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Anthocyanin is an important pigment that prevents oxidative stress and mediates

adaptation of plants to salt stress. Peanuts with dark red and black testa are rich in

anthocyanin. However, correlation between salt tolerance and anthocyanin

content in black and dark red testa peanuts is unknown. In this study, three

peanut cultivars namely YZ9102 (pink testa), JHR1 (red testa) and JHB1 (black

testa) were subjected to sodium chloride (NaCl) stress. The plant growth, ion

uptake, anthocyanin accumulation, oxidation resistance and photosynthetic

traits were comparatively analyzed. We observed that the plant height, leaf

area and biomass under salt stress was highly inhibited in pink color testa

(YZ9102) as compare to black color testa (JHB1). JHB1, a black testa colored

peanut was identified as the most salt-tolerance cultivar, followed by red (JHR1)

and pink(YZ9102). During salt stress, JHB1 exhibited significantly higher levels of

anthocyanin and flavonoid accumulation compared to JHR1 and YZ9102, along

with increased relative activities of antioxidant protection and photosynthetic

efficiency. However, the K+/Na+ and Ca2+/Na+ were consistently decreased

among three cultivars under salt stress, suggesting that the salt tolerance of

black testa peanut may not be related to ion absorption. Therefore, we predicted

that salt tolerance of JHB1 may be attributed to the accumulation of the

anthocyanin and flavonoids, which activated antioxidant protection against the

oxidative damage to maintain the higher photosynthetic efficiency and plant

growth. These findings will be useful for improving salt tolerance of peanuts.
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1 Introduction

Peanut (Arachis hypogaea L.) is widely cultivated in more than

100 countries, with the annual yield of 43.98 million tons,

representing one of the most important oil and cash crops

specially in Africa and Asia (Zhao et al., 2020). Peanut seeds

containing 44% to 56% oil, are the fourth largest source of edible

oil globally. In addition, peanuts are rich in protein (22%-30%),

carbohydrates (10%-20%), as well as vitamins, essential fatty acids,

and necessary minerals for human nutrition (Mondal et al., 2020).

China has the greatest peanut production in the world, and is

second, after India in the plant area (4.45 million hectares). China is

expected to account for more than 40% of the world’s peanut oil

(Zhao et al., 2012). Over the past few decades, the most planting and

processing of peanut cultivars are with pink or red testa. The

variation of peanut testa color is mainly due to the difference in

anthocyanin content, a highly diverse group of secondary

metabolism product that contribute to plants color. Recently, the

peanut planting and consumption pattern with market demands

has been changed. Peanuts with purple and black testa color have

attracted increasing attention of consumers in the market, due to

their higher anthocyanin and microelements contents important for

human health (Bonku and Yu, 2020).

Soil salinization is a major threat for agriculture worldwide,

limits crop yield and restricts use of arable and uncultivated land. It

has been estimated that more than 8% of the world’s land is affected

by salinity, and it is continuously increasing (Ait-El-Mokhtar et al.,

2020). Soil salinity causes a more than 20% reduction of agricultural

yields (Porcel et al., 2012). Salinity can cause osmotic stress, ion

imbalance and oxidative damage to plants normal physiological

processes, and the plants have evolved sophisticated mechanisms to

cope with salinity stress (Abogadallah, 2010).

Peanut was considered to be moderately salt-tolerant crop by

the Food and Agriculture Organization (FAO). However, peanut

production suffers great challenge by salt-stress because of the

widely distributed saline-alkaline land in major peanut regions in

China, India and United States of America (Luo et al., 2021).

Salinity significantly inhibits peanut germination, relative growth

rate and dry mass production (Meena et al., 2016), induced photo-

inhibition because of damaging the photosynthetic apparatus (Qin

et al., 2011), and restrained Ca, K and other mineral elements

uptake, and eventually reduced yield and quality (Zhang et al.,

2020). Significant genetic diversity is available for salinity tolerance

among peanut germplasms (Zou et al., 2020).

In the past few years, a series of agronomic measures were

widely adopted to enhance salt-tolerance of peanut, including

selecting salt-tolerant cultivars (Meena et al., 2016; Zhang et al.,

2020), mulching film and potassium application (Chakraborty et al.,

2016; Meena et al., 2022), inoculating salt-tolerant rhizobacteria and

arbuscular mycorrhizal fungi (El-Akhal et al., 2012; Sharma et al.,

2016; Qin et al., 2021), and exogenous growth regulator (Tian et al.,

2019; Li W. J. et al., 2022). In addition, the identification and

utilization of salt tolerant genes have been used to improve the

salinity tolerance of peanut cultivars (Banavath et al., 2018; Zhu
Frontiers in Plant Science 02
et al., 2021). However, the production and economical outcome of

peanut in saline-alkali soil was still limited. Therefore, improvement

of salt tolerance is necessary to minimize the resulting yield loss due

to salt stress.

Secondary metabolites play a key role in the adaptation of plants

to the changing environment and in overcoming stress conditions.

