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attention mechanism with the
ResNet model on an enhanced
macroscopic image dataset
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Jie Yao4, Zhiyuan Zou4, Yafang Yin1,2 and Tuo He1,2,5*
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Introduction: Global illegal trade in timbers is a major cause of the loss of tree

species diversity. The Convention on International Trade in Endangered Species of

Wild Fauna and Flora (CITES) has been developed to combat the illegal

international timber trade. Its implementation relies on accurate wood

identification techniques for field screening. However, meeting the demand for

timber field screening at the species level using the traditional wood identification

method depending on wood anatomy is complicated, time-consuming, and

challenging for enforcement officials who did not major in wood science.

Methods: This study constructed a CITES-28 macroscopic image dataset,

including 9,437 original images of 279 xylarium wood specimens from 14

CITES-listed commonly traded tree species and 14 look-alike species. We

evaluated a suitable wood image preprocessing method and developed a

highly effective computer vision classification model, SE-ResNet, on the

enhanced image dataset. The model incorporated attention mechanism

modules [squeeze-and-excitation networks (SENet)] into a convolutional

neural network (ResNet) to identify 28 wood species.

Results: The results showed that the SE-ResNet model achieved a remarkable

99.65% accuracy. Additionally, image cropping and rotation were proven

effective image preprocessing methods for data enhancement. This study also

conducted real-world identification using images of new specimens from the

timber market to test the model and achieved 82.3% accuracy.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1368885/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1368885/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1368885/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1368885/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1368885/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1368885/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1368885&domain=pdf&date_stamp=2024-06-28
mailto:tuohe@caf.ac.cn
https://doi.org/10.3389/fpls.2024.1368885
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1368885
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2024.1368885

Frontiers in Plant Science
Conclusion: This study presents a convolutional neural network model coupled

with the SENet module to discriminate CITES-listed species with their look-alikes

and investigates a standard guideline for enhancing wood transverse image data,

providing a practical computer vision method tool to protect endangered tree

species and highlighting its substantial potential for CITES implementation.
KEYWORDS

wood identification, CITES, convolutional neural network, attention mechanism, data
enhancement, macroscopic images
1 Introduction

As an integral ecosystem component, trees assume a pivotal role

in purifying our atmosphere, serving as habitats for diverse

organisms and actively combating climate change (Rivers, 2017).

In the intricate fabric of Earth’s ecological system, they are

indispensable entities, ensuring the vitality and equilibrium of our

planet’s ecological balance. When a tree is harvested, the wood can

be used in every stage of human society, such as papermaking,

construction, and furniture manufacturing (Falk, 2009; Latib et al.,

2020). Approximately 73,000 tree species exist worldwide, but

excessive logging and timber over-exploitation have resulted in up

to 30% of the world’s tree species being at risk of extinction, along

with biodiversity destruction, soil erosion, and other ecological

problems (Brancalion et al., 2018; Cazzolla et al., 2022; IUCN,

2022). This threat is true for some tropical tree species, which are

widely used in producing high-value furniture, musical

instruments, and handicrafts due to their excellent physical

processing properties and beautiful patterns (Wick, 2019; Atikah

et al., 2021). Thus, driven by high profits, some tree species are

being over-harvested, which has been recorded as extinct/extinct in

the wild, i.e., Lachanodes arborea (Lambdon and Ellick, 2016).

Benefits from illegal logging are estimated to account for 15%–30%

of the international timber trade, accounting for $51 to $152 billion

a year (INTERPOL, 2021).

In recent decades, the world has witnessed a distressing decline

in global tree populations. To prevent international trade from

threatening the survival of endangered wildlife, the Convention on

International Trade in Endangered Species of Wild Fauna and Flora

(CITES) came into effect on 1 July 1975 to ensure that international

trade in wild animal and plant specimens does not threaten species

survival by subjecting international trade in selected species to

certain controls (Appendices I, II, and III), according to their

needed degree of protection (Goldsmith, 1978). In November

2022, the 19th Conference of the Parties to the CITES was held in

Panama, and numerous tropical tree species were newly listed in

CITES appendices. To date, more than 34,310 plant species of 134

genera have been included in the CITES appendices, including

approximately 670 tree species, and 80% of these species are

internationally traded for their timbers (CITES, 2023). Thus, a
02
fast and accurate wood identification method is needed to support

CITES implementation and promote legal logging.

