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Precise and timely leaf area index (LAI) estimation for winter wheat is crucial for

precision agriculture. The emergence of high-resolution unmanned aerial

vehicle (UAV) data and machine learning techniques offers a revolutionary

approach for fine-scale estimation of wheat LAI at the low cost. While machine

learning has proven valuable for LAI estimation, there are still model limitations

and variations that impede accurate and efficient LAI inversion. This study

explores the potential of classical machine learning models and deep learning

model for estimating winter wheat LAI using multispectral images acquired by

drones. Initially, the texture features and vegetation indices served as inputs for

the partial least squares regression (PLSR) model and random forest (RF) model.

Then, the ground-measured LAI data were combined to invert winter wheat LAI.

In contrast, this study also employed a convolutional neural network (CNN)

model that solely utilizes the cropped original image for LAI estimation. The

results show that vegetation indices outperform the texture features in terms of

correlation analysis with LAI and estimation accuracy. However, the highest

accuracy is achieved by combining both vegetation indices and texture features

to invert LAI in both conventional machine learning methods. Among the three

models, the CNN approach yielded the highest LAI estimation accuracy (R2 =

0.83), followed by the RF model (R2 = 0.82), with the PLSR model exhibited the

lowest accuracy (R2 = 0.78). The spatial distribution and values of the estimated

results for the RF and CNN models are similar, whereas the PLSR model differs

significantly from the first two models. This study achieves rapid and accurate

winter wheat LAI estimation using classical machine learning and deep learning

methods. The findings can serve as a reference for real-time wheat growth

monitoring and field management practices.
KEYWORDS

leaf area index, multispectral, UAV, machine learning, convolutional neural
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1367828/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1367828/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1367828/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1367828/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1367828&domain=pdf&date_stamp=2024-03-14
mailto:yangyz@nnnu.edu.cn
https://doi.org/10.3389/fpls.2024.1367828
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1367828
https://www.frontiersin.org/journals/plant-science


Zu et al. 10.3389/fpls.2024.1367828
1 Introduction

Wheat, a globally cultivated food grain crop, plays a pivotal role

in sustaining approximately 35% of the world’s population. Its

growth and yield are paramount for safeguarding food security

(IDRC, 2010). Leaf area index (LAI) is intricately linked to

fundamental biophysical processes like vegetation light

absorption, evapotranspiration, and productivity (Du et al., 2022;

Ma et al., 2023). Therefore, obtaining real-time and reliable LAI

estimations is essential for assessing wheat growth potential and

providing timely technical guidance for subsequent field

management practices (Bellis et al., 2022; Yang et al., 2019).

Currently, two widely used methods for LAI measurement are

direct and indirect. While direct measurement through field

observations boasts high accuracy, it is labor-intensive and

destructive, making it impractical for large scale assessments

(Castro-Valdecantos et al., 2022). Alternatively, indirect methods

are based on the Beer-Lambert Law theory and typically involve

optical instruments for bottom-up hemispherical photography and

spectral reflectance measurements (Apolo-Apolo et al., 2020; Yan

et al., 2016). However, both direct and indirect approaches are

inadequate for extending LAI estimation to larger scales or regions.

Remote sensing technology offers a viable solution for this

challenge. In recent decades, researchers have successfully utilized

medium- and low-resolution satellite datasets, such as Landsat,

MODIS (Moderate Resolution Imaging Spectroradiometer), and

AVHRR (Advanced Very High-Resolution Radiometer), to retrieve

broad-scale LAI (Xiao et al., 2016; Kang et al., 2021). Yet, LAI

estimation based on satellite data falls short in providing refined

field-scale monitoring. Unmanned aerial vehicles (UAVs) offer

substantial advantages over satellites in terms of enhanced

temporal and spatial resolution, alongside greater flexibility (Li

et al., 2019; Yin et al., 2023). Multispectral cameras are a popular

choice among UAV sensors, it can capture spectral information in

the red-edge and near-infrared bands, which are crucial for

analyzing vegetation (Yao et al., 2019). These spectral bands and

the vegetation indices have been effectively employed to predict

crop LAI, demonstrating commendable accuracy (Liu et al., 2021;