Anthocyanin, a secondary metabolite in plants, serves as an

important antioxidant, increases the antioxidant activity and

enhances the ability of abiotic stress tolerance (Xu and Rothstein,

2018). The salt-tolerant cultivars showed higher anthocyanin

content and total antioxidant activity than the salt-sensitive

cultivars under salt stress, exhibited more physiological activities

(Daiponmak et al., 2010). Accumulation of higher levels of

anthocyanin is considered as one of the selection criteria for salt

tolerance (Eryılmaz, 2006). The cultivars with deep red or black

color (more intense anthocyanin) in apple (Wang et al., 2015), rice

(Chunthaburee et al., 2016), spinach (Kitayama et al., 2019) and

Brassica napus (Kim et al., 2017) suffered less physiology and

cellular damages and lower growth inhibition under salt stress as

compared to the ones with less anthocyanin content, showed a

stronger salt tolerance.

Most of the previous studies on salt stress or enhancing salt-

tolerance in peanut mainly used common cultivars with pink testa

color. There is significant difference in anthocyanin content among

peanut cultivars with different testa colors. However, there are no

reports on the salt tolerance and regulatory mechanism of peanut

cultivars with black and red testa colors. Therefore, a pot

experiment was conducted in greenhouse to screen the salt

tolerance among three peanut cultivars with different testa colors.

The data recorded on anthocyanin and flavonoid contents, ion

uptake, antioxidant activity and photosynthetic traits of three

peanut cultivars in response to salinity stress. This work provided

a foundation for screening salt resistant peanut cultivars and peanut

high-yield cultivation in saline-alkali soil, and laid a basis for further

revealing the salt-tolerant mechanism of colored peanut.
2 Materials and methods

2.1 Plant materials and treatments

Three peanut cultivars, YZ9102 (pink testa), JHR1 (red testa)

and JHB1 (black testa), were used in this study (Figure 1A). YZ9102,

bred by Henan Academy of Agriculture Sciences, was offspring of

“BS1016” (♀) × “A. coacoense” (♂). JHR1 and JHB1, bred by our

group, were offspring of “YZ9102” (♀) × “ZH12” (♂), and “FH1” (♀)
× “ZH9” (♂), respectively.

The pot experiment was conducted in a growth chamber in

controlled conditions. Matured seeds no pests or diseases and with

uniform size and weight were selected, and surface sterilized by

soaking in 75% ethyl alcohol with slightly shaking for 5 min and

rinsed using sterilized deionized water for 3 times. Three seeds were

sown in each square plastic pot (10.5 cm top diameter, 11 cm

height) filled with sterilized clean river sand 0.95 kg, and two
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uniform seedlings were kept in each pot after germination. The

climatic chamber was controlled at 25°C, alternation of light and

dark period at 16 h/8 h. Seven days after germination, the plants of

each cultivar were divided into two groups. Our preliminary

experiment showed that the salt tolerance had the most

significant difference in ten peanut cultivars under 150 mM NaCl

stress. So, one group was designated as control (CK) irrigated by the

Hoagland solution, the other group was challenged with salt stress

treatment (SS) irrigated by the Hoagland solution and salt

concentration of 150 mM NaCl. Each treatment consisting of

twenty pots was watered daily uniformly with 100 mL Hoagland

solution with or without NaCl per pot to maintain the

treatment level.

After 1, 5 and 10 days of salt stress, leaf materials were sampled

and immediately transferred into liquid nitrogen and stored at -80°

C to estimate enzymatic activity. The flavonoid and anthocyanin

contents were determined with the leaf samples at 5 and 10 days of

salt stress. Leaf gas exchange and chlorophyll fluorescence

parameters were measured on the second top leaf on the main

stem after 5 and 10 days of salt stress. K+, Na+, and Ca2+ contents in

leaf and stem were determined after 10 days of salt stress.

Furthermore, the plants were harvested at 10 d after salt stress for

biomass and phenotypic analysis.
2.2 Determination of dry weight and
leaf area

Five representative plants were selected from each treatment

after 10 d of salt stress, and separated into roots, stems and leaves. In
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each treatment, fifty random leaflets were punched into wafers with

1.2 cm diameter avoiding the main vein. All plant samples were

oven dried at 105°C for 30 min followed at 80 °C until reaching a

constant dry weight. The total dry weight (DW), the total wafers

area (S1), wafers dry weight (M1) and other leaves dry weight (M2)

were recorded. The leaf area (S) was calculated using the following

formula: S= S1× (M1+M2)/M1.
2.3 Determination of Na+, K+ and Ca2+ ions

Dried leaf and stem samples were milled to powder, weighed,

and then digested by nitric acid in a bottle tube at 320°C for 5 h.

Na+, K+ and Ca2+ ion concentration was measured by atomic

adsorption spectrometer with a flame photometer (ZL5100,

PerkinElmer Inc., USA). Each treatment was repeated with three

biological replicates and three technical replicates.
2.4 Determination of total flavonoids

Total flavonoids content was measured by the colorimetric

method (Jia et al., 1999). 0.3 g fresh leaf was cutinto pieces and

extracted in a 60°C water bath for 1 hour in a test tube with 70%

ethanol (10 mL), and then filtered through two layers of filter paper.

