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Pan-genome studies are important for understanding plant evolution and

guiding the breeding of crops by containing all genomic diversity of a certain

species. Three short-read-based strategies for plant pan-genome construction

include iterative individual, iteration pooling, and map-to-pan. Their

performance is very different under various conditions, while comprehensive

evaluations have yet to be conducted nowadays. Here, we evaluate the

performance of these three pan-genome construction strategies for plants

under different sequencing depths and sample sizes. Also, we indicate the

influence of length and repeat content percentage of novel sequences on

three pan-genome construction strategies. Besides, we compare the

computational resource consumption among the three strategies. Our findings

indicate that map-to-pan has the greatest recall but the lowest precision. In

contrast, both two iterative strategies have superior precision but lower recall.

Factors of sample numbers, novel sequence length, and the percentage of novel

sequences’ repeat content adversely affect the performance of all three

strategies. Increased sequencing depth improves map-to-pan’s performance,

while not affecting the other two iterative strategies. For computational resource

consumption, map-to-pan demands considerably more than the other two

iterative strategies. Overall, the iterative strategy, especially the iterative pooling

strategy, is optimal when the sequencing depth is less than 20X. Map-to-pan is

preferable when the sequencing depth exceeds 20X despite its higher

computational resource consumption.
KEYWORDS

plant pan-genome, short-reads based construction strategies, evaluation, map-to-
pan, iterative
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1 Introduction

In 2005, Tettelin et al. introduced the pan-genome concept to

encompass the entire gene set in Streptococcus agalactiae (Tettelin

et al., 2005). Since then, this concept has gained widespread

application in characterizing the collective genes of a species,

encompassing core, dispensable, and private components. The

advancement of sequencing technology, especially the prevalent

next-generation short-read sequencing, has enabled large-scale pan-

genome analysis in plants, extending beyond its initial application

in microbes. By 2007, the pan-genome concept was introduced to

maize (Morgante et al., 2007). After that, plenty of studies have

delved into the plant pan-genomes of diverse species, such as poplar

(Zhang et al., 2019), Brachypodium distachyon (Gordon et al.,

2017), Brassica oleracea (Golicz et al., 2016), Brassica napus

(Hurgobin et al., 2018), pepper (Ou et al., 2018), Medicago (Zhou

et al., 2017), rice (Zhao et al., 2018), soybean (Li et al., 2014),

hexaploid bread wheat (Montenegro et al., 2017), tomato (Gao

et al., 2019), and sunflower (Hübner et al., 2019). These plant pan-

genomics studies are pivotal in pinpointing key novel non-reference

genes or sequences related to processes like signaling (Golicz et al.,

2016), defense mechanisms (Gordon et al., 2017), resistance

pathways (Bayer et al., 2019), important agricultural traits (Gao

et al., 2019), and heterosis (Zhang et al., 2016).

Microbial pan-genome studies have benefited from well-

established toolkits like Roary (Page et al., 2015), PGAP (Zhao

et al., 2012), PanGP (Zhao et al., 2014), PanOCT (Fouts et al., 2012),

and PANNOTATOR (Santos et al., 2013), while there is not a

uniform strategy or pipeline for plant pan-genome construction.

There are three plant pan-genome construction strategies based on

next-generation sequencing short-reads. They can be summarized

as the iterative individual (Golicz et al., 2016; Hurgobin et al., 2018;

Hübner et al., 2019), the iterative pooling (Montenegro et al., 2017),

and the map-to-pan (Hu et al., 2017; Sun et al., 2017; Zhou et al.,

2017; Ou et al., 2018; Gao et al., 2019; Qin et al., 2021). All these

three strategies construct a pan-genome based on a high-quality

reference genome. For map-to-pan, the whole genome of each

accession included in the pan-genome analysis is assembled and

then aligned to the reference genome to obtain non-redundant

novel sequences not existing in the reference genome. Unlike map-

to-pan, unmapped or poorly mapped reads with reference genomes

are first extracted. In the iterative pooling method, unmapped or

poorly mapped reads from each accession are pooled and assembled

in a metagenomic way. In the iterative individual approach,

unmapped or poorly mapped reads are assembled directly for

each accession, pooled, and removed redundancy. Two iterative

strategies are used for pan-genome construction with large-scale

samples due to their low requirement for low sequencing depth and

computation resource consumption. In contrast, whole genome

sequencing and assembly are needed in map-to-pan, so map-to-pan

is suitable for pan-genome construction with a few samples. Some

pan-genome studies have incorporated long reads from third-

generation sequencing platforms, like in rice (Qin et al., 2021),

soybean (Liu et al., 2020), sorghum (Tao et al., 2021), maize

(Hufford et al., 2021), and Raphanus sativus (Zhang et al., 2021),
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while their widespread adoption is constrained by high sequencing

expenses, especially in plant pan-genome projects with large-scale

samples. Given the vast availability of published short-read

sequencing data for numerous plant species, it is prevalent to

construct plant pan-genomes based on next-generation short-reads.

