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Editorial on the Research Topic

Multi-omics and computational biology in horticultural plants: from
genotype to phenotype, volume II
Horticulture, an integral component of the broader field of agriculture, has played a

pivotal role in the development of human civilization. The shift from nomadic lifestyles to

settled farming communities was greatly enabled by advancements in horticultural

practices. This domain encompasses the scientific, technological, and artistic aspects of

growing, breeding, processing, and commercializing various plant types, such as

ornamental species, flowers, fruits, vegetables, nuts, seeds, and herbs. In recent years,

there has been a surge in the sequencing of numerous horticultural plant genomes (Marks

et al., 2021). The field of multi-omics and computational biology, particularly as they relate

to horticultural plants and transition from genotype to phenotype, have experienced

significant growth and diversification (Cao et al., 2022a). This progress has been driven by

the incorporation of high-throughput technologies and innovative computational methods,

yielding profound insights into plant physiological adaptation and biological mechanisms.

The current Research Topic is focused on merging advanced omics and computational

biology techniques to associate genotypes with phenotypes and link genetic markers to

traits in various horticultural crops (Figure 1).

This Research Topic showcases a collection of 24 scholarly articles. Within this

assemblage, two pieces are comprehensive reviews, while the other 22 constitute original

research papers. Among these, a pair delves into the genome sequencing of horticultural

crops. Three articles focus on the study of fruit crops, another trio sheds light on vegetable

research, and a single paper explores the realm of Chinese herbal medicine. Additionally,
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one article is dedicated to ornamental crops, three examine various

industrial crops, and the final nine provide insightful research on

model crop species.

Multi-omics data in horticulture plants

The integration of multi-omics data in horticulture significantly

enhances our understanding of plant biology, leading to accelerated

advancements in both research and breeding efforts within the field.

This approach underscores the critical importance of combining

various multi-omics datasets, such as genomics, transcriptomics,

proteomics, and metabolomics, in horticultural plants. By

combining various multi-omics datasets, offers a comprehensive

view of complex biological processes, enhancing our understanding

of plant growth, development, and environmental responses, and

facilitates the identification of key genetic markers and traits for

crop improvement, supporting innovative breeding strategies

(Mondal et al., 2022). Moreover, it aids in more effective

management of plant health and productivity, contributing to the

overall advancement of horticultural science.

Holistic insights

Integrating multiple omics approaches yields a holistic and

comprehensive perspective of biological systems, enabling

researchers to concurrently examine various biological layers,

thereby deepening the understanding of plant biology. By

analyzing genetic variations and their impact on gene expression,
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protein synthesis, and metabolite levels helps shed light on how

these molecular changes translate into observable plant traits. This

integrative analysis is crucial for unraveling the complex biological

processes in plants, leading to significant advancements in fields

such as plant biology, agriculture, and horticulture.
Unraveling plant phenotypes

The integration of multi-omics data is crucial in revealing the

intricate interactions and regulatory processes that shape plant

phenotypes. For example, by correlating these omics data,

researchers can discern the impacts of DNA sequence alterations on

gene expression, protein synthesis, and metabolite concentrations

(Cao et al., 2022a). Such insights shed light on how genetic

variances contribute to the observable characteristics of plants. Yang

et al. employed an Eigen Genome-Wide Association Study

(EigenGWAS) methodology on a collection of 331 tomato varieties

to uncover critical genetic determinants that affect metabolite variation

throughout the tomato’s domestication and enhancement processes,

thereby emphasizing the significance of polygenic selection in the

developing of tomatoes with superior fruit quality (Yang et al., 2022).
Elevating plant trait predictions

Enhancing the predictive capabilities of models that forecast

plant traits can be significantly achieved through the integration of
FIGURE 1

Multi-omics and computational biology in horticultural plants: From genotype to phenotype.
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multi-omics data, and these models can more accurately account for

the interactions among different biological processes. This

comprehensive approach leads to more precise and accurate

predictions of plant traits, acknowledging the intricate and

interconnected nature of biological systems. For example, Jiang

et al. elucidated the mechanism of polysaccharide biosynthesis

of Bletilla striata by combining genomic and transcriptomic data

(Jiang et al., 2022a). Furthermore, multi-omics analysis of potential

R2R3-MYB transcription factors within the Euphorbiaceae family

has successfully identified a specific MYB gene significantly involved

in the biosynthesis of seed oil (Cao et al., 2023).
Precision breeding advancements