The 5 mL filtrate was added into 0.5 mL of 5% NaNO2 and 6 min

later 0.5 mL of 10% Al(NO3)3. After 6 min, 4 mL of 4% NaOH was

added to the mixture. The solution was mixed well, and after 15

min, the absorbance was recorded at 510 nm in spectrophotometer

(U-3000, HITACHI, Japan).
FIGURE 1

The seeds of three peanut cultivars (A) and the phenotype of three peanut cultivars under CK and SS (B). CK, meaning plants were watered by
Hoagland solution without NaCl, and SS, meaning plants were watered by Hoagland solution with 150 mM NaCl.
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2.5 Determination of anthocyanin

The anthocyanin content was measured using the protocol

reported by Zhang et al. (2022). Frozen leaf (approximately 50

mg) was ground in a 5 mL centrifuge tube using liquid nitrogen.

Then, homogenized sample was extracted at 4°C by adding 700 mL
acidic methanol (the volume ratio of methanol to HCl is 99:1). After

overnight incubation, the homogenates were centrifuged at 4°C at

12,000×g for 10 min. About 600 mL supernatant was collected and

mixed with 1 mL trichloromethane and 400 ml distilled water,

centrifuged at 4°C at 12,000×g for 10 min. The absorbance of

the supernatant was recorded at 530 and 657 nm using

spectrophotometer (U-3000, HITACHI, Japan).
2.6 Antioxidant enzymes activity and
MDA content

Leaf samples (0.5 g) were homogenized using a pre-cooled

mortar in 50 mM potassium phosphate buffer (pH7.8) at 0~4°C.

The homogenate was filtered through two layers of filter paper and

centrifuged at 10,000×g for 20 min at 4°C. The supernatant was

used for enzyme activity analysis.

Superoxide dismutase (SOD) activity was measured by the

method of Giannopolitis and Ries (1977). The reaction mixture

consisted of 50 mM phosphate buffer (pH 7.8), 13 mM methionine,

75 mM nitrotetrazolium blue chloride (NBT), 0.1 mM ethylene

diamine tetraacetic acid (EDTA) and 2 mM riboflavin. Reactions

with 50 µL enzyme extract and 3 mL reaction mixture were carried

out in a light incubator under a light intensity of 4000 Lux for 30

min. One unit of SOD was defined as the amount of enzyme which

causes 50% inhibition of the NBT reduction. The reduction of NBT

was measured by an ultraviolet spectrophotometer at 560 nm.

Peroxidase (POD) activity was determined based on guaiacol

colorimetric method. Reaction mixture contained 50 mL 100 mM

potassium phosphate (pH 6.0), 30 µL 0.3 mM guaiacol, and 20 µL

30% H2O2. The 20 mL enzyme solution and 3 mL reaction mixture

were added into the colorimetric cup to start the reaction.

Absorbance was recorded at 470 nm at every 30 s intervals for a

total of 5 readings. The activity of the POD enzyme was expressed

by the change of value of absorbance per minute (Nickel and

Cunningham, 1969).

Catalase (CAT) activity was measured according to Aebi (1984).

50 mL enzyme solution was added into 3 mL reaction system (2.4

mL of 100 mM potassium phosphate (pH 7.0), 0.6 mL of 100 mM

H2O2). Absorbance was recorded at 240 nm at every 30 s intervals

for a total of 5 readings. The activity of the CAT enzyme was

expressed by the reduction of absorbance per minute.

Malondialdehyde (MDA) was assayed by the thiobarbituric acid

reaction method (Hodges et al., 1999). Frozen sample of 0.5 g was

homogenized in 0.1% (w/v) trichloroacetic acid (TCA) solution.

The homogenate was centrifuged at 12,000×g for 10 min. 1 mL

supernatant was added to 2 mL of 20% TCA containing 0.6%

thiobarbituric acid (TBA) in a clean glass tube. The mixture was

heated in a water bath at 90°C for 30 min, cooled on ice
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immediately, and centrifuged at 4000×g for 10 min. The

absorbance was recorded at 600, 532 and 450 nm.
2.7 Determination of gas exchange

After 5 and 10 days of salt stress, leaf photosynthesis was

determined on the second top leaf on the main stem of five plants

in each treatment. Leaf photosynthesis rate (Pn), transpiration rate

(Tr) and stomatal conductance (Gs) were measured with a portable

photosynthesis system (Li-6400; LI-COR Inc., Lincoln, NE, USA) at

9:00-11:30 AM. The chamber was equipped with a red/blue LED

light source setting PAR at 1200 µmol m-2 s-1 and ambient

atmospheric CO2 levels at 385mmol mol-1. The water use

efficiency of leaves (WUE) was calculated by using formula Pn/Tr.
2.8 Measurement of leaf
chlorophyll fluorescence

Chlorophyll fluorescence parameters were measured with a

portable pulse modulated fluorometer (FMS-2, Hansatech,

England) on the same leaf whose gas exchange was measured.

Tested leaves were kept in the dark for 30 min before measurement.

The minimum (F0), maximum fluorescence (Fm), steady state

fluorescence (Fs), minimum fluorescence (F0’) and maximum

fluorescencein the irradiation-adapted state (Fm ’) were

determined. Quantum yield of PS II (FPSII), maximal

photochemical efficiency (Fv/Fm) photochemical quenching

coefficient (qP), electron transport rate (ETR), and non-

photochemical quenching coefficient (qNP) were calculated as

described by Rasouli et al. (2023).
2.9 Statistical analysis

All parameters were measured in at least three replications and

expressed as means± standard deviation. The average of each trait

was calculated with Microsoft Excel 2010, plotted by Sigmaplot10.0.