Here, we thoroughly benchmark these three strategies for plant

pan-genome construction, factoring in different sequencing depths

and the number of samples included. We also compare the

efficiency of these three strategies in recovering novel non-

reference sequences with different lengths and repetitive content

percentages. Additionally, we compare computational resource

consumption among these three strategies, encompassing both

time and memory. Our in-depth evaluation aims to shed light on

the effectiveness of these three pan-genome construction strategies

under varying conditions and guide researchers in choosing the

optimal pan-genome construction strategy.
2 Materials and methods

2.1 Data sets

Our research collected 20 high-quality chromosome-level

genome assemblies, gene annotation files, gene sequences, protein

sequences, and PacBio long reads from the rice XI subtype (Qin

et al., 2021) (Supplementary Table 1). We categorized these samples

into five groups with 5, 8, 10, 15, and 20 samples, respectively. The

group with 8 samples included all subtypes from XI-1B. It was used

for benchmarking the influence of various sequencing depths,

lengths, and repeat content percentages of novel sequences on

these three strategies. The information from the other four groups

was compared to examine how the sample number included

affected the performance of these three strategies.

The ART-Illumina read simulation tool (Huang et al., 2012) was

used to generate the simulated next-generation sequencing short-

reads with depths of 5X, 10X, 20X, 30X, and 50X, with 20 high-

quality chromosome-level genome assemblies as the reference. To

evaluate the limitations of simulated reads, the real data of next-

generation sequencing short-reads for the 9311 sample was

downloaded from GSA (https://ngdc.cncb.ac.cn/gsa/) under

Project ID PRJCA002103 and RunID CRR279354. These

sequences were aligned to the reference genome using BWA-

MEM (Li, 2013). MSU was used as a reference genome, and its

genome sequence was downloaded from RiceRC (https://

ricerc.sicau.edu.cn/RiceRC/download/downloadBefore). This

genome assembly produced by the Rice Genome Annotation

Project was initially located at the Institute for Genomic Research.

It is now at Michigan State University (MSU) (Ouyang et al., 2007).

Finally, sequencing depth, genome coverage, and other

characteristics were calculated using the BAMDST toolkit

(https://github.com/shiquan/bamdst). We generated the simulated

sequencing data according to the average depth of real data for each

chromosome. The characteristics of simulated data were calculated

by the BAMDST toolkit and then compared with the characteristics

of real data.
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2.2 Construction of the testing data set

Three pan-genome construction strategies, iterative individual,

iterative pooling, and map-to-pan, utilized simulated short reads to

create a test dataset for each group with different sample sizes

(Figure 1). Each strategy underwent identical data pre-processing,

which involved eliminating reads with over five Ns, trimming

adapters, removing low-quality bases from the 5’ and 3’ ends

when the quality score was consistently below 20, and discarding

reads shorter than 30 bp. All pre-processing tasks were executed
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using a Perl script developed in-house, which was deposited in

BioCode with ID BT007415 (https://ngdc.cncb.ac.cn/biocode/

tools/BT007415).

For map-to-pan, high-quality reads were firstly collected for

whole genome assembly using SOAPdenovo2 (Luo et al., 2012)

through the eupan assemble linearK model in the EUPAN toolkit

(Hu et al., 2017). The iterative k-mer was set to a range between 15

and 127 to optimize the assembly outcome. Secondly, the whole

genome assembly of each sample was aligned to the reference

genome via the MUMmer software (Kurtz et al., 2004). Those
FIGURE 1

Workflow of evaluation for three plant pan-genome construction strategies based on next-generation short-reads.
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sequences not aligned with the reference genome with 90% identity

and 90% coverage simultaneously were recognized as candidate

novel non-reference sequences. Subsequently, each sample’s novel

sequences were combined, and redundancy was eliminated using

CD-HIT (Fu et al., 2012).

For the iterative individual, high-quality reads were initially

mapped to the reference genome using BWA MEM (Li, 2013).

Unmapped and poorly mapped reads and those with an edit

distance of ≥ 8 were extracted for assembly by MEGAHIT (Li

et al., 2015). Then, the contigs assembled from each sample were

merged, and redundancy was removed with CD-HIT (Fu et al.,

2012). For iterative pooling, high-quality reads were initially

mapped to the reference genome using BWA-MEM (Li, 2013).

