01 4.32 – – -0.57 0.131 A

0.02 3.90 – – 0.96 0.245 PD

0.38 -3.55 – – 4.86 1.369 OD

0.26 1.32 – – -3.93 2.984 OD

1.61 5.46 – – -9.83 1.801 OD

0.99 -3.96 – – 7.67 1.937 OD

0.20 1.87 – – 3.45 1.846 OD

0.39 -1.84 – – -4.86 2.647 OD

0.05 1.29 – – 1.42 1.103 D

0.07 -0.69 – – -1.65 2.399 OD

0.02 8.25 – – 0.92 0.112 A

0.32 -1.74 – – -3.48 2.005 OD

0.21 3.52 – – 2.80 0.796 PD

0.10 1.05 – – -1.92 1.834 OD
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Name Pop Chr Trait Interval LOD LODA LODD PVE PVE

qPH4 IB2 4 PH 183.24-183.76 3.69 – – 4.21 –

qPH8-3 IB2 8 PH 116.55-117.35 4.12 – – 4.81 –

qPH8-4 IB2 8 PH 124.65-128.59 7.87 – – 9.55 –

qEH1-2 IB2 1 EH 224.14-225.40 6.31 – – 1.89 –

qEH1-3 IB2 1 EH 256.73-257.64 3.94 – – 1.15 –

qEH7-3 IB2 7 EH 173.29-174.01 19.77 – – 7.11 –

qEH7-4 IB2 7 EH 174.54-174.58 26.97 – – 10.59 –

qPH1-1 IBL 1 PH 106.55-147.17 12.11 12.10 0.01 3.70 3.70

qPH1-2 IBL 1 PH 275.98-279.44 8.39 8.29 0.10 2.09 2.08

qPH7-2 IBL 7 PH 160.18-161.47 5.84 5.57 0.27 1.31 1.30

qPH7-3 IBL 7 PH 167.26-167.26 9.82 3.49 6.33 1.24 0.85

qPH7-4 IBL 7 PH 168.13-168.44 5.62 1.34 4.28 0.56 0.31

qPH8-1 IBL 8 PH 22.51-22.56 29.34 7.97 21.37 3.80 2.19

qPH8-2 IBL 8 PH 23.89-24.13 19.33 5.11 14.22 2.31 1.32

qPH8-3 IBL 8 PH 116.55-117.35 4.41 1.02 3.39 0.43 0.23

qPH8-4 IBL 8 PH 124.65-128.59 8.38 1.81 6.57 0.80 0.41

qEH1-2 IBL 1 EH 224.14-225.40 5.22 2.07 3.15 0.57 0.52

qEH1-3 IBL 1 EH 256.73-257.64 4.84 0.64 4.20 0.23 0.15

qEH3-1 IBL 3 EH 43.62-45.24 41.36 40.00 1.37 2.63 2.60

qEH7-3 IBL 7 EH 173.29-174.01 21.37 5.18 16.19 1.70 1.38

qEH7-4 IBL 7 EH 174.54-174.58 22.23 11.29 10.93 3.78 3.58

qEH9-2 IBL 9 EH 141.03-142.46 7.00 1.44 5.56 0.45 0.35
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Zhou et al. performed QTL mapping for height-related traits and

their corresponding general combining ability (GCA) and specific

combining ability (SCA) effects using two testcross populations

(Zhou et al., 2018). Liu et al. found that epistasis contributes to

phenotypic variance in 23 agronomic traits in a CUBIC population

descended from 24 elite inbred lines (Liu et al., 2020). Dong et al.

conducted genome-wide association mapping of kernel moisture

and kernel dehydration using 442 F1s derived from 113 inbred lines

(Dong et al., 2023). Liu et al. (2023) dissected the genetic basis of

nitrogen use efficiency using maize inbred lines and test crosses (Liu

et al., 2023a). The results of these studies suggest that genetic

analyses of cross populations are effective for clarifying the mode

of action of genes in F1 populations, which are the most commonly

used for commercial varieties.