Duncan’s multiple range test was used to determine the significant

difference between treatments (P<0.05) by SPSS Statistics 23. The

relative values were calculated via the trait values under salt stress

compared with those of CK.
3 Results

3.1 Plant growth and
biomass accumulation

All of the tested peanut cultivars were observed to certain

growth inhibition when subject to salt stress (Table 1 and

Figure 1B). The plant stem height, leaf areas, fresh weight of all

cultivars were significantly decreased as compared to CK under salt

stress, those relative values were 0.60, 0.48 and 0.72 in YZ9102, 0.59,

0.52 and 0.79 in JHR1, and 0.69, 0.67 and 0.92 in JHB1, respectively.
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The relative total dry weight values of YZ9102, JHR1 and JHB1 were

0.91, 0.93 and 0.95 under salt stress as compared to CK, reflecting

the different salt tolerance of three cultivars.
3.2 Content of Na+, K+ and Ca2+

Salt stress significantly enhanced the content of Na+ in leaf and

stem as compared to CK in all three cultivars (Figure 2A). The

Na+content in JHB1 showed the minimum increase of 83.10% and

84.44% in leaf and stem, and the maximum increase of 114.50% in

leaf in JHR1, 103.71% in stem in YZ9102. With or without salt

stress, the K+ content of JHB1 was the most, following by JHR1.To

compare with CK, all cultivars exhibited a slightly increased K+

content in the leaf, however, a significantly decreased K+ in the stem

under salt stress (Figure 2B). The content of K+ was slightly declined

(23.65%) in stem of JHR1, and approximately 30% reduction in the

other two cultivars under salt stress. With or without salt stress,

JHR1 and JHB1 showed similar content of Ca2+, and significantly

higher than YZ9102. Salt stress significantly increased Ca2+content

of Ca2+ in the leaf tissue of three cultivars, and inappreciably

restrained the content in stem as compared to CK (Figure 2C).

The maximum increase (22.01%) of Ca2+ content in leaf was found

in JHR1, followed by JHB1 and YZ9102.

The values of K+/Na+ were approximately consistent among all

three cultivars, whereas, dramatically decrease under salt stress, as

compared to CK (Figure 2D). K+/Na+ in leaf were decreased by

46.44%, 53.58% and 42.61% in YZ9102, JHR1 and JHB1,

respectively. While, in stem the K+/Na+ were reduced by 65.44%,

65.39% and 62.74% among YZ9102, JHR1 and JHB1 cultivars

respectively under salt stress. The values of Ca2+/Na+ showed the

similar variation trend with K+/Na+ among the three cultivars

under salt stress, whereas those experienced a smaller reduction

under salt stress than that of K+/Na+ (Figure 2E).
3.3 Content of flavonoid and anthocyanin

The flavonoid content of YZ9102, JHR1 and JHB1 increased by

11.45%, 21.18% and 22.80% after 5 days of salt stress as compare to

CK, further at 10 days of salt stress it was increased by 17.26%,

35.13% and 25.43% (Figure 3A). The higher level of flavonoid

content was observed in JHB1, followed by JHR1 and YZ9102 in
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both control and salt stress. Salt stress significantly increased

anthocyanin content in all three cultivars as compared to CK

(Figure 3B). Maximum increase in anthocyanin content was

recorded in JHR1, increasing 103.17% and 117.99% in contrast to

CK after 5 and 10 days of salt stress, respectively. In cultivar

YZ9102, the trend of increased anthocyanin content was much

more apparent at 10 day of salt stress (74.39%) than that at 5 days

(32.51%). Whereas, it was stable in cultivar JHB1 increased by

42.37% and 43.46% at 5 and 10 days of salt stress. With or without

salt stress, the content of anthocyanin in JHB1 was significantly

higher than those in JHR1 and YZ9102.
3.4 Antioxidant enzyme activity

We observed significant differences among the responses of

antioxidant enzyme activities of SOD, POD and CAT in three

cultivars to salt stress (Figure 4). In comparison with CK, the SOD

activity of YZ9102 was significantly decreased by 30.80% after 1 day

of salt stress, but it was a slightly increased at 5 and 10 days of salt

stress. There was a relatively constant increase in SOD activity of

JHR1 during 10 days of salt stress. Significant increase in SOD

activity in JHB1 was observed under salt stress, and it showed

maximum increase (49.43%) at 10 day of salt stress. The increase of

SOD activity in JHB1 was higher than that in JHR1 and YZ9102.

POD activity was significantly decreased in YZ9102 under salt

stress as compared to CK. The maximum decrease (34.01%) was

recorded at 10 days of salt stress. POD activity of cultivar JHR1 was

decreased by 13.77% at 1 day of salt stress, however, increased by

27.72% and 23.38% at 5 and 10 days of salt stress. POD activity of

JHB1 was significantly increased under salt stress, and the

maximum increase (94.80%) was observed at 5 days of salt stress.

JHB1 showed higher levels of POD activity than the other cultivars.

The response pattern of CAT activity of YZ9102 under salt

stress was similar with that of its POD activity. The CAT activity of

JHR1 significantly increased by 32.96% and 25.11% after 1 and 5

days of salt stress as compared to CK, however it was decreased by

16.92% at 10 days of salt stress. Though the CAT activity of JHB1

was slightly increased under salt stress, there was no significant

difference between salt stress and CK.

