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Dual functionality of
pathogenesis-related proteins:
defensive role in plants versus
immunosuppressive role
in pathogens
Zhu Han and Roger Schneiter*

Department of Biology, University of Fribourg, Fribourg, Switzerland
Plants respond to pathogen exposure by activating the expression of a group of

defense-related proteins known as Pathogenesis-Related (PR) proteins, initially

discovered in the 1970s. These PR proteins are categorized into 17 distinct

families, denoted as PR1-PR17. Predominantly secreted, most of these proteins

execute their defensive roles within the apoplastic space. Several PR proteins

possess well-defined enzymatic functions, such as b-glucanase (PR2), chitinases

(PR3, 4, 8, 11), proteinase (PR7), or RNase (PR10). Enhanced resistance against

pathogens is observed upon PR protein overexpression, while their

downregulation renders plants more susceptible to pathogen infections. Many

of these proteins exhibit antimicrobial activity in vitro, and due to their compact

size, some are classified as antimicrobial peptides. Recent research has unveiled

that phytopathogens, including nematodes, fungi, and phytophthora, employ

analogous proteins to bolster their virulence and suppress plant immunity. This

raises a fundamental question: how can these conserved proteins act as

antimicrobial agents when produced by the host plant but simultaneously

suppress plant immunity when generated by the pathogen? In this hypothesis,

we investigate PR proteins produced by pathogens, which we term “PR-like

proteins,” and explore potential mechanisms by which this class of virulence

factors operate. Preliminary data suggests that these proteins may form

complexes with the host’s own PR proteins, thereby interfering with their

defense-related functions. This analysis sheds light on the intriguing interplay

between plant and pathogen-derived PR-like proteins, providing fresh insights

into the intricate mechanisms governing plant-pathogen interactions.
KEYWORDS

plant immunity, fungal pathogens, secretion, apoplast, virulence, immune signaling,
sperm coating proteins (SCPs), venom allergen-like proteins (VALs/VAPs)
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Introduction

Plants are constantly challenged by various organisms,

including fungi, oomycetes, bacteria, and viruses, which can

compromise the plant’s fitness and survival (Teixeira et al., 2019).

Plant pathogens affect forest plantations and most staple crops,

decreasing productivity worldwide and severely compromising food

security (Fones et al., 2020). The situation is expected to get worse,

given the current rate of growth of the human population, the effect

of climate change, the prevalence of monocultures, and the rise in

pathogen resistance (Singh et al., 2023).

To combat the incursion of pathogens, plants have developed

an intricate defense strategy comprising both inherent and

inducible mechanisms (Jones and Dangl, 2006; Han, 2019).

Constitutive defenses, operating as the foremost line of

protection, encompass features like cutin, waxes, robust lignin

deposition on cell walls, and the synthesis of antimicrobial small

molecules, such as phytoanticipins (Li et al., 2020). The inducible

defense mechanisms can be broadly categorized into two main

types: Pathogen-associated molecular pattern (PAMP)-triggered

immunity (PTI) and effector-triggered immunity (ETI).

Furthermore, plants can develop systemic acquired resistance

(SAR), a sophisticated response that fortifies defense throughout

the plant following localized pathogen attack (Zhou and Zhang,

2020; Tanaka and Heil, 2021; Ngou et al., 2022).
Pathogenesis-related proteins

Amidst the spectrum of plant defense mechanisms, PR proteins

stand as a prominent line of primary defense. These proteins are

categorized into various families, denoted as PR1 to PR17 and

beyond, based on their unique structural and functional

characteristics (van Loon and van Kammen, 1970). Typically, PR

proteins are induced in response to pathogen invasion and

complement the action of small organic defense compounds that

primarily serve to fend off herbivores but also exhibit antimicrobial

activities (Westrick et al., 2021).

The discovery of PR proteins traces back to pioneering studies

in the 1970s, where their robust induction in response to tobacco

mosaic virus infection was first observed (Gianinazzi et al., 1970;

van Loon and van Kammen, 1970). Subsequent research extended

this finding to various plant species facing diverse pathogens,

including oomycetes, fungi, bacteria, viruses, viroids, nematodes,

and insect pests (van Loon et al., 1987; Stintzi et al., 1993; Van Loon

and Van Strien, 1999; Edreva, 2005; van Loon et al., 2006; Jain and

Khurana, 2018; Zribi et al., 2021). The transcripts encoding PR

proteins show rapid accumulation following PTI and ETI, with their

expression often regulated by the signaling molecule salicylic acid

(SA). Notably, PR1 proteins are distinguished as crucial molecular

markers for heightened plant defense due to the induction of SAR

(Vlot et al., 2009).