Unmapped and poorly mapped reads with an edit distance of ≥ 8

were extracted and pooled. These pooling of unmapped or poorly

mapped reads were assembled using MEGAHIT (Li et al., 2015).

For both iterative methods, the edit distance threshold was 8 to

select poorly mapped reads. The length of almost all simulated reads

was 83 bp, so if the edit distance was greater than 8, the mapping

rate of a read to the reference genome was less than ~90%. They

may be from highly diverse genomic regions of subspecies

compared with the reference genome. So, these reads were also

collected and combined with the unmapped reads for novel

sequence assembly for two iterative methods.

Unlike the SOAPDENOVO2 for assembly in map-to-pan, we

employed MEGAHIT to assemble those unmapped or poorly

mapped reads in both iterative strategies to maximize the

utilization of these reads. Since MEGAHIT was often utilized for

microbial metagenome assembly, it performed better when reads

exhibited greater heterogeneity, especially in iterative pooling,

where unmapped or poorly mapped reads were pooled together

for assembly.
2.3 Construction of the validated data set

The plant pan-genome consists of the gene-centric and

sequence-centric pan-genome (Golicz et al., 2020). Here, novel

genes identified from gene-based pan-genome and insertions

identified from sequence-based pan-genome were combined as

the validated data set.

For gene-centric pan-genome construction, there were two

kinds of strategies including synteny-based, such as in rice (Qin

et al., 2021), and gene clustering-based, such as in Brachypodium

distachyon (Gordon et al., 2017) using GET_HOMOLOG-EST

(Contreras-Moreira et al., 2017), soybean (Liu et al., 2020) using

OrthoMCL (Li et al., 2003), rice (Shang et al., 2022) using

OrthoFinder (Emms and Kelly, 2019). Besides, GENESPACE can

cluster genes across multiple genomes (Lovell et al., 2022). Here, we

used a synteny-based method. Protein sequences related to the

longest gene transcript and information on the gene location for

each of the 20 samples from Qin et al (Qin et al., 2021) were used for

the gene-based pan-genome construction for each of the 5 groups.

All genes of the nuclear genome’s 12 chromosomes from MSU

(V.7.0 http://rice.plantbiology.msu.edu) were used as the base.
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Genes from a new genome were aligned against a reference gene set

using BLASTP software (Altschul et al., 1990) and gene synteny was

analyzed using MCSCANX software (Wang et al., 2012). Those

genes that did not show synteny with the reference gene set were

considered novel genes. These novel genes were then added to the

former reference gene set to form a new reference gene set. These

steps were repeated until all samples were included. The reference

gene set and identified novel genes from the final step were

combined as the pan-gene set. Novel genes from each step were

combined and then aligned to the MSU reference genome using

MUMmer (Kurtz et al., 2004). Genes with high similarity (identity ≥

90% and coverage ≥ 90%) with the MSU reference genome were

discarded to exclude the false positives. The remaining gene set was

used for further analysis.

To compare the consistency of the gene-based pan-genome

from the synteny-based method and gene-clustering-based

methods, OrthoFinder was used to construct the gene-based pan-

genome with the reference genome and extra 5, 8, 10, 15, and 20

samples. Those gene groups not containing genes from MSU were

considered novel gene groups that did not exist in the

reference genome.

Sequence-based pan-genome was cons t ruc t ed as

complementary to gene-based pan-genome. Here, insertions

compared with the reference genome from each sample for each

of the 5 groups were considered novel sequences absent from the

reference genome. PacBio long reads of each sample were first

mapped to the MSU reference genome by pbmm2 software (https://

github.com/PacificBiosciences/pbmm2) with default parameters.

After this, structural variations were called and genotyped using

pbsv software (https://github.com/PacificBiosciences/pbsv) using

default parameters. Entries related to insertions were extracted.

Then, these insertions were merged at the group level using

SURVIVOR software (Jeffares et al., 2017). Those insertions ≤ 50

bp in length or had supporting reads of ≤ 20 were excluded. To

eliminate the false positive introduced during insertion

identification, the remaining insertion sequences were then

aligned to the genome of each sample in each of the 5 groups.

Those insertions not having a high similarity (identity ≥ 90% and

coverage ≥ 90%) with the genome sequences were excluded.