MDA content was significantly increased in all three cultivars

under salt stress (Figure 4). The MDA content of YZ9102 was

recorded higher as compared to other two cultivars, and it showed a
TABLE 1 The phenotype and individual biomass accumulation of three peanut cultivars after 10 days under salt stress.

Cultivars Treatment Plant height (cm) Leaf area (cm2) Fresh weight (g) Dry weight (g)

YZ9102
CK 11.80 ± 0.57a 92.70 ± 5.84a 7.50 ± 0.38a 0.78 ± 0.04a

SS 7.04 ± 0.60b 44.19 ± 5.27b 5.38 ± 0.49b 0.71 ± 0.07a

JHR1
CK 10.96 ± 0.71a 76.71 ± 9.64a 5.26 ± 0.19a 0.57 ± 0.02a

SS 6.44 ± 0.59b 39.91 ± 5.64b 4.15 ± 0.21b 0.53 ± 0.05a

JHB1
CK 10.80 ± 0.81a 77.08 ± 7.66a 5.54 ± 0.23a 0.79 ± 0.02a

SS 7.50 ± 0.69b 51.54 ± 3.68b 5.12 ± 0.11a 0.75 ± 0.04a
Data are means ± SD of three biological replicates. Different lowercase letters indicate significantly different between CK and SS at p<0.05. CK, meaning plants were watered by Hoagland solution
without NaCl, and SS, meaning plants were watered by Hoagland solution with 150 mM NaCl.
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rapid increase from 37.00% to 72.05% from 1 to 10 days as

compared to CK under salt stress. The MDA content of JHR1

and JHB1 exhibited a slight increase at 1 day of salt stress, however

it was increased by 51.56% and 39.17% at 10 days of salt stress as

compared to CK, respectively. JHB1 showed the minimum MDA

content in the presence or absence of salt stress.
3.5 Photosynthetic parameters

Photosynthetic rate (Pn) was significantly decreased in all three

cultivars at the first 5 days of salt exposure, and this reduction was

more pronounced at 10 days, as compared to CK (Figure 5A). The

Pn of YZ9102 was found to a maximum reduction among three
Frontiers in Plant Science 06
cultivars, decreased by 57.61% and 88.89% at 5 and 10 days under

salt stress. The decrease of Pn in JHR1 reached to 33.13% and

73.76% after 5 and 10 days of salt stress, which was slightly higher

than that in JHB1.

The stomatal conductance (Gs) significantly decreased with the

salt stress time (Figure 5B). The Gs in YZ9102 was highly decreased,

followed by JHR1 and JHB1. In comparison with CK, the Gs

significantly decreased by 73.95%, 44.35% and 36.71% in YZ9102,

JHR1 and JHB1 at 5 days of salt stress, further it decreased by

85.95%, 67.78% and 63.95% at 10 days of salt stress, respectively.

The response patterns of transpiration rate (Tr) in all three

cultivars under salt stress was similar with that of their

photosynthetic rate (Pn) (Figure 5C). The maximum decrease in

Tr was recorded in YZ9102 in all three cultivars, reaching 53.28%
A B

D

E

C

FIGURE 2

The Na+ (A), K+ (B), Ca2+ (C), K+/Na+ (D) and Ca2+/Na+ (E) of three peanut cultivars in leaves and stems under salt stress for 10 days. L and S
represented leaf and stem, respectively. Different lowercase letters in the bar graph indicate significantly different between CK and SS at p<0.05. CK,
meaning plants were watered by Hoagland solution without NaCl, and SS, meaning plants were watered by Hoagland solution with 150 mM NaCl.
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and 86.81% at 5 and 10 days of salt stress. The minimum decrease of

Tr was recorded in JHR1 (40.04%) and JHB1 (74.20%), after 5 and

10 days of salt stress, respectively.

The variation of water use efficiency (WUE) in response to salt

stress was observed in three cultivars (Figure 5D). The WUE of

YZ9102 showed a slight decrease (9.08%) at 5 days under salt stress,

and significantly decreased by 15.58% after 10 days as compared to

CK. An increased trend in WUE was observed in JHR1 and JHB1

during 10 days of salt stress, which showed a stable increase in JHR1

at 11.5% approximately. The maximum increase (24.71%) of WUE

was recorded at 5 days of salt stress in JHB1.
3.6 Chlorophyll fluorescence parameters

Salt stress significantly decreased photochemical efficiency (Fv/

Fm), quantum yield of PS II (FPSII), electron transport rate (ETR)

and photochemical quenching coefficient (qP) in all three cultivars

(Table 2). The Fv/Fmwas not significantly affected in all three

cultivars at 5 days of salt stress, however it was significantly

decreased after 10 days of salt stress as compared to CK. No

significant difference was recorded for Fv/Fm between JHR1 and

JHB1. However, Fv/Fmwas highly decreased in the cultivar YZ9102.

Similar trends were observed in FPSII, ETR and qP during 10 days

under salt stress. The maximum decreases in FPSII, ETR and qP

were observed in YZ9102, followed by JHR1 and JHB1 at the 10

days under salt stress as compared to CK.