Wood, or secondary xylem, is composed of countless cells of

different shapes, sizes, and arrangements, with a complex and

anisotropic structure (Shmulsky and Jones, 2019). Species within

the same genus has similar appearance and even wood anatomical

structure. Traditional wood identification, the most mainstream

recognition approach, relies on human examination of the

anatomical features of wood samples and refers to an

identification standard list of the macroscopic and microscopic

characters compiled by the International Association of Wood

Anatomists (IAWA) (Committee, 1989; Yin et al., 2022). This

task can only be completed accurately by experienced wood

anatomists who famil iar ize with wood anatomy and

identification, with the help of identification tools and reference

materials. From a general point of view, it is arduous for the

traditional wood identification method to reach species-level

discrimination by observing anatomical features. To compensate

for the shortcomings of traditional wood identification methods

and break through the wood identification bottleneck at the species

level, some techniques, i.e., DNA barcoding (Jiao et al., 2020), mass

spectrometry (Deklerck et al., 2019; Price et al., 2021), and near-

infrared spectroscopy (Bergo et al., 2016; Pan et al., 2021), have been

developed. However, the lack of reference data and the high cost to

establish it have limited applications of these approaches.

Computer vision is an interdisciplinary field at the intersection

of computer science and image processing that aims to bridge the

gap between human visual perception and machines by endowing

computers with the capacity to understand, interpret, and extract

knowledge from digital visual data (Liu et al., 2017). Image

classification is a fundamental computer vision task that attempts

to comprehend an entire image to classify images by assigning them

to a specific label. With the rapid development of computer vision

research and computer hardware performance, several neural

network architectures have been proposed for image classification

(Wang et al., 2019). Advancements in deep learning and

convolutional neural networks (CNNs) have enabled more

accurate and robust object and pattern identification with visual

data. It is also very appealing to many wood anatomists and has

been widely used in wood classification. The automated wood
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identification method combines deep learning and computer vision

to extract structural features and detect key information hidden in

wood images (Voulodimos et a l . , 2019 ; Hwang and

Sugiyama, 2021).

CNNs are the most commonly used computer vision-based

wood identification models. As research continues, an array of

neural network architectures, including distinguished models such

as LeNet, AlexNet, ResNet, and GoogLeNet, have been introduced

to address the wood image classification task (Kwon et al., 2017;

Ravindran et al., 2018; Oktaria et al., 2019). The performance of

these convolutional architectures is boosted by increasing their

depth while maintaining their gradient information. In several

studies, ResNet has shown superior classification performance

compared to other models (He et al., 2021; Wu et al., 2021).

However, a wood image is a fine-grained texture image with the

characteristics of large intraclass variation and small interclass

variation. To accurately determine the wood species, spatial and

channel information should be exploited more delicately. Recently,

the squeeze-and-excitation network (SENet) was proposed to

provide the unit with a mechanism to explicitly model dynamic,

nonlinear dependencies between channels using global information

(Hu et al., 2018). This mechanism enables the network to selectively

amplify or suppress specific feature maps, improving model

performance. In this way, SENet can be embedded in the CNN,

and the model can be trained to achieve better results.

In many cases, obtaining wood images from reliable sources is

difficult, especially for globally regulated tree species, resulting in an

unsatisfactory number of high-quality images to satisfy the modeling

requirements. Therefore, in the case of limited wood image datasets,

transfer learning and data augmentation are effective methods for

solving the problem of insufficient data volume (Dyk and Meng,

2001; Ravindran et al., 2018). Kırbaş and Çifci (2022) compared the

impacts of several deep learning architectures, namely, ResNet-50,

Inception V3, Xception, and VGG19, based on the WOOD-AUTH

dataset. They found that Xception performs remarkably well in the

transfer learning domain. Hengshuo et al. proposed a wood

identification algorithm based on an improved residual CNN,

which augments the data based on the self-similarity of wood

cross-sectional macrostructure and uses an improved residual CNN

model, i.e., ResNet101, based on block gradient weighting to extract

the features of each sub-image (Su et al., 2021).

Although there have been many wood species identification

studies based on computer vision (Ravindran et al., 2018; Ravindran

and Wiedenhoeft, 2020), two main factors still limit the

development and application of this technique: the self-collected

wood image data from different sources before use have not been

adequately processed, and the identification accuracy is mainly

affected by the sensitivity of the model to the slight variability in

the wood species. Room for improvement in the models used in the

existing studies remains.