PR proteins exhibit distinct biochemical properties, such as low

molecular weight (ranging from 6 to 43 kDa), extractability and

stability at low pH (below 3, a condition under which most other
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proteins denature), thermostability, and resistance to proteases

(Van Loon and Van Strien, 1999). They are found throughout

various plant organs, with leaves being particularly rich in these

proteins, where they can constitute up to 5-10% of total leaf

proteins. The PR1 family, for example, can comprise 1-2% of

total leaf proteins (Van Loon and Van Strien, 1999). In plants,

multiple genes usually represent each PR protein family, enabling

the synthesis of diverse protein isoforms. For example, Arabidopsis

thaliana has 22 genes encoding PR1 homologs, and rice contains 39

PR1-type genes (Mitsuhara et al., 2008). Some of these PR1 genes

are constitutively expressed in roots or floral tissues, implying roles

in plant development. This wide distribution of defense-related

proteins across monocots and dicots underscores their multifaceted

functions beyond defense (van Loon et al., 2006).

PR proteins can be categorized based on their isoelectric points,

with acidic variants primarily induced upon immune activation and

secreted to the apoplast. In contrast, those with a basic isoelectric

point are often involved in developmental processes, showing limited

induction upon pathogen infection, and typically localizing

intracellularly, particularly in vacuoles (Farvardin et al., 2020; Zribi

et al., 2021). Certain PR proteins also respond to various abiotic

stressors like wounding, dehydration, salt, or cold stress, while others

possess anti-freeze activity, reflecting their roles under adverse

environmental conditions (Griffith and Yaish, 2004; Islam et al.,

2023). Importantly, several PR proteins present in pollen, fruits, and

vegetables can trigger allergic reactions in humans, making them

significant contributors to plant allergens (Arora et al., 2020).

Over the past five decades, extensive research has been dedicated

to characterizing individual PR proteins, elucidating their basic

enzymatic activities, and establishing their direct role in defense

against microbial pathogens (van Loon et al., 2006; Ferreira et al.,

2007; Ali et al., 2018; Dos Santos and Franco, 2023) (see Table 1). For

instance, PR1 proteins exhibit lipid-binding activity and inhibit the

growth of sterol auxotrophic oomycetes (Gamir et al., 2017; Han

et al., 2023). PR1 proteins also harbor a C-terminal peptide known as

CAP-derived peptide 1 (CAPE1), which, when cleaved from the full-

length PR1 protein, stimulates plant immune defense (Chen et al.,

2014; Breen et al., 2017; Chen et al., 2023). PR2 proteins share

sequence homology with b-1,3-glucanases and can hydrolyze b-1,3-
glucans, which are present in the cell walls of microbes, generating

oligomers that serve as elicitors. PR3, PR8, and PR11 exhibit chitinase

activity, often synergizing with PR2, and PR4 binds chitin, a key

component of fungal cell walls (Levy et al., 2007; Balasubramanian

et al., 2012; Perrot et al., 2022). PR5 encompasses thaumatin-like

proteins (TLPs) that exert antimicrobial activity by rapidly

permeabilizing microbial plasma membranes (Zhang et al., 2018b;

de Jesús-Pires et al., 2020; Sharma et al., 2021). PR6 encodes a

protease inhibitor and shows synergy with thionins (PR13) (Ryan,

1989; Terras et al., 1993; Sels et al., 2008; Grosse-Holz and van der

Hoorn, 2016; Rawlings et al., 2018). PR7 encodes a subtilisin-like

endoprotease, believed to attack and degrade microbial cell wall

proteins. However, these proteolytic enzymes are also important for

peptide signaling, for example, by releasing serine rich endogenous

peptides (SCOOPs) in Brassicacea, which are then perceived

by the leucine-rich repeat receptor kinase male discovery

1-interacting receptor-like kinase 2 (MIK2) to elicit immunity
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(Yang et al., 2023). PR9 exhibits heme-dependent peroxidase activity,

crucial for lignification, wound healing, and oxidative degradation of

phenolic compounds (Passardi et al., 2004; Almagro et al., 2009; Liu

et al., 2018; Cesarino, 2019). PR10 proteins are members of the major

latex-like family and have been reported to possess ribonuclease

activity, but this might be attributed to copurifying RNase

contaminations (Fernandes et al., 2013; Aglas et al., 2020;

Longsaward et al., 2023). PR10 has a hydrophobic cavity capable of
Frontiers in Plant Science 03
binding various lipids, including steroids and fatty acids (Radauer

et al., 2008). Intriguingly, PR10 members are localized in the

cytoplasm, but secreted into the apoplastic space when complexed

with and activated by leucine-rich repeat protein 1 (LRR1) (Choi

et al., 2012).

PR12 comprises plant defensins, small proteins with

antimicrobial activity but an uncharacterized mode of action

(Terras et al., 1995; Thevissen et al., 2000; Sels et al., 2008; Tam
TABLE 1 Summary of properties of PR protein families.