Wang et al., 2020). However, limitations arise when estimating LAI

solely using visible or multispectral vegetation indices, especially in

the presence of high crop cover and saturation phenomena (Corti

et al., 2022; Zhou et al., 2017). To address these limitations, some

researchers have incorporated texture features alongside vegetation

indices for crop parameter estimation (Liu et al., 2023b; Xu et al.,

2022). For example, Liu, et al. (Liu et al., 2023a) investigated the use

of vegetation indices, structural information, and texture features

for estimating the leaf area index (LAI) of winter wheat. The model

utilizing only texture features achieved the highest accuracy of 0.56

(R2), surpassing models based solely on vegetation indices or

structural information. Texture’s success in LAI estimation stems

largely from its ability to capture spatial information about crops

(Zhang et al., 2022a; Liu et al., 2018). However, the existing research

methods cannot accurately reflect the complex changes in the

canopy structure at different growth stages. It is necessary to

explore the extent to which vegetation index and texture features
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can improve the estimation of wheat LAI, especially in the canopy

closure stage and heading stage.

The inversion model plays a pivotal role in accurately

quantifying the crop LAI. The traditional estimation methods

primarily rely on the empirical relationship between spectral

features and crop parameters, often employing linear regression.

While this method is straightforward to compute and implement, it

is prone to regional variations and discrepancies across different

crop types, even with similar predictors (Chen et al., 2002; Zhou

et al., 2021). Additionally, traditional statistical regression

models face limitations in handling complex nonlinear and

multicollinearity relationships between LAI and spectral features.

In recent years, numerous machines learning algorithms, including

partial least squares regression (PLSR), random forest (RF), and

decision trees (DT) have gained widespread adoption in remote

sensing parameter inversion. These algorithms excel in modeling

nonlinearity and heteroscedasticity relationships among various

feature types (Jordan and Mitchell, 2015; Lary et al., 2016).

However, the process of deriving and selecting a large number of

characteristic bands can be impractical and inefficient, making it

challenging to identify the most effective set of predictors and

potentially leading to suboptimal performance. The emergence of

deep learning (DL) techniques has revolutionized agricultural

applications, offering robust and intelligent solutions (Osco et al.,

2021). Unlike the shallow neural network approach, deep learning is

characterized by a significantly increased number of successively

connected neural layers, allowing them to extract more complex

relationships (Kattenborn et al., 2021). Convolutional neural

networks (CNN) are particularly adept at analyzing spatial

patterns. Designed for spatial feature extraction, the CNN model

possesses the advantage of directly processing raw images,

eliminating the need for extensive pre-processing (Liang et al.,

2018). The efficacy of UAV-based multispectral data in estimating

crop leaf area index (LAI) has fueled advances in agricultural

remote sensing (Guo et al., 2023; Wittstruck et al., 2022). Despite

the widespread utilization of algorithms for predicting crop LAI,

there remains a paucity of studies comparing the performance of

wheat LAI estimation using both classical machine learning and

deep learning approaches based on multispectral UAV data.

This study leverages UAV-derived multispectral data to address

two key objectives: 1) to compare the predictive potential of

vegetation indices and textural features for estimating winter

wheat LAI, 2) to evaluate the performance of traditional machine

methods (PLSR and RF) and deep learning method (CNN) for

predicating wheat LAI. We hope our findings will provide technical

basis and references for estimating key crop parameters during

critical growth stages of wheat.
2 Materials and methods

2.1 Study area

The winter wheat study area is located in the winter wheat

breeding experimental field of Zhoukou Academy of Agricultural
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https://doi.org/10.3389/fpls.2024.1367828
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zu et al. 10.3389/fpls.2024.1367828
Sciences, Zhoukou, Henan province, China (114°41 ‘E, 33°39 ‘N), as