This study aimed to develop a fast and reliable computer vision-

based deep learning model by exploiting spatial and channel

information to discriminate CITES-listed tree species from their

look-alikes. The specific aims of this study were to (1) construct a

CITES-28 (14 commonly traded CITES-listed tree species and 14 of
Frontiers in Plant Science 03
their look-alikes) wood transverse surface image dataset, while

concurrently investigating the optimal image data processing

approach from the perspective of data enhancement; (2) establish a

state-of-the-art SE-ResNet model by embedding the SENet module in

a CNN (ResNet); and (3) discriminate CITES-listed tree species from

their look-alikes using SE-ResNet in real-world identification.
2 Materials and methods

2.1 Data preparation and augmentation

In this section, we first explain how to prepare and enhance the

wood image data in the experimental preparation stage from the

perspective of data enhancement. Second, based on the enhanced

data, we select the currently commonly used CNN for model

training. Finally, the model performance is evaluated for tree

species identification.

2.1.1 Image dataset collection
In this study, 279 verified specimens of 14 commercially

important CITES-listed species and 14 of their look-alike species

that were often mixed with CITES-listed species in trade were

collected from the Wood Collection of the Chinese Academy of

Forestry (CAFw), the USDA Forest Products Laboratory Wood

Collection of Madison (MADw), and the Samuel J. Record

Collection (SJRw). The transverse surfaces of the wood samples

were sanded at grits of 180, 240, 400, 800, and 1,000 to obtain a clear

surface for image acquisition. Their macroscopic transverse images

are shown in Figure 1. The nonoverlapping images of 2,048 × 2,048

pixels, representing 6.35 × 6.35 mm of tissue, were taken with a

XyloTron (Ravindran et al., 2020). A total of 9,437 original images

were collected to build a CITES-28 dataset of 14 CITES-listed tree

species and 14 of their look-alikes based on previous studies

(Table 1) (Ravindran et al., 2018; Yin et al., 2022).

2.1.2 Dataset partitioning and patch
dataset creation

We divided the dataset before creating patches to avoid dividing

the same image into both the training and testing sets. The CITES-

28 dataset of the original 9,437 images was divided into 80%/10%/

10% training/validation/test splits at the image level. To ensure that

the errors are representative of the entire dataset, 10-fold cross-

validation for each model was used and accuracy is reported as the

average over the 10 folds. An image dataset with a high imbalance

results in poor classification performance; hence, six kinds of

patches were extracted from the CITES-28 dataset images in this

study. More overlap exists in patches of classes (species) with low

quantities of images to maintain a balanced distribution of classes

(species) in our dataset. The details of the patch dataset used for

training and testing are listed in Table 2.

2.1.3 Image turning
We constructed a specific data augmentation method to fully train

themodel according to the data characteristics, as shown in Equation 1.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1368885
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1368885
TABLE 1 Detailed information of the CITES-28 image dataset.

Label Species (class)
Protection

level
Number of

collected images
Number of

xylarium specimens
Number of images/
xylarium specimens

0 Dalbergia cearensis CITES II 321 14 23

1
Dalbergia

cochinchinensis
CITES II 263 7 38

2 Dalbergia latifolia CITES II 762 21 36

3
Dalbergia

melanoxylon
CITES II 313 11 28

4 Dalbergia oliveri CITES II 414 6 69

5 Dalbergia retusa CITES II 698 16 44

6 Dalbergia stevensonii CITES II 498 11 45

7
Dalbergia
tucurensis

CITES II 461 12 38

8
Platymiscium
pinnatum

/ 201 10 20

(Continued)
F
rontiers in
 Plant Science
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4
FIGURE 1

The transverse section of wood species in this research. The CITES-listed wood species and their look-alikes in the same blue frame are often
confused (species in red text are CITES-listed). Species in the same dashed box are in the same genus.
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aug(xi)   =  R(xi)   +  C (1)

where aug is the enhancement method to be passed by the

sample input to the model training. R is the image operation

method for wood pictures proposed in this paper. During

operation, image samples smaller than the input requirements of

the model may be generated; thus, this paper introduces

compensation factor C to compensate for the phenomenon of

missing samples caused by the data enhancement operation.