We performed QTL mapping of plant architecture using

three populations: RIL populations from two inbred lines, an

immortalized backcross population with the first parent (IB1),

and an immortalized backcross population with the second

parent (IB2). We identified 15 QTL in the IBL population (the
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integrated population) using GAHP (https://isbreeding.caas.cn/

rj/GAHP/ec4ff2474369420b893f2440696fbff7.htm), which is a

new QTL mapping software that can simulate bi-parental

immortalized heterozygous and pure-line populations and

perform QTL mapping power analysis (Zhang et al., 2022); we

further found that all these QTL could be detected in a single

population, either RIL or IB1/IB2 (Figure 3, Table 2). The QTL

identified from IBL can explain less phenotypic variation than

the corresponding QTL in the single population; they thus

provide a more accurate reflection of the effect of each QTL in

the hybrids, which will aid subsequent breeding efforts.

Furthermore, QTL mapping of the IBL population using

GAHP can be used to calculate Add or Dom effects, along with

the contributions of Add or Dom to PVE (Table 2). All

commercial variants of maize, including F1 populations, are

single hybrids; thus, genetic analysis of heterozygous

populations can provide valuable information for evaluating

the mode of action of each QTL, and this information can be

used to enhance germplasm resources.
A B

FIGURE 5

Identification and network of candidate gene. (A) Venn diagram of candidate genes for plant architecture within the six major-QTL regions by
multiple database. (B) The network of five nominated key candidate genes; red dots represent the five key candidate genes selected through
comprehensive screening, purple dots represent genes associated with the screened genes, and yellow dot represents the common interacted
genes with the three key candidate genes.
TABLE 3 Information for the six genes screened using the three datasets.

The Gene ID of the
Selected Genes (v4)

Source Gene ID (v3) Chrom Gene Portein Information

Zm00001d030614 qPH1-1 GRMZM2G065205 1 mcm1
DNA replication licensing factor MCM7/ replication

licensing factor MCM7-like protein

Zm00001d034007 qPH1-2 GRMZM2G011373 1 – –

Zm00001d011117 qPH8-6 GRMZM2G363429 8 – cytochrome P450 family 722 subfamily A polypeptide 1

Zm00001d011118 qPH8-6 AC199039.3_FG003 8 – AC199039.3_FGT003 / Os12g0638500-like protein

Zm00001d011167 qPH8-6 GRMZM2G064675 8 cl26374_1 cl26374_1(629)

Zm00001d011108
interaction
network

GRMZM2G339151 8 vim102 variant in methylation102
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PH and EH show high environmental
sensitivity and have a complex genetic
basis in maize

Increases in yield observed in previous years have mainly been

achieved via increases in plant density (Duvick, 2005), and this can

be significantly affected by plant architecture. Therefore,

understanding the genetic basis of PH and EH is important for

increasing plant density, as well as grain yield. In this study, PH and

EH of the RIL, IB1, and IBL populations were investigated across

four locations (SY, WN, YaL, and YuL). As expected, the average

PH and EH were relatively higher in the two IB populations than in

the RIL population due to heterosis, and the average PH and EH

were higher in IB1 than in IB2; this is consistent with the higher PH

and EH of the test lines (KA105) of IB1 than in the test lines

(KB024) of IB2 (Figures 1A, 2). We also found that variation in PH

and EH was greater in RIL than in IB1 and IB2, and this stems from

the fact that most of the genotypes were heterozygous in each line

from IB populations but not in RILs. However, given the higher

purity of genotypes in the RIL, the H2 values of PH and EH were

higher in the RIL than in the two IB populations (Table 1). This

indicates that the genetic background and phenotypes of the parents

play a key role in determining the extent to which plant architecture

can be improved via breeding (Figure 2).

Genetic analysis of PH and EH in the RIL, IB1, IB2, and the

combined population IBL revealed 47 QTL for PH and EH

distributed in 29 genomic regions across nine chromosomes,

excluding chromosome 5 (Figure 3; Table 2). Some QTL clustered

together, such as qPH8-1 and qPH8-2, which were separated by 1.33

Mb, and qEH7-3 and qEH7-4, which were separated by 0.54 Mb.