shown in Figure 1. The primary crops cultivated are winter wheat

and summer corn. The study area cultivates dozens of different

wheat varieties with the purpose of displaying wheat varieties and

conducting breeding screenings, which enhances the variability of

the image dataset. Notably, the winter wheat was sown in October

2022, followed the same management practices as the local winter

wheat crop.
2.2 Unmanned aerial vehicle
data collection

On April 5, 2023, the critical period of wheat growth,

specifically the heading stage, was captured using UAV remote

sensing imagery. For this observation, a DJI Phantom 4

multispectral UAV (DJI Technology, Ltd., Shenzhen, China) was

utilized to acquire images of the wheat canopy. The UAV’s RGB

sensor provided high resolution visible light imagery, while its five

monochrome sensors captured data across specific spectral bands

(details in Table 1). The UAV has an integrated light intensity

sensor on top, which can obtain solar irradiance information to

compensate for illumination of the image and exclude interference

from ambient light. In addition, the UAV platform is equipped with

a real-time kinematic (RTK) module, which enables centimeter-

level localization accuracy. For mission planning, DJI GS Pro

software is employed to plan the route. Data collection was

conducted at an altitude of 70 m under clear and windless sky
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conditions between 10:00 and 14:00. The spatial resolution of the

captured images is 3.7 cm, and the drone’s flight speed is 5 m/s. The

mission included an 80% heading overlap, a 70% side overlap,

resulting in the acquisition of 2382 images. Using DJI Terra

software, the acquired raw images were stitched together

following below steps: (1) import all the images to the software;

(2) perform aerial triangulation processing to calculate the sensor’s

position and orientation during imaging, as well as generating a

spare point cloud of the captured objects; (3) validate the quality,

proceed to multispectral stitching reconstruction, and finally

produce the ortho-mosaic images covering the study area.
2.3 Field LAI data collection

Ground-based measurements of wheat LAI were conducted

within three days of acquiring UAV images. The LAI-2200C canopy

analyzer (LI-COR Biosciences, Inc., Lincoln, NE, USA) was utilized

to obtain non-destructive information on the leaf area index. LAI

measurements were conducted under controlled weather

conditions, ensuring cloudy or clear, cloud-free weather with

uniform cloud thickness. A total of 234 wheat quadrats (1×1m),

evenly distributed across the study area, were selected for

measurement (Figure 1), and the wheat growth within these

quadrats was uniform. During measurements, the radiative value

(A) was initially obtained above the wheat canopy, followed by the

acquisition of four radiative values (B) below the diagonal wheat

canopy in the two ridges. After the measurement, the instrument
FIGURE 1

Location of the study area and LAI sampling points distribution.
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automatically computes the LAI values of the sampled points. Four

sets of LAI values were measured within each sample square.

During measurements, a 45° view cap was utilized to prevent the

entry of the observer or direct light into the sensor’s field of view.

Additionally, four A values were measured for scattering correction

in the presence of sunlight exposure, aiming to mitigate errors

caused by sunlight scattering. The centimeter-level differential

localization service is provided by Qianxun SI (Shanghai, China),

the sample number and its coordinate information were recorded

by handheld RTK equipment (Qianxun SI, Ltd., Shanghai, China) at

the center of each sample.
2.4 Data preparation

2.4.1 Extraction of vegetation index and
texture feature

Vegetation indices provide a simple and effective means to

reflect vegetation growth characteristics and are extensively

employed for monitoring physiological and biochemical

parameters, including crop LAI (Bendig et al., 2015; Tao et al.,

2020b). For this study, 23 vegetation indices demonstrating a strong

correlation with LAI, including NDVI, NDRE, and OSAVI, were

chosen for estimation and modeling, building on previous research

findings (Table 1). The mean value of the vegetation index

computed for all pixels in each wheat quadrant corresponds to

the measured LAI value on the ground, and the LAI is then

estimated. The vegetation index is calculated and the spectral

average is obtained in R ver. 4.3.1.

Texture features were extracted using the gray level co-occurrence

matrix (GLCM), a powerful spatial analysis technique that captures the

relationship between pixels, and has demonstrated effectiveness in

extracting crop-related information in numerous studies (Ilniyaz

et al., 2023). In this study, ENVI software was employed to extract 8

GLCM texture features from each of the 5 multispectral bands,

including dissimilarity (dis), variance (var), entropy (ent), mean

(mean), synergism (hom), second moment (sec), correlation (cor)

and contrast (con). During extraction, 3×3 windows were employed,

and calculations were performed at a 45° angle. Previous studies have

shown that the constructed GLCM texture features are essentially

independent of different directions and window sizes concerning the

correlation with vegetation physiological parameters (Liu et al., 2022a;

Fu et al., 2020). In order to reduce data dimensionality, this study

extracted features using a 3×3 window and calculated them at a 45°

angle. This process resulted in the extraction of a total of 40 texture

features. To enhance clarity, the band name and texture features are

linked with “_”. For instance, red_mean and red_var indicate the

extraction of mean (mean) and variance (var) texture features from the

red band, respectively.