Family Pfam Activity Function/Properties References*

PR1 PF00188 Immune signaling,
Lipid-binding

• Antimicrobial
• Abundant induced protein in
the apoplast

(Chen et al., 2014; Breen et al., 2017; Gamir et al., 2017; Han et al., 2023)

PR2 PF00332 b-1,3-glucanase • Antimicrobial
• Cell wall degradation

(Levy et al., 2007; Balasubramanian et al., 2012; Perrot et al., 2022)

PR3
PR4
PR8
PR11

PF00182
PF00967
PF00704
PF00704

Chitinase (GH19)
Chitin binding
Chitinase (GH18)
Chitinase (GH18)

• Antimicrobial
• Cell wall degradation
• Synergistic with PR2

(Oyeleye and Normi, 2018; Fukamizo and Shinya, 2019; Poria et al., 2021)

PR5 PF00314 Thaumatin/ Osmotin/
Zeamatin-like

• Antifungal
• Glucan binding
• Plasma membrane permeability
• Sweet tasting
• Anti-freeze activity

(Zhang et al., 2018; de Jesús-Pires et al., 2020; Sharma et al., 2021)

PR6 PF00280 Protease inhibitor
MEROPS family

• Nematocidal
• Insecticidal
• Synergistic with PR13

(Terras et al., 1993; Ryan, 1989; Sels et al., 2008; Grosse-Holz and van der
Hoorn, 2016; Rawlings et al., 2018)

PR7 PF00082 Subtilisin-like endoprotease • Antifungal
• Dissociation of microbial cell
wall
•Phytocytokine signaling

(Figueiredo et al., 2018; Schaller et al., 2018; Yang et al., 2023)

PR9 PF00141 Heme-containing peroxidase • Lignin-forming peroxidase (Passardi et al., 2004; Almagro et al., 2009; Liu et al., 2018; Cesarino, 2019)

PR10 PF00407 Ribonuclease-like, large
hydrophobic cavity

• Antimicrobial
• Cytoplasmic protein
• Related to Bet v 1, a major
birch pollen allergen

(Radauer et al., 2008; Choi et al., 2012; Fernandes et al., 2013; Aglas
et al., 2020)

PR12 PF00304 Plant defensin • Antimicrobial
• Induction of ion efflux
• Interaction with
fungal sphingolipids

(Terras et al., 1995; Thevissen et al., 2000; Sels et al., 2008; Tam et al.,
2015; Parisi et al., 2019)

PR13 PF00321 Thionin • Antimicrobial
• Membrane permeating
• Synergistic with PR14

(Stec, 2006; Sels et al., 2008; Tam et al., 2015; Höng et al., 2021)

PR14 PF00234 Non-specific lipid-transfer
protein
Protease inhibitor
Seed storage

• Antimicrobial (Sels et al., 2008; Liu et al., 2015; McLaughlin et al., 2021; Gao et al., 2022;
Melnikova et al., 2022)

PR15
PR16

PF00190
PF00190

Oxalate oxidase
Oxalate oxidase-like

• Antimicrobial
• ROS generation
• Germin
• Cupin family

(Mittler, 2002; Dunwell et al., 2004; Farvardin et al., 2020; Joshi
et al., 2021)

PR17 PF04450 Putative aminopeptidase • Poorly characterized (Okushima et al., 2000; Christensen et al., 2002; Joshi et al., 2021)
*We predominantly reference review articles in this table, aiming to provide a comprehensive overview of the individual members within the PR class of proteins. This approach is taken due to
the extensive nature of the original literature encompassing these 17 distinct protein families, spanning over 50 years, and involving numerous plant species as well as specific types of pathogen
interactions. Notably, the PR18 and PR19 proteins, although recently incorporated, are omitted from this compilation. This omission arises from their limited characterization thus far, with their
enzymatic activity and mode of action yet to be elucidated (Ali et al., 2018).
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et al., 2015; Parisi et al., 2019). PR6, PR12, PR13, and PR14, due to

their low molecular weight and antimicrobial activity, are classified

as antimicrobial peptides (Sels et al., 2008). PR13 belongs to the

class of thionins, small, basic, and cysteine-rich peptides that, like

PR12 peptides, cause the permeabilization of microbial cell

membranes. PR13 exhibits synergistic antimicrobial activity with

PR14 (Stec, 2006; Sels et al., 2008; Tam et al., 2015; Höng et al.,

2021). PR14 proteins can transfer phospholipids between

membranes in vitro and, due to their low substrate specificity, are

known as non-specific lipid transfer proteins (ns-LTPs) (Sels et al.,

2008; Liu et al., 2015; Gao et al., 2022; Melnikova et al., 2022). PR15

and PR16, oxalate oxidase and oxalate oxidase-like proteins,

contribute to the generation of apoplastic reactive oxygen species

(ROS), initiating signal transduction cascades and activating plant

defense mechanisms (Mittler, 2002; Dunwell et al., 2004; Farvardin

et al., 2020; Joshi et al., 2021). Lastly, PR17, the least understood

class, is postulated to possess aminopeptidase activity (Okushima

et al., 2000; Christensen et al., 2002; Joshi et al., 2021).