In the actual test application process, controlling the acquisition

angle of the test equipment and other factors is difficult. Therefore,

we design a rule-based data enhancement rule with rotation as the

core when building the data enhancement method. In addition,

considering that the test angle accepted by the test equipment

cannot be guaranteed in the actual test process, we propose a

random rotation strategy to expand the diversity of training data

further. The data enhancement operation can be represented by
TABLE 1 Continued

Label Species (class)
Protection

level
Number of

collected images
Number of

xylarium specimens
Number of images/
xylarium specimens

9
Platymiscium
polystachyum

/ 193 16 12

10
Platymiscium
trinitatis

/ 134 6 22

11 Swartzia bannia / 122 5 24

12
Swartzia

benthamiana
/ 106 6 18

13 Swartzia fistuloides / 111 4 28

14 Swartzia leiocalycina / 115 7 16

15
Bobgunnia

madgascariensis
/ 110 5 22

16 Pterocarpus erinaceus CITES II 373 9 41

17
Pterocarpus
santalinus

CITES II 196 4 49

18 Pterocarpus tinctorius CITES II 263 6 44

19
Pterocarpus
angolensis

CITES II 805 19 42

20 Pterocarpus indicus / 1,163 29 40

21
Pterocarpus
macrocarpus

/ 600 18 33

22 Baphia nitida / 123 5 25

23 Guibourtia demeusei CITES II 154 4 39

24
Guibourtia
tessmannii

CITES II 249 7 36

25
Guibourtia
arnoldiana

/ 294 9 33

26 Guibourtia ehie / 337 9 37

27 Guibourtia conjugata / 58 3 19

Total 9,437 279 ~34
The meaning of the symbol "/" represents the species are not protected by CITES.
The bold values represents the total for each column.
TABLE 2 Prediction accuracies of two established models.

Model
Rotation
mode

Image
compensation

Accuracy (%)

SE-
ResNet

Fixed Y 99.65

Fixed N 99.55

Random Y 99.63

Random N 99.47

ResNet

Fixed Y 99.45

Fixed N 99.41

Random Y 99.28

Random N 99.25
Y represents use 0 as a compensation item to complete the processed image.
N denotes that the rotated image is not processed.
The bold values represent the highest accuracy of SE-ResNet and ResNet.
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Equation 2.

R  ¼  Rrandom ∩ Rrule (2)

where Rrandom represents the random rotation strategy and Rrule
represents the rule rotation strategy.

The data enhancement process is shown in Figure 2. When we

enhanced the data based on fixed rotation, the image was rotated to

the center with rotation angles of {45°, 90°, 135°, 225°, 270°, 315°}.

When we enhanced the data based on a random rotation strategy,

the image was rotated to the center, and the rotation angle was

randomly sampled between 0° and 360°. After obtaining the rotated

image, to meet the requirements that the model can input only the

square image region, we cut the rotated image. We used 0 (black) as

a compensation item to make up the exact area.
2.2 Architecture and training of
convolutional neural networks

2.2.1 Convolutional neural network architecture
Based on the enhanced data, we selected ResNet, a widely used

network, as the backbone. As He et al. (2016) discovered, a

multilayer deep neural network can produce unexpected results,

and the training accuracy drops as the layers increase, which is

technically known as vanishing gradients. To address this problem,

ResNet was proposed to help build a deeper neural network by

utilizing skip connections or shortcuts to jump over some layers.

SENet, as a classical attention mechanism, can be embedded in the

CNN. In this study, we selected SE-ResNet to carry out

our experiments.
Frontiers in Plant Science 06
To better obtain the feature expression of wood images in

neural networks, more detailed analysis and processing were

carried out on the features among image channels and the depth

extraction of two-dimensional features. SENet provides the unit

with a mechanism to explicitly model dynamic, nonlinear

dependencies between channels using global information (Hu

et al., 2018). SENet can ease the learning process and significantly

enhance the representational power of the network. The SE-ResNet

module includes a block, global average pooling, a fully connected

(FC) layer, and an activation function layer with ReLU and sigmoid.

The channel attention module is added after the residual module.

The schematic architecture of the SE-ResNet model is shown

in Figure 3.

Equation 3 shows that SENet mines and analyzes the weight

information of different channels by studying the relationship

between channels. First, it squeezes global spatial information

into a channel descriptor by using global average pooling to

generate channelwise statistics, which is r in Equation 3. Then, it

learns to recalibrate the feature adaptively through two FC layers

and uses two activation functions to learn nonmutually exclusive

relationships. After obtaining the scalars, channelwise

multiplication between the scalar and the feature map is carried

out to obtain the final output.

s = s (W2d (W1r(x))) (3)
2.2.2 Optimization objective
We complete the forward pass and update the network by

backpropagation. Globally, the loss function over iterations is still

minimized until the loss converges, as shown in Equation 4, where q
B

A

FIGURE 2

Data augmentation process. (A) Patch creation diagram. (B) Image rotation and compensation.
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is the model parameter, X is the model input, and Y is the

corresponding label.