2.4.2 Feature optimization
This study utilizes the random forest algorithm to compute the

weights assigned to each feature. Additionally, Pearson correlation
TABLE 1 The vegetation indices adopted in this study.

Spectral Indices Formula References

Normalized difference
vegetation index (NDVI)

(NIR-R)/(NIR+R) (Tao et al., 2020b)

Excess blue index (ExB) 1.4b-g (Mao et al., 2003)

Excess green index (ExG) 2g-r-b (Woebbecke
et al., 1995)

Excess red index (ExR) 1.4r-g (Meyer and
Neto, 2008)

Excess green minus excess
red index (ExGR)

(2g-r-b)-(1.4r-g) (Niu et al., 2018)

Modified excess green
index (MExG)

1.262g-0.884r-0.311b (Sun et al., 2016)

Visible-band difference
vegetation index (VDVI)

(2g-r-b)/(2g+r+b) (Wang et al., 2015)

Color index of vegetation
extraction (CIVE)

0.441r-0.811g
+0.385b+18.78745

(Kataoka
et al., 2003)

Normalized green-red
difference index (NGRDI)

(g-r)/(g+r) (Hunt et al., 2005)

Blue-green ratio
index (BGRI)

b/g (Sellaro et al., 2010)

Red green ratio
index (RGRI)

r/g (Verrelst
et al., 2008)

Vegetation index (VEG) g/(r0.667b0.333) (Hague et al., 2006)

Combined indices
1 (COM1)

ExG+CIVE+ExGR+VEG (Guijarro
et al., 2011)

Combined indices
2 (COM2)

0.36ExG
+0.47CIVE+0.17VEG

(Guerrero
et al., 2012)

Ratio vegetation
index (RVI)

NIR/R (Yu et al., 2020)

Different vegetation
index (DVI)

NIR-R (Jordan, 1969)

Green normalized
difference vegetation
index (GNDVI)

(NIR-G)/(NIR+G) (Gitelson
et al., 1996)

Blue normalized
difference vegetation
index (BNDVI)

(NIR-B)/(NIR+B) (Yang et al., 2004)

Renormalized difference
vegetation index (RDVI)

(NIR-R)/(NIR+R)0.5 (Zheng et al., 2020)

Normalized difference red
edge index (NDRE)

(NIR-RE)/(NIR+RE) (Fitzgerald
et al., 2010)

Enhanced vegetation
index (EVI)

2.5(NIR-R)/(NIR+6R-
7.5B+1)

(Peng et al., 2021)

Leaf chlorophyll
index (LCI)

(NIR-RE)/(NIR+R) (Datt, 1999)

Optimized soil adjusted
vegetation index (OSAVI)

(NIR-Red)/(NIR
+Red+0.16)

(Hunt, 2011)
In the table above, R, G, B, RE and NIR indicate the spectral reflectivity in the red (450 nm),
green (560 nm), blue (650 nm), red-edge (730 nm) and near-infrared (840 nm) bands,
respectively. r= R/(R+G+B), g=G/(R+G+B), b=B/(R+G+B).
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analysis quantifies the linear relationship between each feature and

LAI. The optimal feature selection is performed by synthesizing the

correlation coefficients between each image feature and LAI, as well

as the weights of each feature. Image features with weights

exceeding 0.03 and displaying extremely significant correlation

with LAI (without restricting the size of correlation coefficients)

were chosen for subsequent LAI estimation of winter wheat.