Numerous PR proteins display antimicrobial activity in vitro,

and their overexpression in plants enhances resistance to various

pathogens across diverse plant species (Alexander et al., 1993;

Niderman et al., 1995; Epple et al., 1997; Anand et al., 2004; van

Loon et al., 2006; Ferreira et al., 2007; Sels et al., 2008; Dos Santos

and Franco, 2023). Conversely, silencing the expression of PR1 or

PR5 renders plants more susceptible to pathogens (Riviere et al.,

2008; Zhang et al., 2018b). Despite their antimicrobial activity, the

precise functions of many PR proteins in defense responses remain

incompletely understood, extending beyond direct pathogen

inhibition to encompass roles in cell wall reinforcement,

scavenging of ROS, and modulation of defense signaling

pathways (van Loon et al., 2006; Islam et al., 2023). Given the

protective effects conferred by the induction and accumulation of

PR proteins, their overexpression, and heterologous expression are

currently explored as strategies to establish stress-tolerant plants

(Ali et al., 2018; Boccardo et al., 2019; Islam et al., 2023).
Pathogenesis-related-like proteins
produced by pathogens

While PR proteins are typically produced by plants in response

to pathogen infection as part of their defense mechanism, recent

findings have unveiled a fascinating twist: pathogens themselves

synthesize pathogenesis-related-like proteins, which we will refer to

as PR-like proteins, that play crucial roles in promoting pathogen

virulence (Han et al., 2023). Unlike the induction and secretion of

antimicrobial proteins by the host plant upon pathogen attack,

which are well studied, the precise function and contribution of PR-

like proteins to pathogen virulence remain enigmatic.

Among PR-like proteins, the PR1-like family is perhaps the most

extensively characterized. PR1 proteins belong to a large protein

superfamily, also known as CAP proteins (CRISP/Ag5/PR1) or SCPs

(sperm coating proteins) and are related to VALs/VAPs (venom
Frontiers in Plant Science 04
allergen-like proteins made by nematodes) (Gibbs et al., 2008;

Cantacessi and Gasser, 2012; Wilbers et al., 2018; Han et al., 2023).

Recent research has unveiled PR1-like proteins from various

pathogenic nematodes and fungi as novel virulence factors. For

example, PR1-like proteins from hemibiotrophic Fusarium species,

including Fpr1 from Fusarium oxysporum, FgPR1L-4 from Fusarium

graminearum, as well as FvSCP1 from Fusarium verticillioides, have

all been shown to enhance fungal virulence in their respective host

plants (Prados-Rosales et al., 2012; Lu and Edwards, 2018; Zhang

et al., 2018a). More recently, a family of three highly related PR1-like

proteins was identified in the necrotrophic fungal pathogens

Cytospora chrysosperma and Valsa mali, causal agents of canker

disease in poplar and apple, respectively. Deletion of CcCAP1 in C.

chrysosperma reduced fungal virulence and increased sensitivity to

ROS, highlighting its importance (Han et al., 2021). Additionally, two

of the three V. mali PR1-like proteins, VmPR1a and VmPR1c, were

found to be essential for pathogen virulence (Wang et al., 2021).

Recent host-induced gene silencing experiments further

demonstrated that three out of six PR1-like proteins from the

wheat stripe rust fungus Puccinia striiformis f. sp. tritici are

necessary for fungal virulence (Zhao et al., 2023).

Furthermore, in susceptible tomato plants, GrVAP1 secreted by

the potato cyst nematode (Globodera rostochiensis) is required for

successful infection (Lozano-Torres et al., 2014). However, in other

cultivars, GrVAP1 interacts with the tomato papain-like cysteine

protease Rcr3, activating the membrane-localized immune receptor

Cf-2, thereby inducing the host’s immune response (Lozano-Torres

et al., 2012). Similarly, a PR1-like protein from Phytophthora sojae

has been found to trigger an immune response in Nicotiana

benthamiana, dependent on its recognition by the leucine-rich

repeat receptor-like protein (LRR-RLP) RCAP1. This recognition

involves the shared immune coreceptors BAK1 and SOBIR1 and

leads to increased plant resistance against Phytophthora (Gust and

Felix, 2014; Liebrand et al., 2014; Jiang et al., 2023). PsCAP1, the

Phytophthora PR1-like protein, contains an N-terminal PAN

domain and exhibits immune-stimulatory activities such as

triggering ROS bursts, activating mitogen-activated protein kinase

(MAPK), and inducing cell death. Importantly, these activities are

mediated by the PAN domain, which is distinct from the CAP

domain found in canonical PR1 proteins. The PAN domain has

been proposed to facilitate protein-protein and protein-

carbohydrate interactions, but its precise role in plant-microbe

interactions remains a subject of study (Jiang et al., 2023). This

PAN domain containing PsCAP1 protein is conserved among

phytopathogenic oomycetes but absent in the genomes of plants,

diatoms, bacteria, or fungi (Jiang et al., 2023).