Given an augmented selection, the model is optimized using

perturbed features. The feature extraction ability is enhanced during

the training process to obtain outstanding performance. In this

sense, the augmentations help the model acquire more knowledge

of potential input samples, increasing classification performance for

real scenes.

bq = argminLq(qjaug(X),Y) (4)
2.3 Model training

Model training is carried out in two phases. In the first phase,

the model pretrained on the ImageNet dataset is studied for image

classification via transfer learning. In the second phase, the model is

trained to build classifiers for wood identification with the training

set and tested at every epoch with the validation set. The initial

learning rate of the model is 0.001, the momentum value is set to

0.9, and 24 epochs are trained sequentially. The epoch with the best

result in the test set is taken to save the model. Stochastic gradient

descent (SGD) is used to optimize the model. The model trained

with the following hardware specifications: CPU Intel Core i9-

14900K 6.0 GHz, 24 GB of RAM NVIDIA RTX 4090, and 96 GB of

GPU. The experimental software environment is Ubuntu 20.04,

Python 3.7.13, PyTorch 1.12.1, and NVIDIA CUDA 10.2.

In this study, the following process investigated the optimal

image processing method (image rotation mode and patch size) for

model accuracy. First, the model was trained with six different image

patches extracted from the original image dataset (600 pixels × 600

pixels, 800 pixels × 800 pixels, 1,000 pixels × 1,000 pixels, 1,200 pixels

× 1,200 pixels, 1,400 pixels × 1,400 pixels, and 1,600 × 1,600 pixels) to
Frontiers in Plant Science 07
determine the most appropriate size. For the most appropriate patch

size dataset, we rotated the patches with two strategies, fixed rotation

and random rotation, to achieve the expansion of the image dataset.

Compensated or uncompensated processing was performed for

images obtained with different rotations. Then, image datasets

obtained from different processing strategies were used to train the

model and compare the impact of different data enhancement

methods on model wood identification performance.
2.4 Evaluation

The performance of the trained models was evaluated using a

test set. The highest identification accuracy of all models based on

test set images is reported. A confusion matrix is given to better

understand the classification results of wood species given by the

model and to analyze the causes of species discrimination errors in

terms of wood anatomy. The confusion matrix contains

information about the true and predicted values of the

classification and reflects the wood species classification results.

Accuracy usually describes model performance on all sample

categories and is used when all sample categories are equally

important. The higher the value is, the better the performance of

the classification model. Accuracy is calculated using true positives

(TPs), false positives (FPs), true negatives (TNs), and false negatives

(FNs), which are shown in Equation 5.

Accuracy   (A) =  
TN   +  TP

TN   +  TP   +   FP   +   FN
(5)

To further test the generalization ability of the trained model,

for each species, we captured 10 images from each sample

purchased from the Guangdong Yuzhu Timber Market to

conduct real-world identification.
FIGURE 3

The schematic of the CNN architecture comprises a ResNet with an SENet employed for wood identification.
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3 Results and discussion

3.1 Appropriate image data augmentation
for wood species identification models

3.1.1 Image cropping
Cropping is the common means in the present study. Figure 4

displays the model performance of different patch sizes in this

experiment. This figure shows that the ResNet and SE-ResNet

models can achieve high identification accuracy when the patch

size is larger than 1,200 pixels × 1,200 pixels, which aligns with

previous research (He et al., 2020). The appropriate perceptual field

of view size is an important factor affecting the classification

performance of the model. The computational cost of high-

resolution images is too high; thus, the image size must be

adjusted but kept within the range where the desired features can

be extracted. In addition, information loss should be accounted for

when choosing the size of the wood image. For macroscopic images

of wood cross-sections, the size of the image feature field of view

needs to be balanced with the number of images. Therefore, to

obtain as much image data as possible with low overlap while

ensuring model accuracy, we consider a patch size of 1,200 pixels ×

1,200 pixels to be the optimal size for model training.

3.1.2 Image rotation
The ResNet and SE-ResNet models were established based on

the most suitable patch size. The validity of different image rotation
Frontiers in Plant Science 08
methods on wood identification models was compared for the first

time. Table 3 shows that the fixed rotation method reached higher

accuracy for the ResNet (99.65%) and SE-ResNet (99.45%) models.

Moreover, these models exhibited relatively high accuracy after

using 0 as a compensation item to complete the cropped image;

both values were above 99.28%. The results showed that using a

fixed rotation method and image compensation to obtain adequate

training data is feasible. The accuracy and loss curves of the

SEResNet model during the training and test process are shown

in Figure 5. It showed that learning rate decays by 10 times and

tended to be flat when training to 15, respectively. At the same

epoch, the test set reached the highest accuracy with a loss value of

less than 0.05 (Figure 5B). It showed that this model has strong

generalization and stability ability and is able to conduct wood

species identification.

Some existing publicly accessible datasets provide numerous

images that can be used in computer vision research, but no more

attention is given to preprocessing images from different sources

before use. Geus et al. (2021) conducted an experiment that applied

a rotation of 1° to each image within the training set, covering a

range from −15° to 15°. Nevertheless, this experiment did not give

specific conclusions about wood image preprocessing methods, and

no further research has been carried out. In this experiment, the

image undergoes segmentation, followed by rotation over a

comprehensive 360° range and subsequent compensation. The

results serve to validate the efficacy of the proposed preprocessing

approach in substantially expanding the available dataset.
TABLE 3 Image dataset details with the different patch sizes.