The RepeatMasker tool (Chen, 2004) was employed for the

validated data set to detect repetitive elements, using rice as the

model species.
2.4 Recall and precision definition

The sequences from the testing data set were aligned to

sequences from the validated data set using the MUMmer

software (Kurtz et al., 2004). When different sequences from the

testing data sets were aligned to the same sequences from the

validated data set, and they had an overlap of 90% or more, these

sequences from the testing data sets and their recovered regions for

sequences from the validated data set were combined. For each

sequence from the validated data set, its coverage was defined as the

ratio of recovered length by sequences from the testing data set to its
frontiersin.org
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whole length. If the coverage was ≥ 0.5, this sequence from the

validated data set was considered a recovered sequence. The recall

value was defined as the ratio of the number of recovered ones to the

total number of sequences from the validated data set.

For each of the 5 groups, sequences from the testing data set

were aligned to all genomes in that group. Those sequences with a

high similarity (90% identity and 90% coverage) were considered as

precise sequences. The precision value was defined as the ratio of

the number of precise ones to the total number of sequences from

the testing data set.
3 Results

3.1 The characteristics of the testing and
validated data set

The characteristics of the testing data set. All the simulated

next-generation short-reads with sequencing depths of 5X, 10X,

20X, 30X, and 50X for 20 samples have a high-quality read rate of

≥99% (Supplementary Table 2). By comparing the characteristics

between simulated and real data, we find that the simulated reads

have almost identical or even higher genome coverage than the real

data under the same sequencing depth (Supplementary Table 3).

This indicates the availability of simulated data for evaluation.

However, there are some biases in simulated data. For example,

the rate of singletons and reads pairs mapping to different

chromosomes of simulated data is lower than in real data

(Supplementary Table 4). These simulated reads after

preprocessing are used to construct the testing data set using

three strategies for each of the 5 groups (Supplementary Table 5).

For map-to-pan, optimal k-mers used for whole genome assembly

for different samples are different, highlighting the necessity for an

iterative k-mer strategy (Supplementary Figure 1). When

sequencing depth increases, the length of assembled contigs of

map-to-pan increases, while sequencing depth has no significant

influence on both iterative methods (Figure 2A).

The characteristics of the validated data set. For gene-based pan-

genome, the ratio of core genes decreases with sample size increases,

and this ratio stabilizes around 50% when the sample size reaches 6

or more (Supplementary Table 6). For the group with MSU and the

other 8 samples, synteny-based methods can find 18,500 (91.67%) of

20,179 gene groups from OrthoFinder. After filtering, all 13,078

novel genes identified from the synteny-based method are included

in the results from the OrthoFinder. This further demonstrated the

usability of synteny-based methods in novel gene identification. For

sequence-based pan-genome by 8 samples, the insertion counts

diverge among samples, and their overlaps with each other are not

uniform (Figure 2B). Insertions are predominantly localized in

intergenic regions, indicating that insertions can be used as a

complement to novel genes (Figure 2C). The insertions have

different distribution patterns among different samples, further

supported by the insertion presence and absence profile

(Figure 2D). The characteristics of sequence-based pan-genome
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are consistently observed in the other 4 groups (Supplementary

Figure 2). The summary of novel genes and insertions for each of the

5 groups is shown in Table 1. Insertions have a higher repeat

percentage than the novel genes (Figure 2E), retroelements and

DNA transposons emerge as the predominant repeat elements in

them (Supplementary Table 7). However, their overall lengths are

less than the novel genes (Figure 2F). The repeat percentage of novel

genes is the highest at the longest and shortest ones (Figure 2G),

while for insertions, they consistently show a high repeat percentage

for all lengths (Figure 2H).
3.2 Evaluation of the influence of
sequencing depth on three pan-genome
construction strategies

Testing and validated data sets from the group with 8 samples

are utilized to evaluate the different efficiency of three pan-genome

construction strategies under different sequencing depths. For the

coverage of novel genes from the validated data set under all

different sequencing depths (Figure 3A) and insertions from the

validated data set under 20X or more sequencing depth (Figure 3B),

the difference is significant between map-to-pan and the other two

iterative strategies, highlighting the different performance of map-

to-pan and the other two iterative strategies. The difference is

significant between iterative individual and iterative pooling for

the coverage of novel genes under 10X or less sequencing depth

(Figure 3A) and insertions (Figure 3B) under all different

sequencing depths. Iterative pooling has a slightly higher average

coverage for novel sequences from the validated data set than

iterative individual, especially when sequencing depth is 10X or

less. The main reason is that iterative pooling gathered all

unmapped or poorly mapped reads for assembly, comparable to

increasing the sequencing depth.