The non-photochemical quenching coefficient (qNP) was

significantly increased after salt exposure for 5 days as compared

to CK, but that showed an inferior increase in three cultivars at 10

days under salt stress (Table 2). The qNP in YZ9102 increased by

40.03% and 31.88% after 5 and 10 days for salt stress, that exhibited

the maximum increase in three cultivars. The qNP in JHB1

increased by 17.09% and 10.12% after 5 and 10 days for salt

stress, as compared to CK. JHR1 showed the minimum increase

in qNP.
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4 Discussion

Peanut is moderately sensitive or comparatively sensitive

(Meena et al., 2016) to soil saline stress conditions. Previous

reports suggested that there is huge genetic diversity in the salt

tolerance among peanut germplasms (Pal and Pal, 2022). The

agronomic traits such as survival under salt stress, plant height,

relative growth rate reflected the salt tolerance of peanut (Yasmine

et al., 2019). The salt tolerance coefficient that was calculated as

biomass accumulation ratio under salt stress to unstressed control

in each genotype was considered as selection criteria for salt

tolerance in peanut (Pal and Pal, 2022). In the present study, the

maximum inhibition of growth and biomass under salt stress was

recorded in YZ9102, followed by JHR1 and JHB1. Our results

suggested that JHB1 is a relatively salt-tolerant cultivar compared to

YZ9102. Higher levels of anthocyanin in cultivars showed stronger

salt tolerance, as compare to the cultivars with low anthocyanin

content which has been observed in rice (Chunthaburee et al., 2016)

and Brassica napus (Kim et al., 2017).

The homeostasis of intracellular K+, Ca2+ and Na+

concentrations under salt stress is essential for maintaining

membrane potential, and for the activities of many enzymes and

an appropriate osmotic regulation (Zhu, 2003). Ion imbalances

induced oxidative stress in response to imbalances in ROS, and

resulted in nutrient deficiency and ion toxicity. In the current study,

Na+ accumulation was significantly increased in leaves and stems

under salt stress. However, a slight or significant increase in the

content of K+ and Ca2+ under salt stress was observed in leaves of

three peanut cultivars. This might suggest that peanut can improve

relatively stable K+ and Ca2+ accumulation in leaves by adjusting

the transport capacity of mineral ions to alleviate the adverse effect

of Na+ excessive accumulation (Li Q. et al., 2022). In our study, the

K+/Na+ and Ca2+/Na+ were significantly decreased in all three

cultivars under salt stress, and decreased more severely in stems

than that in leaves. Similar results have been observed in wheat

(Rahnama et al., 2011) and rice (Nemati et al., 2011). This might
A B

FIGURE 3

The contents of flavonoid (A) and anthocyanin (B) in leaves under salt stress for 5 and 10 days. Different lowercase letters in the bar graph indicate
significantly different between CK and SS at p<0.05. CK, meaning plants were watered by Hoagland solution without NaCl, and SS, meaning plants
were watered by Hoagland solution with 150 mM NaCl. The 5 and 10 in abscissa represented 5 and 10 days after salt stress, respectively.
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suggest that the selective ion transport and partitioning may be

contributing to the adaptation to salt stress of plants (Ran et al.,

2021). In this study, the descend range of K+/Na+ and Ca2+/Na+

were similar in leaves or stems among the three cultivars. Our

results are inconsistent with the previous reports suggesting that the

ion ratio was related to salt tolerance under salt stress (Guo et al.,

2022). These results indicated that the salt tolerance of black peanut

may not be related to ion absorption.

Flavonoid is an important plant secondary metabolite, is proved

to be major component of plant antioxidant defense system against

abiotic stresses through preventing generation of ROS or

scavenging already generated ROS (Hernández et al., 2009). In

the present study, salt stress significantly increased the contents of
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flavonoid and anthocyanin in all three cultivars. Similar results have

been reported in Brassica napus (Kim et al., 2017) and pea (Farooq

et al., 2021), which found that the contents of total flavonoid and

phenolic compounds showed a significant increase to improve

resistance in response to salt stress. In this study, JHR1 and JHB1

showed the higher increase of anthocyanin and flavonoid than

YZ9102 under salt stress. These findings are consistent with wheat

(Liu et al., 2012), suggesting that the salt-tolerant cultivars had

higher increase of anthocyanin content than salt-sensitive under

salt stress. With or without salt stress, the anthocyanin and

flavonoid contents of JHB1 were higher than those of JHR1 and

YZ9102, suggesting that the salt-tolerant cultivars had higher

anthocyanin content than the salt-sensitive cultivars to possess
A

B

D

E

F

G

I

H

J

K

L

C

FIGURE 4

The antioxidant enzyme activities and MDA content in leaves of YZ9102 (A–D), JHR1 (E–H) and JHB1 (I–L) under salt stress. D1, D5, D10 represent
salt stress for 1, 5 and 10 days. Different lowercase letters in the bar graph indicate significantly different between CK and SS at p<0.05. CK, meaning
plants were watered by Hoagland solution without NaCl, and SS, meaning plants were watered by Hoagland solution with 150 mM NaCl.
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more physiological activities (Daiponmak et al., 2010). Majority of

the research community has confirmed these results. Over

expression the genes related to the flavonoid and anthocyanin

biosynthesis in transgenic plants increased the flavonoid and

anthocyanin accumulation, enhanced the oxidation resistance and
Frontiers in Plant Science 09
salt tolerance (Li et al., 2016; Wang et al., 2016).The anthocyanin