Understanding the relationship between genotype and

phenotype is fundamental for precise breeding design, as it lays

the groundwork for predicting how genetic variations influence

observable traits. The integration of multi-omics data significantly

enhances precision breeding by identifying molecular markers

linked to desirable traits in plants across various biological levels

(Mahmood et al., 2022). This approach enables breeders to select

traits with increased accuracy, thereby contributing to the

development of superior plant varieties. By leveraging multi-

omics data, breeders can gain a deeper understanding of the

genetic basis of desired traits (Cao et al., 2022a). This holistic

view allows for more informed selection processes and efficient

breeding strategies, paving the way for the development of plants

with optimized qualities.
Unveiling plant-environment dynamics

The integration of multi-omics data enables researchers to gain

a more comprehensive understanding of plant-environment

interactions, revealing the effects of various environmental factors

on gene expression, protein production, and metabolic processes.

Such insights are crucial for understanding how plants grow,

develop, and respond to stress. By analyzing these data, scientists

can identify how external conditions such as temperature, moisture,

and soil composition influence plant biology at multiple levels,

which leads to a better understanding of plant adaptation and

resilience (Großkinsky et al., 2018).
Holistic insights for plant
disease management

Integrating multi-omics data offers a holistic perspective on

plant biology, significantly aiding in the diagnosis and management

of plant diseases (Wang et al., 2021; Rathnasamy et al., 2023). This

comprehensive approach can facilitate the identification of

molecular markers associated with disease resistance, which are

pivotal in guiding the development of disease-resistant plant

varieties. At the same time, insights from multi-omics data also

can inform and refine disease management strategies. By
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understanding the complex interactions at the genetic,

transcriptomic, proteomic, and metabolomic levels, researchers

can develop more effective methods to prevent and control plant

diseases, leading to healthier crops and improved agricultural

outcomes (Wang et al., 2021).
From genotype to phenotype in
horticulture plants

Integrating multi-omics data within horticultural studies offers

a robust method for deepening our understanding of plant biology.

In this context, we covered the crucial importance of multi-omics

data integration in horticulture with a specific focus on tracing the

journey from genotype to phenotype. This approach significantly

enriches our comprehension of plant biology, ranging from the

genetic foundation to observable characteristics, thereby enhancing

the efficiency and depth of research and breeding programs

in horticulture.
Plant growth and development

To elucidate the genetic foundations of complex traits in plants,

identifying candidate genes is a crucial step in modern genomic

research. Previously, this task faced significant challenges due to the

scarcity of high-quality genomic resources for various crops.

However, the last twenty years have witnessed a revolutionary

increase in the availability of detailed crop genomes and pan-

genomes, which has greatly facilitated the process of connecting

genotypes with phenotypes, a key aspect in understanding plant

biology. Central to this understanding is the intricate network of

gene interactions that orchestrate plant growth and development.

Modern multi-omics techniques have become invaluable tools in

deciphering this complexity.

Genomic studies, provide a comprehensive overview of a plant’s

genetic makeup, facilitating the identification of key genes, such as

those involved in the auxin signaling pathway. They establish links

between genetic variations, including single nucleotide

polymorphisms (SNPs) and insertions/deletions (INDELs), and

observable traits (Zhang et al., 2014; Cao et al., 2022a).

Complementary to genomic data, transcriptomics offers insights

into gene expression patterns across various development stages of

development and in response to environmental factors.

Technologies such as RNA sequencing (RNA-seq) are

instrumental in monitoring the expression dynamics of genes,

including those associated with the auxin pathway, under

different conditions (Cao et al. , 2022b). Furthermore,

metabolomics adds another layer to our understanding by

analyzing the metabolic changes that occur during plant

development and focusing on identifying active biochemical

pathways and tracking the fluctuation of metabolites, including

hormones like auxin. Together, these multi-omics approaches

provide a holistic view of plant biology, linking genotype to

phenotype and paving the way for advanced breeding strategies

and crop improvement.
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Disease resistance pathways

In the realm of plant biology, a key area of study is the diverse

and intricate pathways plants have evolved for disease resistance.

This biological defense system is orchestrated through a complex

network of genes, proteins, and metabolites, with each component

playing a role in combating a wide array of pathogens. Multi-omics

approaches are indispensable for dissecting and understanding

these defense mechanisms at a molecular level.