Map-to-pan has the highest recall value, and the other two

iterative strategies have nearly identical lower recall values

(Figure 3C). Specifically, the recall value of both novel genes and

insertions from the validated data set is lower than 0.25 for two

iterative strategies under all sequencing depths. For map-to-pan, the

recall value of novel genes from the validated data set is around 0.5,

and of insertions from the validated data set is around 0.75 under

50X sequencing depth.

Conversely, map-to-pan has the lowest precision value, and the

other two iterative strategies have almost identical precision values

(Figure 3D). Those sequences that are not precisive, are mainly

from short sequences for map-to-pan and have a consistent

distribution across all lengths for the other two iterative

strategies (Figure 3E).

Overall, higher sequencing depths improve map-to-pan

performance, including its coverage and recall for novel

sequences from the validated data set (Figure 3A–C), and

precision (Figure 3D). However, there needs to be obvious

evidence to support the influence of sequencing depth on the

other two iterative strategies.
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3.3 Impact of sample size on three
pan-genome construction strategies

In pan-genome research, including more samples will introduce

more genomic diversity and biological information unless the

current pan-genome of certain species is closed. A closed pan-

genome means adding new genomes or samples will not induce the

increase in pan-genome size, which depends on the frequency of

gene exchange between subspecies and whether enough samples are

included. Therefore, the number of samples included is vital in pan-

genome construction.
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For sequences from the map-to-pan strategy, the difference in

their coverage for novel genes from the validated data set is

significant among different sample sizes with all sequencing

depths. At the same time, there is no significance for both

iterative strategies (Figure 4A). Conversely, for sequences from

these three strategies, their coverage for insertions from the

validated data set is similar among different sample sizes, except

for the map-to-pan strategy under 50X sequenc ing

depth (Figure 4B).

Recall and precision values are further used to evaluate sample

size influence on these three strategies. For map-to-pan, their recall
A

B D

E

F G

C

H

FIGURE 2

(A) The average and maximum lengths of assembled contigs for three strategies across varied sequencing depths. (B) A heatmap of the overlapping
number of insertions between paired samples in the group consisting of 8 samples. (C) A pie chart showing the percentage of insertions found in
genic versus intergenic regions and the distribution of insertion numbers as samples increase in the group consisting of 8 samples. (D) A heatmap of
the presence and absence profile for insertions across samples in the group consisting of 8 samples. The distribution for the repeat content
percentage (E) and length (F) of novel sequences from the validated data set for the group consisting of 8 samples. The distribution for the count of
novel genes (G) and insertions (H) with different lengths and repeat content percentages in the group consisting of 8 samples.
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value for novel genes decreases as sample size increases, while for

insertions, their recall value increases as sample size increases

(Figure 4C). For two iterative strategies, the sample size does not

significantly influence their recall value for both novel genes and

insertions from the validated data set. There is no obvious difference

between iterative individual and iterative pooling.

Higher sequencing depth can improve the coverage and recall

for novel sequences from the validated data set of map-to-pan with

an expanded sample size but does not affect both iterative strategies.

This indicates the limited capability of iterative strategies for novel

sequence identification, no matter the sample size or sequencing

depth. Map-to-pan has the lowest precision value under different

sample sizes, while there is a positive correlation between precision

value and sample size, such a relationship is not observed for the

two iterative methods (Figure 4D).
3.4 Comparison of three pan-genome
construction methods’ performance with
the different novel sequence length

Novel sequences from the validated data set are divided into four

length-based categories: SS, S, M, and L for both novel genes and

insertions (Supplementary Table 8). SS-tagged novel sequences have

lengths from 50 bp to 100 bp, S-tagged novel sequences have lengths

from 100 bp to 1000 bp, M-tagged novel sequences have lengths from

1000 bp to 10000 bp, L-tagged novel sequences have lengths larger

than 10000 bp. Most novel genes fall in the M category, whereas most

insertions are in the S category.

For sequences from all three strategies, there is a negative

relationship between their coverage for novel sequences from the

validated data set and the length of the novel sequences from the

validated data set for both novel genes and insertions

(Supplementary Figure 3A, B). Increased sequencing depth

improves the recovered coverage of sequences from map-to-pan

for novel sequences from the validated data set (Supplementary

Figure 3A, B) and the length of recovered novel sequences from the

validated data set, especially for insertions (Supplementary
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Figure 3C). The overall recall value is lower for the SS and L

categories than the S and M categories for all three strategies

(Supplementary Figure 3D). The recall value drops as the length

of novel sequences from the validated data set increases for two

iterative strategies under all sequencing depths and for map-to-pan

under 10X or less sequencing depth. Increased sequencing depth

improves the map-to-pan’s recall for novel sequences with different

lengths but has no significant effect on the two iterative methods.