Patch size Number of train patch Number of val patch Number of test patch Number of total patch

1,600 32,776 3,790 3,889 40,455

1,400 32,157 4,296 4,002 40,455

1,200 32,408 4,029 4,018 40,455

1,000 32,204 3,988 4,263 40,455

800 32,286 3,857 4,312 40,455

600 32,215 4,170 4,070 40,455
FIGURE 4

The model performance when using images of different patch sizes.
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3.2 Model accuracy improvement by
adding an attention channel

CNN models commonly used in previous studies, such as

AlexNet, InceptionV3, and DenseNet, have shown strong feature

extraction capabilities when processing two-dimensional images

(Geus et al., 2021; Wagle and Harikrishnan, 2021); however, the

model performance is unsatisfactory when targeting wood image data.

The wood section image contains features with strong regularity. In

contrast, the variations between different wood species are subtle.

In addition, the difference in wood section images is mainly reflected

in factors such as texture, color, and control distribution. The attention

mechanism can extract key features of similar images better. In this

experiment, the channel attention mechanism is introduced to

improve wood species identification accuracy at the species level.

As shown in Table 3, the model accuracy of SE-ResNet is

generally higher than that of ResNet under various rotation and

compensation methods. Compared with ResNet, the performance of

SE-ResNet was better and suitable for identifying the CITES-listed

wood species with their look-alikes. ResNet incorporates SENet,

which enhances the capacity of the network to learn identification

keys by adaptively recalibrating the channelwise feature responses.

The attention mechanism in computer vision is inspired by the

human attention mechanism, which imitates the manner in which

people focus more on specific information in an image while ignoring

the rest (Lu et al., 2023). As a module that can affect the performance

of the model, the attention mechanism can focus limited attention on

only the most essential information to save computational resources

and obtain the most effective information quickly. In particular, when

the original model is underfitting with fewer parameters and cannot

fully learn the training data rules, adding the attention module

enhances the expressive power of the model, improving the

underfitting problem and accuracy.

3.3 Discrimination of CITES-listed species
from their look-alikes

In this study, the SE-ResNet model obtained the highest accuracy

for wood species identification on a dataset with fixed and
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complementary rotation. The confusion matrix in Figure 6 shows

the classification results of the model for each wood species in the test

set. Overall, the classification accuracy of the 28 tree species reached

99.65%, with 20 wood species correctly classified. Surprisingly, the

predictions made by the SE-ResNet model for five Guibourtia species

were perfect. When discriminating CITES-listed Dalbergia species,

they were identified with an accuracy of over 95% with this model.

The CITES-listed Dalbergia species was completely distinguished

from eight look-alike species, including Platymiscium, Swartzia, and

Bobgunnia. However, approximately 3.23% of the Dalbergia cearensis

images were misclassified as Pterocarpus angolensis.

Within Pterocarpus, all the CITES-listed Pterocarpus species were

completely discriminated from their look-alikes, except for

Pterocarpus angolensis, which was confused with Pterocarpus

indicus and Pterocarpus macrocarpus. For the closely related

Pterocarpus species, Pterocarpus angolensis, Pterocarpus erinaceus,

Pterocarpus macrocarpus , and Pterocarpus indicus were

misjudgments between each other. These four species have large

wood anatomical similarities, such as the axial parenchyma

arrangement and ray type, which make them difficult to distinguish

completely and accurately on the basis of macroscopic images of a

single cross-section. Not surprisingly, Pterocarpus santalinus and

Pterocarpus tinctorius appeared to be misidentified, with 5.88% of

the images of Pterocarpus tinctorius misclassified as Pterocarpus

santalinus. With the traditional methods, it is extremely difficult to

distinguish between these two species because of their highly similar

macroscopic and microscopic structural characteristics. Therefore,

Pterocarpus tinctorius was listed in CITES Appendix II in 2019 due to

its over-exploitation and extreme similarity with Pterocarpus

santalinus, listed in CITES Appendix II in 2007.

The vast majority of wood and wood products have lost the key

identification characteristics, such as leaves and bark, which

increases the difficulty of wood identification. In particular, wood

species of the same genus or even closely related genera have high

similarities in appearance and anatomical characteristics. Not

surprisingly, compared to human vision-based methods, the

results demonstrated in this experiment can provide higher

identification accuracy (Wiedenhoeft et al., 2019). Simultaneously,

the deep learning model effectively eradicates human subjectivity
BA

FIGURE 5

The loss value and accuracy of the SEResNet model across each epoch. (A) The model training. (B) The model test.
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TABLE 4 The identification performance of the models for independent images.