Interestingly, heterologous expression of PR1-like proteins from

pathogens, such as GrVAP1 from G. rostochiensis or CcCAP1 from

C. chrysosperma, in host plants suppresses the plant’s PTI response.

Expression of CcCAP1 in tobacco inhibits pathogen-induced

induction of PR1 and PR4 and the expression of GrVAP1

selectively suppresses the activation of the programmed cell death

by surface-localized immune receptors (Lozano-Torres et al., 2014;

Han et al., 2021). These observations suggest that these proteins
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possess potent immune modulatory activity, rendering plants

hypersensitive to various unrelated pathogens (Lozano-Torres

et al., 2014; Han et al., 2021).

The corn smut Ustilago maydis UmPR1-like protein has

recently been shown to sense plant-derived phenolic compounds

to eliciting hyphal-like growth to guide fungal invasion in plants. In

addition, secretion of UmPR1-like promotes fungal virulence by

hijacking a plant cysteine protease to release a UmCAPE-like

signaling peptide from UmPR1-like and suppress plant immunity

(Lin et al., 2023).

These PR1-like proteins from pathogens appear to function in

ways similar to plant hormones produced by pathogenic and

symbiotic fungi. They may have dual roles: (i) perturbing plant

processes, either positively or negatively, to promote invasion and

nutrient uptake by the pathogens; and (ii) serving as signals for the

fungi to engage in appropriate developmental and physiological

processes adapted to their environment (Chanclud and Morel, 2016).

Building upon these insights into PR1-like proteins, we explored

the genomes of various plant pathogens for the presence of other PR-

like genes. Remarkably, we found that not only PR1-like genes are

prevalent in phytopathogen genomes but that many other PR-like

protein family members are also present. Except for PR4 (chitinase),

PR6 (protease inhibitor), PR10 (ribonuclease-like), PR12 (plant

defensin), PR13 (thionin), and PR14 (non-specific lipid transfer

protein), multiple copies of genes encoding PR-like proteins are

frequently identified in the genomes of model phytopathogens,

particularly in those of fungi and oomycetes (Dean et al., 2012;

Kamoun et al., 2015). Notable examples include the rice blast fungus

Magnaporthe oryzae (Tan et al., 2023), the gray mold fungus Botrytis

cinerea (Bi et al., 2023), the rust fungus Puccinia spp (Avasthi et al.,

2023), the soil-borne ascomycete Fusarium oxysporum (Srinivas et al.,

2019), the causative agent of wilt disease Verticillium dahliae

(Klosterman et al., 2009), the corn smut fungus Ustilago maydis

(Yu et al., 2023), as well as the oomycetes Phytophthora infestans

(Whisson et al., 2016), which cause late blight disease on potato and

tomato, the downy mildew causing Hyaloperonospora arabidopsidis

(Coates and Beynon, 2010), and the sudden oak death disease causing

Phytophthora ramorum (Grünwald et al., 2008) (see Table 2;

Supplementary Materials Table S1). These intriguing observations

suggests that the phenomena described for PR1-like proteins likely

extend to other PR-like protein families as well. Consequently, some

of the key questions that arise are: What functions do these PR-like

proteins serve in phytopathogens? Do their deletions impact

pathogen virulence? Can their heterologous expression in plants

render them more susceptible to a broader spectrum of pathogens?

What are the mechanisms of action employed by pathogen-produced

PR-like proteins?

The role of PR-like proteins in pathogen vegetative growth,

virulence, or their function as effectors modulating the host’s

immune response are not well characterized, except for the cell wall

remodeling enzymes including b-1,3-glucanases, such as Bgl2 in

Candida albicans, and chitinases, which have established roles in

filamentous growth, conidial germination, or haustorium

establishment (Sarthy et al., 1997; Chen et al., 2017; Han et al., 2019;
Frontiers in Plant Science 05
Guo et al., 2023). However, these cell wall remodeling enzymes may

function primarily as morphogenetic factors rather than classical

effectors, even though chitin can induce strong PTI, and its immune

modulation involves processes such as shielding through lectin binding

or deacetylation to chitosan (Gong et al., 2020). Interestingly, PR8 and

PR11 chitinases belong the glycosyl hydrolase family 18 (GH18), a

bacterial type of endochitinase, which are widely distributed in almost

all organisms including plant pathogens (Bradley et al., 2022) (Table 2).