free (Kang et al., 2014) and flavonoid deficiency (Sugimoto et al.,

2021) mutants failed to produce anthocyanin and flavonoid in all

tissues because of inactivation of flavonoid biosynthetic enzymes,

and increased production of reactive oxygen species (ROS).
A B

DC

FIGURE 5

The photosynthetic rate (A), transpiration rate (B), stomatal conductance (C) and water use efficiency (D) of peanut leaves under salt stress for 5 and
10 days. Different lowercase letters in the bar graph indicate significantly different between CK and SS at p<0.05. CK, meaning plants were watered
by Hoagland solution without NaCl, and SS, meaning plants were watered by Hoagland solution with 150 mM NaCl. The 5 and 10 in abscissa
represented 5 and 10 days after salt stress, respectively.
TABLE 2 The chlorophyll fluorescence parameters of three peanut cultivars after 5 and 10 days under salt stress.

Days (d) Cultivars Treatment Fv/Fm FPSII ETR qP qNP

5

YZ9102
CK 0.89 ± 0.02a 0.28 ± 0.02a 2.51 ± 0.21a 0.32 ± 0.01a 0.90 ± 0.10b

SS 0.87 ± 0.02b 0.23 ± 0.02b 2.06 ± 0.17b 0.26 ± 0.02b 1.27 ± 0.13a

JHR1
CK 0.89 ± 0.01a 0.27 ± 0.03a 2.50 ± 0.30a 0.29 ± 0.04a 0.95 ± 0.03a

SS 0.88 ± 0.01a 0.25 ± 0.02a 2.34 ± 0.20a 0.27 ± 0.03a 1.00 ± 0.04a

JHB1
CK 0.88 ± 0.01a 0.33 ± 0.03a 2.83 ± 0.31a 0.35 ± 0.03a 0.95 ± 0.09b

SS 0.87 ± 0.02a 0.31 ± 0.03a 2.62 ± 0.24a 0.33 ± 0.03a 1.11 ± 0.13a

10

YZ9102
CK 0.93 ± 0.03a 0.33 ± 0.02a 2.69 ± 0.20a 0.37 ± 0.02a 0.87 ± 0.04b

SS 0.86 ± 0.01b 0.24 ± 0.02b 1.91 ± 0.19b 0.27 ± 0.03b 1.15 ± 0.13a

JHR1
CK 0.91 ± 0.01a 0.32 ± 0.03a 2.83 ± 0.25a 0.35 ± 0.04a 0.82 ± 0.03a

SS 0.88 ± 0.0 b 0.25 ± 0.02b 2.23 ± 0.20b 0.29 ± 0.02b 0.84 ± 0.05a

JHB1
CK 0.91 ± 0.01a 0.35 ± 0.03a 2.84 ± 0.20a 0.39 ± 0.03a 0.92 ± 0.05a

SS 0.88 ± 0.02b 0.29 ± 0.02b 2.31 ± 0.12b 0.32 ± 0.03b 1.02 ± 0.08a
fr
Data are means ± SD of five biological replicates. Different lowercase letters in the same column indicate significantly different between CK and SS at p<0.05. CK, meaning plants were watered by
Hoagland solution without NaCl, and SS, meaning plants were watered by Hoagland solution with 150 mM NaCl.
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High concentration of salt stress caused rapid increase of ROS,

which could perturb cellular redox homeostasis, results in oxidative

stress and induce a series of cell damage. The ROS scavenging system

of plants could be activated to alleviate such oxidative damages for

enhancing salt tolerance (Choudhury et al., 2013). The antioxidative

enzymes including SOD, POD and CAT could cooperatively

scavenge the ROS and maintain the ROS below toxic range (Kaya

et al., 2020). In this study, the antioxidative enzyme activities of SOD,

POD and CAT were activated by salt stress in JHR1 and JHB1,

however, those were restrained in YZ9102. Different responses of

enzyme activities to salt stress may be responsible for the different

sensitivities among the cultivars under salt stress (Guo et al., 2022).

The activation of enzyme activities was more obvious in JHB1 than

JHR1. Similar with our findings, cultivars e.g. maize (Hichem et al.,

2009) and apple (Wang et al., 2015) with more intense anthocyanin

showed higher increase of total antioxidant activity than less ones

under salt stress, and exhibited more redox stabilization and better

behavior of salt-challenge. Exogenous anthocyanin treatments

suggested that anthocyanin not only acted as free radical

scavengers but promoted activation of antioxidant enzymes and

other non-enzymatic antioxidants, and improved the physiological

state of plants (Paul et al., 2017; Maleva et al., 2018), which indirectly

confirmed our results. In the current study, the activation effect of

three antioxidant enzyme activities in JHB1 gradually increased from

1 to 10 d after salt stress, however those in JHR1 were found to

decrease or inactivate at late stage compared with the early salt stress.

It may be attributed to that there were differences with resistance to

salt stress duration and intensity among cultivars (Wang et al., 2019;

El-Badri et al., 2021). In our study, MDA content showed a

maximum and minimum increase in YZ9102 and JHB1 under salt

stress, respectively. Similar results in maize (Hichem et al., 2009) also

suggested that genotypes with high anthocyanin content were able to

maintain lower MDA content and significant higher dry matter

production than yellow ones upon salt stress. The MDA content in

YZ9102 showed a rapid increase, however, it was slowly increased in

JHB1 under salt stress. The result was consistent with the trend of

enzyme activities of three cultivars. Our results indicated that

activating antioxidant enzymes via anthocyanin under salt stress

could effectively alleviate cell damage caused by oxidative stress

(Daiponmak et al., 2010).