QTL mapping revealed that qPH1-1 was co-localized with qEH1-1

and qPH1-2 was co-localized with qEH1-4, indicating that PH and

EH had a partially shared genetic basis; this might explain the

significant positive correlations (r ranging from 0.59 to 0.71)

between PH and EH. Furthermore, QTL mapping in IBL revealed

that PD and OD effects contributed to variation in PH and EH

(Table 2); this increases the difficulty of dissecting the genetic basis
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of PH and EH in maize. We did not analyze epistatic interactions in

this study, yet these played a role in regulating PH and EH.

Although several key genes regulating PH have been cloned, such

as D1 (Teng et al., 2013) and BR2 (Xing et al., 2015), the regulatory

mechanism of PH remains unclear.
Candidate genes associated with
development were identified in this study

Comparison of the reported genes associated with maize PH

and EH revealed that the classic gene Zm00001d041957

(ZmCCS52B, regulating maize PH) identified by Yang et al.

(2015) is located within the interval of qPH3 derived from the

RIL population in this study, which explained 4.08% of the

phenotypic variation. ZmCCS52B is a cell cycle switch protein

that affects maize PH through its effects on cell division (Yang,

2015). The gene Zm00001D008909 (GA2ox9), which belongs to the

GA 2-oxidase (GA2ox) family, is located within the interval of

qPH8-2 derived from the IB1 population and IBL population, which

explains 8.54% and 2.31% of the phenotypic variation, respectively.

The homologous gene ZmGA2ox3 has been shown to affect PH in

maize (Liu et al., 2024), and the proteins encoded by the

homologous genes in this family can deactivate endogenous

bioactive GA to regulate plant growth. Another gene

Zm0001d010987 (rap2.7), which is located within the interval of

qPH8-6 derived from the RIL population with 2.00% PVE, was

reported to control maize flowering time. Zmrap2.7 is an AP2

transcription factor that acts as a flowering suppressor in maize

(Salvi et al., 2007; Dong et al., 2012).

Using data from the GWAS Atlas, we found that some

significantly associated SNPs affecting PH and EH were co-

localized with the QTL identified in this study (Supplementary

Table S3), suggesting that the reliability of the QTL results was high.

Five genes that could be shared in our QTL were identified using

information derived from a previously constructed gene regulatory

network (Feng et al., 2023; Han et al., 2023) (Figure 5A). One gene
A B

FIGURE 6

Enrichment analysis of the genes from the interacted genes in Figure 5. (A) The top 20 secondary GO terms enriched (arranged by -log10(FDR)); (B) Fourteen
enriched pathways by KEGG analysis.
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that interacts with three of these five candidate genes was also

identified (Figure 5A). Zm00001d011117 encodes a putative

cytochrome P450 superfamily protein, and the homologous gene

ZmD1 has been reported to regulate maize plant architecture (Le

et al., 2022). Additionally, Zm00001d011108 encodes E3 ubiquitin-

protein ligase ORTHRUS 2. The E3 ligase encoded by GmlPA1 has

been confirmed to play a role in regulating the PH of soybean (Sun

et al., 2023). These findings demonstrate the utility of QTL mapping

for complex quantitative traits using multiple populations with

diverse genetic backgrounds, and the related candidate genes can be

identified rapidly using previously published multi-omic datasets.
Conclusion

We conducted a genetic analysis of two plant architecture-

related traits (PH and EH) in a bi-parental immortalized

heterozygous population and identified 34 QTL; most of the QTL

effects were derived from the KA105 parent. The QTL, GWAS, and

co-express ion network revealed s ix candidate genes

(Zm00001d030614 , Zm00001d034007 , Zm00001d011108 ,

Zm00001d011117, Zm00001d011118, and Zm00001d011167), and

the homologous genes of Zm00001d011117 and Zm00001d011108

were functionally validated in maize and soybean, respectively. In

sum, we identified candidate genes affecting PH and EH via QTL

mapping using multiple populations. The results of this study

provide new insights that could be used to improve maize

plant architecture.
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SUPPLEMENTARY FIGURE 1

Correlation between PH and EH in RIL and two IB populations. The blue bars

represent the corresponding phenotype distribution, the red curve is the
phenotype distribution curve, and the green curve is the correlation fitting

curve for the two phenotype data. *** indicates p<0.001, ** indicates p<0.01,

and * indicates p<0.05.

SUPPLEMENTARY FIGURE 2

Genetic linkage map marker density.
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