Genomic studies in this area predominantly concentrate on

resistance (R) genes and analyze genetic variations, such as SNPs

and INDELs, to assess a plant’s innate disease resistance potential, as

detailed by (Jiang et al., 2022b), with this genotypic analysis being

essential for understanding the baseline resistance of different plant

species or varieties. Complementing genomic data, transcriptomics

provides a dynamic view of how plants respond to pathogen attacks

at the gene expression level (Li et al., 2022). Utilizing RNA-seq,

researchers track the expression patterns of R genes under pathogenic

stress, which reveals the activation of the disease resistance pathway

during an infection, offering insights into the temporal response of

plants to pathogenic threats (Cao et al., 2021). Proteomics further

enhances our understanding by examining the post-transcriptional

changes in R proteins during pathogen attacks, elucidating the

functional roles these proteins play in the plant’s defense

mechanisms, and uncovering the biochemical processes involved in

resisting pathogen invasion. Lastly, metabolomics completes the

multi-omics picture by identifying the specific metabolites

produced by plants in response to pathogen attacks, such as

phytoalexins, thereby offering a comprehensive view of plants

chemical defenses at the molecular level (Obata and Fernie, 2012).

Collectively, these multi-omics approaches form a cohesive and

detailed picture of plant disease resistance, providing vital insights

for the development of more resilient crop varieties and innovative

disease management strategies in agriculture.
Stress response pathways

Plants, inherently stationary organisms, are subjected to a

myriad of environmental stresses including drought, salinity, and

extreme temperatures. The study of their molecular responses to

such stresses is pivotal in advancing our understanding of plant

resilience, particularly in the context of crop improvement. Multi-

omics approaches offer an integrated and comprehensive set of tools

for dissecting these complex stress response pathways.

At the genomic level, studies focus on identifying key genes that are

activated or suppressed in response to environmental stresses,

encompassing the discovery of diverse transcription factors that

significantly influence the regulation of other stress-responsive gene

expressions(Zhang et al., 2022). For example, brassinazole resistant 1

(BZR1) regulates the target gene ethylene response factors 49 (ERF49) to

enhance plant sensitivity to heat stress (Chen et al., 2022).

Transcriptomics takes this analysis a step further by tracking
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the changes in gene expression under various stress conditions (Nye

et al., 2023), which revealed how plants modulate their gene expression

in real-time to adapt to and survive under adverse conditions.

Proteomics adds another layer to our understanding of plant stress

responses by examining proteins involved in these processes, including

their abundance, modifications, interactions, and elucidating their

regulatory roles and functional significance in the adaptation to

stress (Kirk et al., 2022). Lastly, metabolomics complements these

approaches by elucidating the metabolic alterations in plants under

stress, pinpointing critical metabolites produced or modified in the

plant’s defense, and serving as key indicators of stress response and

adaptation (Obata and Fernie, 2012). Taken together, these multi-

omics data offer a comprehensive perspective on plant responses to

environmental stress, enhancing our understanding of stress tolerance

mechanisms and facilitating the development of environmentally

resilient crops.
Future prospects of integrating
multi-omics in horticulture plants

The integration of multi-omics into plant phenotyping marks

the onset of a transformative epoch in horticultural research and

practices, heralding a wealth of groundbreaking opportunities. For

example, precision horticulture, increasingly practical through

intricate multi-omics data, allows for the customization of each

cultivation phase, from sowing to harvest, based on the unique

genetic and environmental profiles of individual plants, thereby

enhancing productivity, sustainability, and yield quality. Another is

predictive breeding, where the amalgamation of multi-omics

accelerates and refines the breeding process through predictive

modeling that incorporates a wide array of genetic and

phenotypic data. This methodology also significantly enhances

the management of disease and stress responses in plants by

establishing advanced early warning systems and pioneering new

management strategies. Sustainable crop management, enabled by

multi-omics, incorporates the complex interactions among plants,

soil, and climate, fostering ecologically sustainable practices,

reducing environmental impact, and enhancing plant biodiversity

exploration, potentially uncovering new breeding and conservation

resources. Collectively, the advancement of multi-omics

democratizes access to sophisticated plant phenotyping

techniques, thereby expanding the horizon of horticultural

research globally and marking a significant advancement in

optimizing horticultural practices and methodologies.
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