Following optimization, a total of 9 vegetation indices and 10

texture features were identified (Table 2).
2.5 Model construction

2.5.1 Feature-based machine learning
model construction

To compare performance with deep learning methods, this study

employed two classical machine learning models: partial least squares

regression (PLSR) and Random Forest (RF). These models are

extensively used in remote sensing and LAI inversion. PLSR is a

multivariate regression analysis that combines advantages of

traditional methods like principal component analysis and

multivariate linear regression. PLSR adopts the method of data

dimensionality reduction and increases the covariance between

independent variables and dependent variables through the

sequential selection of orthogonal factors, which reduces

redundancy and improves the computational efficiency of the mode

(Shao et al., 2023). In cases of datasets with numerous variables and

multiple correlations between independent and dependent variables,

the traditional linear regression method lacks precision in analyzing

dependent variables, leading to low model accuracy. In contrast, the

PLSR method enhances model accuracy under such circumstances.

Furthermore, the resulting regression model will encompass all the

information from independent variables and furnish a

comprehensive explanation of the model’s regression coefficients

(Tang et al., 2022; Tao et al., 2020a). The optimal number of

explanatory variables for PLSR in this study was determined based

on the root-mean-square error of LAI inversion accuracy (Cui and

Kerekes, 2018), with default values adopted for other parameters. RF

is an integrated learning algorithm founded onmultiple decision trees

and bagging technology introduced by Breiman (2001) in 2001. The

training set is formed by putting samples back and taking samples

multiple times, and then the prediction results are averaged through a

combination of decision trees. The RF performance hinges on two

crucial parameters: the number of decision trees and the number of

split nodes. Generally, as the number of decision trees increases, the

prediction error of the model gradually decreases and stabilizes.

Following parameter tuning, the number of decision trees in this
Frontiers in Plant Science 05
study is set to 1000, and the number of split nodes adopts the default

value (1/3 of the number of variables). In R, the “pls” and

“randomForest” packages were used to construct the model and

adjust the parameters. The independent variable of the input model

was the mean vegetation index and the mean texture features in the

1×1m quadrat, and the dependent variable was the ground measured

value of LAI. The selection of training and test samples is consistent

with CNN and will be described in the following section.
2.5.2 Image based CNN model construction
Given the augmented number of feature variables, expressing

them through simple linear relations becomes challenging.

Therefore, the model requires enhanced capability for nonlinear

fitting. CNN has gained widespread adoption due to its robust

nonlinear fitting capability, yielding favorable outcomes (Luo et al.,

2023). Consequently, this study also constructs a CNN model for

mapping LAI. Due to the apparent difference in the range of values

between the different bands, the direct input of the CNN may

trigger large gradient updates and thus prevent the network from

converging. To remove the effect of such differences, the standard

normalization method was used in this study, where the mean value

of each band image was subtracted to centralize and then divided by

its standard deviation to finally obtain a mean value of 0.

The CNN model used in this study consists of convolutional

layers, batch normalization layers, pooling layers, dropout layers,

fully connected layers, and regression layers. The model employs

the linear rectification function (ReLU) as the activation function,

and the loss is calculated using the mean square error (MSE)

function. The model is optimized using gradient descent (with

momentum) optimizer, with a learning rate of 0.001. To mitigate

overfitting, a dropout layer is incorporated, randomly excluding

learned parameters from neurons with a probability 0.2. This

reduces the network’s sensitivity to specific neuron weights,

thereby improving the model’s generalization ability. The specific

structure of CNN model is shown in Table 3. The input CNN

requires 234 cropped quadrate images, with each containing 32 by

32 pixels. This study employs data augmentation to expand the

sample dataset. Prior to expansion, 70% of the sample data (164

frames) is allocated for training and validation, while the remaining

30% (70 frames) is reserved for the test dataset. Rotation and

flipping are widely used in data expansion (Xiong et al., 2017; Ma

et al., 2019). In this study, these methods are applied to augment the

training and validation datasets, while the test dataset remains

unchanged for evaluation. Specifically, the images underwent

rotations (90°, 180° and 270°) and flipping (horizontal, vertical),

resulting in the creation of five extended datasets. Consequently, the

final training and validation dataset was expanded sixfold, totaling

984 frames. Among these, 80% (787 frames) were allocated for

training, and the remaining 20% (197 frames) for validation. The

Figure 2 shows the data augmentation traffic. The CNN model was

implemented in R (4.3.1) using the “keras” and “tensorflow”

packages. The computational setup includes an NVIDIA GeForce

RTX 3090 graphics card (16GB video memory) (NVIDIA, Inc.,

Santa Clara, CA, USA), 64 GB RAM, and an Intel Core i7-11700

CPU (2.50 GHz, 16 cores) (Intel, Inc., Santa Clara, CA, USA).
TABLE 2 Feature optimization result.