PR3, on the other hand, belongs to the glycosyl hydrolase family 19

(GH19), which are mostly found in plants, and possess a specific chitin

binding domain, which is absent in the bacterial type of enzyme

(Henrissat and Bairoch, 1993). Members of this family are thought to

be produced as part of a defense response against fungal pathogens.

The overall structures and catalytic domains of these two classes of

chitinase differ greatly. The GH19 family chitinases have an a-helix-
rich lysozyme-like domain characterized by a deep cleft, whereas GH18

chitinases are characterized by a catalytic region that consists of a

triosephosphate isomerase (TIM) (b/a)8-barrel domain (Oyeleye and

Normi, 2018; Fukamizo and Shinya, 2019; Poria et al., 2021) (Figure 1).

Interestingly, oomycetes express the GH19 plant type of chitinase as

well, whereas most of the fungal pathogens do not (Klinter et al., 2019).

This is particularly intriguing given that the cell wall of oomycetes is

primarily composed of cellulose and b-glucans rather than chitin

(Mélida et al., 2013; Wanke et al., 2021). These GH19 family

chitinases in oomycetes have likely been acquired by horizontal gene

transfer and been proposed to be important for the degradation of

complex carbohydrates present in fungal cell walls during

mycoparasitism (Liang et al., 2020; Bělonožnıḱová et al., 2022).

On the other hand, silencing of the PR5-like thaumatin-like

protein from the pine wood nematode Bursaphelenchus xylophilus

has been shown to reduce the pathogen’s reproduction and

pathogenicity. When expressed in tobacco, it induces a robust cell

death response (Meng et al., 2019; Kirino et al., 2020; Meng et al.,

2022). Thaumatin-like proteins have been reported to bind b-1,3-
glucans, exhibit endo-b-1,3-glucanase activity, inhibit a-amylase, or

permeabilize cell membranes, yet their precise antimicrobial

mechanisms remain ambiguous (Roberts and Selitrennikoff, 1990;

Abada et al., 1996; Trudel et al., 1998; Grenier et al., 1999; Koiwa

et al., 1999; Franco et al., 2002; Menu-Bouaouiche et al., 2003; de

Jesús-Pires et al., 2020; Sharma et al., 2021). Thaumatin-like

proteins are found in fungi, nematodes, and insects but are absent

in vertebrates (Brandazza et al., 2004; Sakamoto et al., 2006; Belaish

et al., 2008; Meng et al., 2019; de Jesús-Pires et al., 2020;

Kirino et al., 2020).
Discussion

Several studies have highlighted the interactions between plant

and fungal PR1 and PR1-like proteins, shedding light on their

potential roles in modulating the host’s immune response. Notably,

some of these proteins form homodimers, exemplified by the wheat

protein TaPR1-5, Fpr1 from the soilborne fungal pathogen F.

oxysporum, and S. cerevisiae Pry1 (Prados-Rosales et al., 2012; Lu
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TABLE 2 Genes Encoding PR-Like Proteins in Filamentous Phytopathogens.
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13 21 (Han et al., 2023;
Lin et al., 2023;
Jiang et al., 2023;
Zhao et al., 2023;
Han et al., 2021;
Lozano-Torres
et al., 2014;
Teixeira et al.,
2012; Prados-
Rosales
et al., 2012)

3 7 (Sarthy et al.,
1997; Chen
et al., 2017)

1 1 (Bělonožnıḱová
et al., 2022; Guo
et al., 2023)

/ /

/ / (Meng et al., 2019;
Kirino et al., 2020)

/ /

6 7 (Monod et al.,
2002; Shi et al.,
2014; Xu et al.,
2020; Liu
et al., 2020)

2 2 (Han et al., 2019;
Bradley et al.,
2022;
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et al., 2022; Guo
et al., 2023)

4 6 (Mir et al., 2015)
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Ustilago
maydis

Phyto
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infest

PR1 PF00188 Immune
signaling
Lipid-binding

6 4 6 7 4 2 29

PR2 PF00332 b-1,3-glucanase 3 4 2 4 6 2 7

PR3 PF00182 Chitinase
(GH19)

/ / / / / / 3

PR4 PF00967 Chitin-binding / / / / / / /

PR5 PF00314 Thaumatin 1 2 4 1 1 1 2

PR6 PF00280 Protease
inhibitor

/ / / / / / /

PR7 PF00082 Subtilisin-
like
endoprotease

30 13 16 32 18 5 13

PR8/
PR11

PF00704 Chitinase
(GH18))

16 7 15 28 18 3 2

PR9 PF00141 Heme-
containing
peroxidase

10 4 2 10 7 3 4

PR10 PF00407 Ribonuclease-
like

/ / / / / / /
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TABLE 2 Continued

Puccinia
spp.