Photosynthesis reduction under salt stress is mainly due to

stomatal closure and CO2 diffusion hindered via a reduction in

guard cell turgor, and partially to photosystem II (PSII) photo

inhibition. The net photosynthetic rate decreased with increasing

intensity of salt stress, and showed greater reduction in the salt-

sensitive cultivar than that in tolerant (Dionisio-Sese and Tobita,

2000). Similar results were obtained in this study. The photosynthetic

traits (Pn, Gs, and Tr) significantly decreased at 5 days under salt

stress, and further decreased at 10 days of salt stress. Maximum

reductions of photosynthetic traits were recorded in cultivar YZ9102,

followed by JHR1 and JHB1. It may be attributed to that the tolerant

cultivars had more responsive stomata that tended to close faster

when exposure to salt stress at the first few hours, followed by partial

recovery after a temporary acclimation. However, the recovery ability

of stomata in sensitive cultivars was deficiency coping with salt stress

(Foad and Ismail, 2007). Similar results in water spinach also
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suggested that Pn, Gs, and Tr in green cultivar were more sensitive

to salt stress than that in red cultivar, and showed a severe decline

under the same salt stress (Kitayama et al., 2019). Exogenous

antioxidant alleviated photosynthesis inhibition in rapeseed (Ma

et al., 2017) and soybean (Alharbi et al., 2021) under salt stress by

activating antioxidant systems, mitigated the salt stress damage,

which explained that the photosynthetic capacity in more intense

in anthocyanin rich cultivars were less affected by salt stress. The

water use efficiency (WUE), estimated as the ratio of Pn to Tr, showed

a gradually downward in tomato when exposure to 0.3%~0.9% salt

stress (Yang et al., 2019). However, WUE exhibited a significant

increase in tartary buckwheat under 100 mMNaCl stress, and a little

change in common buckwheat (Matsuura et al., 2005). The response

ofWUE to salt stress represented the salt tolerance of different species

or cultivars. In this study, the WUE was found to a downward in

YZ9102 during salt stress duration, and showed an increase trend in

JHR1 and JHB1after10 days of salt stress. It may be mainly attributed

to the diverse maintenance of Pn and Gs under salt stress.

Chlorophyll fluorescence, providing insights into the response

of photosynthesis to environmental stresses, is a rapid and non-

destructive tool used to screen cultivars for salt tolerance (Zribi

et al., 2009). In the present study, the chlorophyll fluorescence

including Fv/Fm, FPSII, ETR and qP showed a slight reduction in

three cultivars at 5 days after salt stress, and significantly decreased

at 10 days. Similar result was found in sorghum (Netondo et al.,

2004). It may be responsible for the PSII photo inhibition turn into

the main limitation of photosynthesis reduction at late stage of salt

stress (Dionisio-Sese and Tobita, 2000). The maximum decrease in

chlorophyll fluorescence was observed in YZ9102, followed by

JHR1 and JHB1 under salt stress. Similar result in brassicas

suggested that salt-tolerant cultivars exhibited better PSII

quantum efficiency and utilization of photochemical energy than

salt-sensitive cultivars under salt stress (Ahmed et al., 2023). Water

spinach cultivars with higher anthocyanin content also showed

lesser inhibition in PSII quantum efficiency than those with lower

anthocyanin content (Kitayama et al., 2019). In this study, the qNP

in YZ9102 showed the maximum increase under salt stress,

followed by JHB1 and JHR1. Our results are consistent with rice

(Foad and Ismail, 2007), suggesting that PSII reaction center could

alleviate excitation pressure via diverting light energy into heat to

maintain an adequate balance between absorption and utilization of

light (Krause and Weis, 1991). Salt stress inhibited electron

transport involving PSII, and increased the qNP in Arabidopsis,

however, did not affected the photochemical efficiency in

Thellungiella (Stepien and Johnson, 2009), suggesting that the

photosystem of salt-tolerant crops showed greater stability.
5 Conclusions

In conclusion, a prominent difference in response to salt stress

among the three tested cultivars of different testa color was observed

in this study. The strength of salt tolerance was higher in black color

testa genotype (JHB1) followed by red (JHR1) and pink (YZ9102)

on the basis of the relative growth value. JHB1 showed maximum

accumulation of flavonoid and anthocyanin than JHR1 and YZ9102
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with or without salt stress. In salt treated, the ion imbalances,

expressed as the ratio of K+/Na+ and Ca2+/Na+, were shown to be

similar among the three cultivars. The relative activation of

antioxidant enzyme activities and membrane stability in JHB1

were more outstanding than the other two cultivars when

subjected to salt stress. The most tolerant to salt stress in JHB1

was mainly attributed to the accumulation of the anthocyanin and

flavonoid activating antioxidant protection against the oxidative

damage to maintain the higher photosynthetic efficiency and plant

growth under salt stress. It is necessary to study the underlying

molecular mechanisms of salt tolerance in black peanut or

exogenous anthocyanin regulated salt tolerance.
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