Feature
type

Feature name

Vegetation
index

BNDVI、DVI、GNDVI、LCI、NDRE、NDVI、OSAVI、
RDVI、RVI

Texture
feature

red_mean、red_var、red_hom、red_con、red_dis、red_ent、
red_sec、red_cor、nir_mean、nir_cor
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2.6 Model accuracy evaluation

This study employed the coefficient of determination (R2), root

mean square error (RMSE), and mean absolute error (MAE) as

evaluation indices for assessing model accuracy. The R2 signifies the

agreement between estimated and measured values, with a value closer

to 1 indicating a better fit of the model. The RMSE indicates the extent

of deviation between estimated and measured values, with smaller

values suggesting a better model fit. The MAE assesses the actual

deviation between estimated and measured values, with smaller values

indicating higher model accuracy. Both MAE and RMSE capture the

average difference between estimated and measured values, with RMSE

being more sensitive to large prediction errors. The formulas ((1), (2)

and (3)) for these three indicators are as follows:

R2 = o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

s
(2)

MAE =
1
no

n
i=1 yi − ŷ ij j (3)
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Where, yi and ŷ i represent the measured and estimated value of

the i th sample, �y   is the average of all measured values, and n is the

number of samples.
3 Results

3.1 Correlation analysis of vegetation index
and texture features

Pearson correlation analysis was performed between texture

features and vegetation indices after feature selection and LAI for

winter wheat. The correlation analysis results of vegetation index

are shown in Figure 3A. All vegetation index values exhibit an

extremely significant positive correlation with LAI at the p< 0.001

level. The correlation coefficients range from 0.68 to 0.83, with

NDRE, LCI, and RVI showing higher correlation coefficients, all

surpassing 0.8. The NDVI has the lowest correlation coefficient

(0.68), while other vegetation indices range between 0.7 and 0.8.

Regarding the correlation among vegetation indices, the correlation

coefficient between DVI and NDRE is approximately 0.7, and all

other vegetation indices exhibit a correlation coefficient greater than

0.8. Correlation analysis results of texture features are presented in

Figure 3B. Among all texture features, nir_mean, red_sec, red_cor,

and red_hom exhibited positive correlations with LAI, while other

texture features showed negative correlations with LAI. The

absolute correlation coefficients for all texture features ranged

from 0.48 to 0.67. The nir_mean and red_sec had the highest

correlation coefficients, both exceeding 0.6, while red_mean had the

lowest absolute correlation coefficient (only 0.48). Regarding the

correlation among texture features, except for nir_mean, nir_cor,

and a few other texture features, the correlation among other

texture features is relatively low (most absolute coefficients below

0.5). Overall, the absolute values of the correlation coefficients for

vegetation indices are all greater than those for texture features.
3.2 Analysis of accuracy of
model estimation

To assess the impact of different input variable types on the

accuracy of winter wheat LAI estimation, three types of combination

for input variables were employed in constructing and validating the

accuracy of PLSR and RF models. The three input variables were

vegetation index (VI), texture feature (T), and the combination of the

two variables (VI+T). Both VI and T were the outcomes of the

aforementioned feature optimization. The results of model

estimation for different input variables are presented in Table 4. In

the PLSR model, the highest estimation accuracy is achieved when the

input variable is VI+T, with R2, RMSE, and MAE of 0.78, 0.52, and

0.63, respectively. In the RF model, the highest estimation accuracy is

achieved when the input variable is VI+T or VI, both with R2 of 0.82.

When the input variable is T, the estimation accuracy is the lowest, and

R2 is only 0.66. On the whole, better LAI inversion results can be

obtained by combining VI and T in both PLSR and RF models. As for

the CNN model, high estimation accuracy can be achieved based on
TABLE 3 Structure of CNN.