Fusarium
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Phytophthora
ramorum

Key
References

/ / / / / / /

/ / / / / / /

/ / / / / / /

/ 7 6 / / / / (El Hadrami et al.,
2015; Liang et al.,
2015; Fan et al.,
2021; Yan
et al., 2022)

/ 1 1 / / / /

hand part) and oomycetes (right-hand part) phytopathogens. /, indicates that there is no gene present that matches the annotation of the respective plant PR protein family. PR-like
., PR3-, PR4-, PR6-, PR10-, PR12-, PR13-, PR14-, PR17-like. Genes were identified by screening sequences of individual plant PR family members against the genome sequences of
uccinia striiformis f.sp. tritici PST-78, v1.0), Fusarium oxysporum (Fusarium oxysporum f.sp. lycopersici 4287, v2), Verticillium dahliae (VdLs.17), Ustilago maydis (521, v2.0),
ophthora ramorum (v1.1) in the PhytoPath database (https://phytopathdb.org/) (Pedro et al., 2016). Gene identifiers for all these PR-like family members are provided in
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transfer protein

/ /

PR15/
PR16

PF00190 Oxalate
oxidase
Oxalate
oxidase-like

1 3

PR17 PF04450 Putative
aminopeptidase

1 1

The table gives an overview of the number of PR-like proteins that are present in fungal (left-
families that are absent from the genomes of fungal or oomycetes are shaded in light green, i.
Magnaporthe oryzae (Pyricularia oryzae 70-15, v3.0), B. cinerea (B05.10), Puccinia spp. (P
Phytophthora infestans (T30-4), Hyaloperonospora arabidopsidis (Emoy2, v2.0), and Phy
Supplementary Materials, Table S1.
Gray shading is used to differentiate between rows.
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et al., 2013; Darwiche et al., 2016). Furthermore, it has been shown

that the dimeric form of TaPR1-5 is a specific target of ToxA, a

host-selective virulence factor secreted by the causal agent of wheat

tan spot disease, Pyrenophora tritici-repentis and the leaf/glume

blotch fungus Stagonospora nodorum (Sn) (Lu et al., 2014). The

binding of SnToxA to TaPR1-5 appears to compromise the

immune-protective function of PR1 in wheat, thereby promoting

necrosis (Ciuffetti et al., 2010).

Intriguingly, a second effector protein, SnTox3, secreted by S.

nodorum, interacts with a broader range of wheat PR1 isoforms

than SnToxA. SnTox3 effectively inhibits the release of CAPE1, thus

suppressing the plant’s immune defense mechanisms (Breen et al.,

2016; Sung et al., 2021). These findings suggest a multifaceted

strategy by phytopathogens to subvert the host’s immune

response, utilizing distinct effectors to target different components

of the plant’s defense system.

Beyond the interactions with pathogenic effectors, PR1 has been

shown to form heteromeric complexes with other PR proteins,

particularly PR5 and PR14. The thaumatin-like PR5 is secreted into

the apoplastic space and rapidly accumulates in response to various

stressors, both biotic and abiotic (Hakim et al., 2018; Zhang et al.,

2018b). Notably, wheat PR5 (TaTLP1) directly interacts with

TaPR1, and the antimicrobial activity of the resulting heteromeric

complex surpasses that of either PR5 or PR1-4 alone. This synergy

suggests that these proteins act cooperatively to enhance the plant’s

defense against invading pathogens (Wang et al., 2020, 2022).

On the other hand, PR14 belongs to the ns-LTP family. These

extracellular ns-LTPs are known to bind to and transfer lipids

between membranes in vitro. In vivo, they may serve as lipid
Frontiers in Plant Science 08
sensors or sequester lipids to modulate their potential signaling

functions (Missaoui et al., 2022). Wheat PR14 (TaLTP3) associates

with TaPR1 in the apoplast, and plants overexpressing both proteins

activate multiple signaling cascades, including the SA, jasmonic acid,

and auxin pathways, and they exhibit enhanced production of ROS

during the defense response. This interaction, together with the fact

that purified PR14 exhibits antimicrobial activity in vitro, highlights

the role of PR14 in reinforcing plant immunity (McLaughlin et al.,

2021; Zhao et al., 2021).