Label Species (class)
SE-Resnet ResNet

Accuracy% Misidentified labels Accuracy% Misidentified labels

0 Dalbergia cearensis 100 / 100 /

1 Dalbergia cochinchinensis 80
Dalbergia retusa
Dalbergia stevensonii

0
Pterocarpus santalinus
Dalbergia latifolia
Dalbergia stevensonii

2 Dalbergia latifolia 100 / 100 /

3 Dalbergia melanoxylon 100 / 100 /

4 Dalbergia oliveri 80 Dalbergia stevensonii 100 /

5 Dalbergia retusa 100 / 80 Dalbergia oliveri

6 Dalbergia stevensonii 100
/

0
Dalbergia tucurensis
Dalbergia retusa

7 Dalbergia tucurensis 80
Dalbergia stevensonii

70
Pterocarpus indicus
Dalbergia oliveri

(Continued)
F
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FIGURE 6

The classification results of the SE-ResNet model with the test dataset. 0—Dalbergia cearensis; 1—Dalbergia cochinchinensis; 2—Dalbergia latifolia;
3—Dalbergia melanoxylon; 4—Dalbergia oliveri; 5—Dalbergia retusa; 6—Dalbergia stevensonii; 7—Dalbergia tucurensis; 8—Platymiscium pinnatum;
9—Platymiscium polystachyum; 10—Platymiscium trinitatis; 11—Swartzia bannia; 12—Swartzia benthamiana; 13—Swartzia fistuloides; 14—Swartzia
leiocalycina; 15—Bobgunnia madgascariensis; 16—Pterocarpus erinaceus; 17—Pterocarpus santalinus; 18—Pterocarpus tinctorius; 19—Pterocarpus
angolensis; 20—Pterocarpus indicus; 21—Pterocarpus macrocarpus; 22—Baphia nitida; 23—Guibourtia demeusei; 24—Guibourtia tessmannii;
25—Guibourtia arnoldiana; 26—Guibourtia ehie; 27—Guibourtia conjugate.
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and assumes the role of a professional with greater efficiency

and precision.
3.4 Prospect of wood species identification
based on a deep learning model

Table 4 presents the discriminative results of the SE-ResNet model

for images collected from the timber markets. For completely

unfamiliar samples, the recognition accuracies of SE-Resnet and

Resnet are 82.3% and 70.4%, respectively; the generalization ability

of SE-Resnet model is superior. For SE-Resnet, the classification

results show that images of 16 species were fully identified and 6

species had 8 or 9 out of 10 images accurately identified. In this regard,

the CITES-listed tree species of Pterocarpus and Guibourtia were all
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distinguished from their look-alikes. Dalbergia spp., D. cearensis, and

D. cochinchinensis were also accurately identified. However, this

model performed worse when discriminating Platymiscium spp.,

with images of all three species at a level of poor stability. Although

the number of samples is large, the effective area of the image that can

be acquired for each sample is small and there is a relatively small

number of images of Platymiscium used for modeling. Such a

phenomenon also appears in Swartzia benthamiana with Swartzia

leiocalycina. It demonstrated that even if more images could be

obtained through data enhancement strategies, fully covering the

variability within species would not have been possible.

Based on this result, we considered that the model proposed in

this experiment could identify 22 tree species accurately and

consistently. The SE-ResNet model has great potential for

generalization, and the model gives better recognition for wood
TABLE 4 Continued