Regarding recall value, the map-to-pan strategy outperforms

the other two iterative strategies for different length categories

except for L. Additionally, no significant difference exists between

the individual and pooling iterative strategy across all

length categories.
3.5 Diverse efficiency of three pan-genome
construction methods in response to novel
sequences’ repeat content percentage

Novel genes and insertions from the validated data set are

divided into ten groups based on their repeat content percentage,

using intervals of 0.10. The majority of these genes and insertions

are found within the [0, 0 .1] and (0.9 , 1] intervals

(Supplementary Table 9).

For sequences from all three pan-genome construction

strategies, their recovered coverage of novel sequences from the

validated data set decreases as the repeat content percentage

increases (Supplementary Figure 4A, 4B). Novel sequences with

repeat percentages in the ranges of [0, 0.25] and [0.75, 1] are more

easily identified by these three methods (Supplementary Figure 4C).

The recall value is negatively associated with the repeat content

percentage for the two iterative strategies under all sequencing

depths and for the map-to-pan technique under 10X or less

sequencing depth (Supplementary Figure 4D). Sequencing depth

can improve the recall value of map-to-pan for novel sequences

with different repeat content percentages but has no significant

effect on the two iterative methods. Overall, the map-to-pan

strategy has a higher recall value than the other two iterative
TABLE 1 Statistics of novel genes and insertions from the validated data set for each of the 5 groups.

Type Sample Number # Seqs Total Size (bp) Mean Length (bp) Repeat Percentage

Novel Genes

5 9,697 39,114,313 4033.70 46.02%

8 13,078 51,527,357 3940.00 46.19%

10 15,306 59,557,869 3891.10 46.30%

15 19,901 79,273,953 3983.40 46.38%

20 24,792 98,210,643 3961.40 46.38%

Insertions

5 13,082 12,528,436 957.70 44.44%

8 15,047 16,504,941 1096.90 44.77%

10 17,109 20,891,729 1221.10 45.11%

15 18,756 25,039,572 1335.00 45.24%

20 19,959 27,876,840 1396.70 45.37%
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strategies, especially for those novel sequences with higher repeat

percentages. The distinction between the iterative individual and

iterative pooling strategies is subtle under different repeat

content percentages.
3.6 Time and memory consumption
comparison among three pan-genome
construction methods

The map-to-pan strategy demands considerably greater

computational resources regarding memory and time than the

other two iterative methods (Table 2). The main computational

burden for the map-to-pan strategy arises from assembling the

whole genome for every sample included. At a sequencing depth of
Frontiers in Plant Science 08
30X, it uses about 62GB of memory and takes approximately 212

minutes for each sample, utilizing 4 CPUs. Assembling unmapped

or poorly mapped reads for the iterative individual strategy uses

only around 10MB and takes about 18 minutes per sample. For the

iterative pooling strategy, assembling pooled unmapped or poorly

mapped reads consumes nearly 10MB of memory and takes about

115 minutes to construct a pan-genome with 8 samples, operating

on 4 CPUs. The second highest computational demand for the

map-to-pan strategy comes from aligning the assembled genome of

each sample to the reference genome. In the case of the two iterative

methods, only the assembly of unmapped or poorly mapped reads is

aligned to the reference genome, thus requiring significantly less

memory and time than map-to-pan.

For both two iterative methods, the most resource-intensive

step is the alignment of whole-genome sequencing reads from each
A B

D

E

C

FIGURE 3

The impact of sequencing depth on three strategies. (A) The distribution for recovered coverage of sequences from the testing dataset to novel genes
from the validated dataset for the three strategies across varied sequencing depths. (B) The distribution for recovered coverage of sequences from the
testing dataset to insertions from the validated dataset for the three strategies across varied sequencing depths. (C) Recall distribution for the three
strategies across various sequencing depths. (D) Precision distribution for the three strategies across various sequencing depths. (E) Distribution of
assembled length, categorized by false and true tags, for the three pan-genome construction strategies of the plant. NS means P > 0.05, * means
P ≤ 0.05, ** means P < 0.01, *** means P < 0.001.
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sample included in the pan-genome construction to the reference

genome. This step requires about 5.4GB of memory and an

estimated 202 minutes per sample when using 4 CPUs for

each sample.
4 Discussion

The pan-genome study proves effective for plant genomic

studies because it aims to encompass all genomic diversity of a

certain species, which is important for the deep understanding of

evolution and providing more novel genomic targets for breeding. It
Frontiers in Plant Science 09
aids in identifying crucial novel non-reference genes or sequences