These reported protein interactions suggest that the association

between PR1-like proteins and their various PR family members

may function to modulate plant-pathogen interactions. Given that

PR1-like proteins from certain pathogens, such as the nematode G.

rostochiensis (GrVAP1) or the fungal pathogen C. chrysosperma

(CcCAP1), have been shown to reduce host immunity when

expressed in plants (Lozano-Torres et al., 2014; Han et al., 2021),

these PR1-like proteins may interfere with the immune-stimulating

actions of endogenous PR1 proteins, similarly to the effectors

SnToxA or SnTox3. This interference may occur through the

disruption of protein complexes between plant’s own PR1 and

PR5 and/or PR14 or by impeding the CAPE1-mediated signaling of

PR1 (Breen et al., 2017; Han et al., 2023).

Consistent with the potential mode of action of PR-like

proteins, in silico docking experiments suggest that PR1-like

proteins from pathogens can indeed form protein complexes with

plant endogenous PR5 and PR14, thus potentially undermining the

host’s PR-based defense mechanisms (Figure 2). The prediction of

protein complexes is emerging as a new powerful tool to identify

potential microbial effectors. A recent bioinformatics screen using
FIGURE 1

Comparison of the structure of chitinases belonging to two major families. Structural comparison of the ubiquitous chitinases belonging to the
glycoside hydrolase family 18 (GH18) and the more plant-specific GH19 family. PR8 and PR11 are members of the bacterial/fungal GH18 family
whereas PR3 is a member of the GH19 family and has structural similarity to some lysozymes (Monzingo et al., 1996). Shown are the structures of
the triosephosphate isomerase (TIM) (b/a)8-barrel domain-containing GH18 family chitinase from Cycas revoluta in complex with the chitin dimer
(GlcNAc)2 and chitin trimer (GlcNAc)3 (PDB 4MNK), and the a-helix-rich lysozyme-like GH19 family chitinase from Bryum coronatum in complex
with the chitin tetramer (GlcNAc)4 (PDB 4IJ4; Ohnuma et al., 2014).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1368467
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han and Schneiter 10.3389/fpls.2024.1368467
AlphaFold-Multimer, for example, has identified PR7, a subtilisin-

like endoprotease PR7 (also known as P69 subtilase), as an effector

hub targeted by different microbial kingdoms (Homma et al., 2023).

This discovery lends further support to the notion that PR-like

proteins may play pivotal roles in manipulating the plant’s immune

response through the formation of cross-kingdom heteromeric

protein complexes (Figure 3).
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In conclusion, accumulating evidence suggests that

phytopathogens have evolved strategies involving PR-like proteins

to subdue their host’s immune response. These proteins appear to

have coopted elements of the plant’s innate defense mechanisms, our

hypothesis is that these proteins potentially interfere with the

formation of protein complexes involving PR1, PR5, and PR14

within the apoplastic space and with key signaling pathways
FIGURE 2

Molecular docking of phytopathogen PR1-like and PR5-like proteins with plant PR1, PR5 and PR14. Predicted molecular interactions between PR1-
like and PR5-like proteins (orange) from phytopathogens and plant PR1, PR5, and PR14 (green) are visualized in the matrix. Notably, PR-like (PR-L)
proteins from phytopathogens can interact both with themselves, and with host plant PR proteins. The docking simulations of PR1-like and PR5-like
proteins from Botrytis cinerea with plant PR1, PR5, and PR14 (Arabidopsis thaliana) were performed using UCSF Chimera (Pettersen et al., 2004). The
pathogen’s CAPE-like and the plant’s CAPE immune stimulatory peptides in the C-terminal end of PR1 and PR1-like are indicated in violet and red,
respectively. Structures of monomeric proteins shown in the top two rows are represented both by ribbon diagrams and as space-filling models.
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FIGURE 3

Interactions between plant defense-related PR proteins and phytopathogen PR-like proteins. This schematic diagram illustrates the complex
interactions occurring in the apoplastic space of host plants (light green shaded space). It showcases the interplay between the host plant’s own PR1,
PR5, and PR14 proteins (depicted by green arrows and green space-filling models) and the PR1-like and PR5-like proteins secreted by invading
phytopathogens (depicted by orange arrows and orange space-filling models). The light green shading represents the host’s apoplastic space. The
figure displays the structures of heteromeric complexes formed by plant PR1 with PR5 or PR14 proteins. The formation of these complexes
contributes to immune stimulatory processes (involving SA, salicylic acid; JA, jasmonic acid; and auxin) as well as antimicrobial responses (including
ROS production and direct antimicrobial activity). Importantly, the figure also suggests that these interactions can be disrupted by pathogen-derived
PR-like proteins. Furthermore, it highlights CAPE immune stimulatory signaling by plant PR1 (indicated by the red arrow) and CAPE-like inhibitory
signaling mediated by the pathogen’s PR1-like protein (indicated by the violet blunt arrow).
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mediated by the CAPE peptide of PR1. While these findings offer

valuable insights, it is important to emphasize that further

experimental validation is necessary to establish the exact

mechanisms underlying the interactions between PR and PR-like

proteins and their impact on plant immunity.
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