Label Species (class)
SE-Resnet ResNet

Accuracy% Misidentified labels Accuracy% Misidentified labels

8 Platymiscium pinnatum 40
Platymiscium polystachyum
Platymiscium trinitatis

70 Platymiscium trinitatis

9
Platymiscium
polystachyum

20
Platymiscium pinnatum

40 Platymiscium pinnatum

10 Platymiscium trinitatis 20
Dalbergia melanoxylon
Dalbergia retusa

50
Dalbergia stevensonii
Platymiscium polysta

11 Swartzia bannia 100
/

60
Dalbergia stevensonii
Dalbergia oliveri

12 Swartzia benthamiana 60
Dalbergia cochinchinensis
Dalbergia stevensonii

70 Pterocarpus angolensis

13 Swartzia fistuloides 100 / 100 /

14 Swartzia leiocalycina 40
Platymiscium trinitatis
Swartzia fistuloides

10
Swartzia bannia
Platymiscium trinitatis

15
Bobgunnia
madgascariensis

100 / 90 Dalbergia cearensis

16 Pterocarpus erinaceus 100 / 100 /

17 Pterocarpus santalinus 90 Pterocarpus macrocarpus 90 Dalbergia retusa

18 Pterocarpus tinctorius 90 Pterocarpus santalinus 100 /

19 Pterocarpus angolensis 100 / 100 /

20 Pterocarpus indicus 100 / 90 Dalbergia oliveri

21 Pterocarpus macrocarpus 80
Pterocarpus angolensis
Pterocarpus indicus

50 Dalbergia oliveri

22 Baphia nitida 100 / 100 /

23 Guibourtia demeusei 100 / 90 Pterocarpus tinctorius

24 Guibourtia tessmannii 100 / 10 Guibourtia demeusei

25 Guibourtia arnoldiana 40 Guibourtia ehie 0 Guibourtia ehie

26 Guibourtia ehie 100 / 100 /

27 Guibourtia conjugata 100 / 100 /

Total 82.3 70.4
The meaning of the symbol "/" represents the species don’t misidentified as other wood species.
The bold values represents the average accuracy of SE-ResNet and ResNet.
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species with more specimens. Thus, it is recommended that more

specimens of the same species be collected to train the model to

cover as much variability as possible and that, where possible, many

specimens be used to test the generalization ability of the model in

future studies, which can enhance the accuracy, generalization

ability, and applicability of the trained model.

Our experiment explored the effect of image cropping and

rotation on the performance of deep learning models for wood

image identification and added an attention channel module into

the ResNet-50 model. It was found that fixed rotation and cropping

are effective data enhancement methods for wood images. In

addition, we added only the attention channel module into the

models, and other attention mechanisms, such as multi-head self-

attention, self-attention, and convolutional block attention

modules, were not tested in wood species identification (Woo

et al., 2018; Guo et al., 2022). Follow-up research should explore

more data enhancement methods, such as mirroring and scaling.

The generative adversarial network (GAN) technique is a new

computer vision method. The GAN-based oversampling

technique not only increases the minority class representation to

solve class imbalance problems but also may help to prevent

overfitting (Sampath et al., 2021). However, GANs have not been

reported in wood image recognition.

Numerous practical tools have been developed to address the

specific field application requirements, exemplified by solutions

such as MyWood-ID (Tang et al., 2018) and XyloPhone

(Wiedenhoeft, 2020). Considering the comprehensive research

conducted in this paper, an intelligent wood identification system

was devised and successfully deployed for on-site inspections

carried out by customs officials. Compared to other emerging

techniques (NIRS, DART-MS, and DNA barcode), the computer

vision-based wood identification approach demonstrates

considerable promise in achieving species-level precision in field

screening for wood species.

At this research stage, the dataset images are mainly processed

on the surface of the wood by both knifing and sanding in the

laboratory so that the anatomical characteristics of the wood can be

fully exposed before the images are acquired. The experimentally

acquired images after fine sanding are idealized, and the models

trained based on these image data may not match the practical

application. Therefore, exploring the deep learning models with

wood images of rough surfaces is necessary to reduce the workload

of wood surface treatment by processing rough surface images.
4 Conclusion

The traditional wood species identification method has a history

of nearly a century, forming a complete identification process and

norms, and still occupies a dominant position. However, in the new

era of demand, traditional methods need to be complemented by new

technologies to achieve species-level wood species identification.

Faced with the current conservation pressure of endangered tree

species, a more accurate, convenient, and economically friendly

method is urgently needed for the identification of wood species.

Computer vision is the most feasible technique for traded wood
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species identification coupled with deep learning, especially for the

field inspection at import and export ports.

The results of this study showed that the 1,200 pixel × 1,200 pixel

patch size can be applied as the best choice for the training model and

that the number of wood images can be effectively expanded by image

cropping and rotation. In addition, the channel attention mechanism

(SENet) module is added to the CNN structure to identify CITES-

listed tree species and their look-alikes with an accuracy of over 99%.

It shows a relatively satisfactory performance in real-world

identification. For the public, the model does not require extensive

knowledge of wood anatomy and experience in species identification,

which greatly reduces the complexity of the traditional wood

identification process.

This work not only provides a CNN model along with added

attention channels for successful identification but also provides a

standard guideline for image data enhancement when conducting

wood species identification. Further studies are needed to explore the

interspecific wood anatomy features with deep learning models and

feature visualization. The results of this study show that the wood

transverse image dataset coupled with the SE-ResNet model can

accurately discriminate CITES-listed species from their look-alikes to

combat illegal timber trade and contribute to tree species conservation.
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