associated with signaling (Golicz et al., 2016), defense mechanisms

(Gordon et al., 2017), resistance pathways (Bayer et al., 2019), vital

agricultural attributes (Gao et al., 2019), and heterosis (Zhang et al.,

2016). Currently, three strategies based on next-generation

sequencing short-reads are utilized for constructing the plant

pan-genome, they can be summarized as iterative individual,

iterative pooling, and map-to-pan. They have different

performances under different conditions. This diversity

complicates the integration or comparison of pan-genome

information for the same species from different projects and

makes it difficult for users to select the optimal pan-genome
A B

D

C

FIGURE 4

The impact of the number of samples included on three strategies. (A) The distribution for recovered coverage of sequences from the testing
dataset to novel genes from the validated dataset for the three strategies across various sample numbers included. (B) The distribution for recovered
coverage of sequences from the testing dataset to insertions from the validated dataset for the three strategies across various sample numbers
included. (C) Recall distribution for the three strategies across various sample numbers included. (D) Precision distribution for the three strategies
across various sample numbers included. NS means P > 0.05, * means P ≤ 0.05, ** means P 0.01, *** means P < 0.001.
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construction strategy. Hence, we performed the first comprehensive

evaluation of these three strategies considering the sequencing

depths, sample sizes, length and repeat content percentage of

novel sequence, and computational resource consumption.

Our findings indicate that: (1) map-to-pan has the highest recall

but lowest precision value, whereas the two iterative strategies have

lower recall but higher precision values; (2) the number of samples,

the length of novel sequences, and the percentage of repeat content

are inversely related to the recall value of these three pan-genome

construction strategies, primarily because an increased number of

samples brings more complexity, and new sequences with larger

length and a higher percentage of repeat content are challenging to

be assembled just based on next-generation short-reads; (3) higher

sequencing depth can enhance the performance of map-to-pan, but

it doesn’t affect the other two iterative strategies; (4) regarding the

consumption of computational resources, map-to-pan requires

significantly more than the other two iterative strategies,

particularly at higher sequencing depths. Generally, the iterative

method, particularly the iterative pooling method, is optimal when

the sequencing depth is lower than 20X, considering recall and

precision value. However, map-to-pan performs better with

sequencing depths greater than 20X, even though it demands

more computational memory and time.

However, there are some limitations in our evaluation. First, we

only included a single species (rice) in our assessment. These three
Frontiers in Plant Science 10
short-reads-based strategies for plant pan-genome construction

may perform better in species with simpler genomes, such as

Arabidopsis thaliana, and worse in species with more complex

genomes, such as barley. Secondly, certain assembly and mapping

software are used for these three strategies in our evaluation, while

the choice of different software may also impact the evaluation

results. Thirdly, we only used a synteny-based method for gene-

based pan-genome construction. The core gene ratio differs slightly

between these two methods of OrthoFinder and synteny-based.

Fourthly, the choice of assessment data also influences the

evaluation results. Here, we selected simulated data for evaluation,

which needs to fully characterize the real data results. Meanwhile,

we evaluated the performance of pan-genome construction

strategies based on short reads. Still, it would be better to

construct the pan-genome by a combination of short and long

reads, such as in rice (Qin et al., 2021), soybean (Liu et al., 2020),

sorghum (Tao et al., 2021), maize (Hufford et al., 2021), and

Raphanus sativus (Zhang et al., 2021).
Data availability statement

Publicly avaliable datasets were analyzed in this study. This data

can be found here: Whole genome sequences, gene annotation files,

gene sequences, and protein sequences of 20 rice samples are from Qin
TABLE 2 Memory and time requirements for three pan-genome construction strategies at the sequencing depth of 30X for the 9311 sample.

Steps

Map-to-pan Iterative Individual Iterative Pooling

Mem Time CPU Mem Time CPU Mem Time CPU

Filter low-quality reads
1.3M/
sample

~47mins/
sample

1/
sample

1.3M/
sample

~47mins/
sample

1/
sample

1.3M/
sample

~47mins/
sample

1/
sample

Map to reference genome and extract
unmapped reads

… … …
5.4G/
sample

~208mins/
sample

4/
sample

5.4G/
sample

~208mins/
sample

4/
sample

MEGAHIT assembles individual unmapped reads … … …
10M/
sample

~18mins/
sample

4/
sample

… … …

Individual unmapped reads pooling and assemble for
8 samples

… … … … … …
10M/
sample

~115mins/
sample

4/
sample

Pool assembled contigs from individual unmapped
reads and remove redundancy

… … …
350M/
sample

~2mins/
sample

4/
sample

… … …

Whole genome assembly
~63G/
sample

~212mins/
sample

4/
sample

… … … … … …

Map whole genome assembly to reference
~480M/
sample

~29mins/
sample

4/
sample

… … … … … …

Extract unaligned contigs –
~1min/
sample

1/
sample

… … … … … …

Pool unaligned contigs and remove redundancy
~860M/
sample

~13mins/
sample

4/
sample

… … … … … …

In total
63G/
sample

~5hrs/
sample

4/
sample

5.4G/
sample

~4.5hrs/
sample

4/
sample

5.4G/
sample

~4hrs/
sample

4/
sample
frontie
The computational resources are evaluated based on 9311 samples with 30X sequencing depth if a single sample is considered. If population statistics are needed, 8 samples, including 9311, G8,
IR64, J4155, R527, S548, Y3551, and Y58S, are evaluated. All information is just based on 30X sequencing depth; if more sequencing depth and more samples are analyzed, then the time and
memory will increase correspondingly. At 20X sequencing depth, for whole genome assembly mapping to reference, time and memory are also larger than that with 30X sequencing depth due to
its large assembled genome size with a high false positive rate.
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et al. (Qin et al., 2021). They can be downloaded from the RiceRC

database via https://ricerc.sicau.edu.cn/. The PacBio long reads and real

next-generation short reads of the 9311 sample are obtained from GSA

under Project ID (PRJCA002103) via https://ngdc.cncb.ac.cn/gsa/. The

Perl script used for data preprocessing is available via https://ngdc.cncb.

ac.cn/biocode/tools/BT007415.
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SUPPLEMENTARY FIGURE 1

The optimal k-mer used in the whole genome assembly for each of the 20

rice samples using eupan assemble linearK model from the EUPAN toolkit.

SUPPLEMENTARY FIGURE 2

The heatmap of the overlapping number of insertions between paired
samples in groups consisting of 5 (A), 10 (B), 15 (C), and 20 (D) samples.

The heatmap of the presence and absence profile of insertions across
samples in the group consisting of 5 (E), 10 (F), 15 (G), and 20 (H) samples.

The distribution of insertion numbers as samples increase in the group
consisting of 5 (I), 10 (J), 15 (K), and 20 (L) samples. The pie chart shows

the percentage of insertions found in genic versus intergenic regions in the

group consisting of 5 (M), 10 (N), 15 (O), and 20 (P) samples.

SUPPLEMENTARY FIGURE 3

The effect of the length for novel sequences on three strategies. (A) The
distribution for recovered coverage of sequences from the testing dataset to
novel genes from the validated dataset for the three strategies across various

lengths. (B) The distribution for recovered coverage of sequences from the

testing dataset to insertions from the validated dataset for the three strategies
across various lengths. (C)Density of recovered length of sequences from the

testing dataset to novel genes and insertions from the validated dataset for
the three strategies across various lengths of novel sequences from the

validated date set. (D) Recall distribution for the three strategies across
various lengths of novel sequences from the validated data set. Length

categories are defined as SS: 50-100bp; S: 100-1,000bp; M: 1,000-

100,000bp; L: >100,000bp.

SUPPLEMENTARY FIGURE 4

The effect of repeat content percentage for novel sequences on three

strategies. (A) The distribution for recovered coverage of sequences from the
testing dataset to novel genes from the validated dataset for the three strategies

across various repeat content percentages of novel sequences from the

validated dataset. (B) The distribution for recovered coverage of sequences
from the testing dataset to insertions from the validated dataset for the three

strategies across various repeat content percentages of novel sequences from
the validated dataset. (C) Density of recovered repeat content percentages

across the three pan-genome construction strategies. (D) Recall distribution for
the three strategies across various repeat content percentages of novel

sequences from the validated data set. 0 means novel sequences from the

validated data set have repeat content percentage [0,0.1], 1 means novel
sequences from the validated data set have repeat content percentage

(0.1,0.2], 2 means novel sequences from the validated data set have repeat
content percentage [0.2,0.3], 3 means novel sequences from the validated data

set have repeat content percentage [0.3,0.4], 4 means novel sequences from
the validated data set have repeat content percentage [0.4,0.5], 5 means novel

sequences from the validated data set have repeat content percentage [0.5,0.6],

6 means novel sequences from the validated data set have repeat content
percentage [0.6,0.7], 7 means novel sequences from the validated data set have

repeat content percentage [0.7,0.8], 8 means novel sequences from the
validated data set have repeat content percentage [0.8,0.9], 9 means novel

sequences from the validated data set have repeat content percentage (0.9,1].
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