Layer name Filters Kernel size Output
tensor

Convolutional
layer 1

16 3×3 16×32×32

Batch
normalization 1

16×32×32

Pooling layer 1 16×16×16

Convolutional
layer 2

32 3×3 32×16×16

Batch
normalization 2

32×16×16

Pooling layer 2 32×8×8

Convolutional
layer 3

64 3×3 64×8×8

Batch
normalization 3

64×8×8

Pooling layer 3 64×4×4

Convolutional
layer 4

128 3×3 128×4×4

Batch
normalization 4

128×4×4

Pooling layer 4 128×2×2

Dropout 1 128×2×2

Flatten layer 1 512

Dense layer 1 64

Dense layer 2 1
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the scaled raw image data, with the R2 reached 0.83. Optimal inversion

results were selected for the three models, as shown in Figure 4. The

fitting regression slopes for three models are all less than and close to 1.

This suggests that the three models tend to overestimate in the low
Frontiers in Plant Science 07
value region and underestimate in the high value region. Additionally,

the regression lines for PLSR and RF intersect the 1:1 line at a measured

LAI of approximately 5, whereas the regression lines for CNN intersect

the 1:1 line at a measured LAI of around 4.
A B

FIGURE 3

Correlation analysis results of vegetation index (A) and texture feature (B). All correlation coefficients in the figure above pass the significance test at
the p< 0.001 level.
FIGURE 2

Flowchart of LAI estimation strategies.
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3.3 Spatial distribution of LAI estimation
results for winter wheat

Using the three optimal inversion models, we estimated the

spatial distribution of LAI of wheat in the study area, as shown in

Figure 5. As observed from the result, variations in wheat planting

varieties, planting methods, planting density, etc., lead to substantial

spatial distribution differences in LAI for wheat growing under the

same environmental conditions and management practices. On the

whole, the spatial distribution pattern of wheat LAI inversion by the

three models was similar, and the high values (larger than 5) were

concentrated in the southern and eastern parts of the study area.

However, regions with LAI less than 4 were mainly found in the

northwestern and eastern parts of the study area. In these regions,

PLSR estimation results exhibit lower values compared to the other

two models in areas with low LAI values.
3.4 Correlation analysis of inversion results
of different models

Scatter plots illustrating the LAI estimation results for the three

models are presented in Figure 6. The figure indicates a strong pairwise

correlation (R2 > 0.8) among the estimated results for the three models.

In Figure 6A, the correlation between PLSR and CNN is high (R2 =

0.84), and the points are evenly distributed near the model fitting line,
Frontiers in Plant Science 08
while the slope onlymeasures 0.79. This suggests that although there is a

high correlation between the twomodels, the similarity in LAI estimates

is relatively low. Discrete points at the lower right of the fitting line

suggest that PLSR tends to have higher LAI estimates than CNN in

specific regions. As shown in Figure 6B, the R2 of the scatter plot for RF

and PLSR estimates is 0.83, but there is an uneven distribution for

points. The slope of the fitted line is 0.96, indicating that the estimated

values are highly similar for both models. The numerous discrete points

in the upper-left imply that PLSR tends to yield higher LAI estimates

than RF in specific regions. As shown in Figure 6C, the scatter plot R2 of

the CNN and RF estimation results is 0.84, and the point distribution is

also uneven, which is similar to the results of the correlation analysis

between RF and PLSR. However, the slope of the fitted line is

approximate to 1, which is basically consistent with the 1:1 curve,

indicating that the CNN and RF models have the highest similarity in

the LAI estimation results. In addition, there are only a few discrete

points in the lower right of the fitted line, further indicating that the

numerical distributions of the two models are very close to each other.

4 Discussion

4.1 Comparison of LAI inversion using
vegetation index and texture features

To enhance the accuracy of LAI inversion in wheat cultivation,

this study employed multispectral images captured by UAV to
PLSR: VI+T
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FIGURE 4

Scatter plots of measured and estimated LAI values of PLSR (A), RF (B) and CNN (C). All the statistical analyses in the figure above pass the
significance test at the p< 0.001 level.
TABLE 4 LAI estimation results of winter wheat with different input variables.

Model Input variable R2 RMSE MAE

PLSR

VI 0.75 0.54 0.69

T 0.70 0.59 0.75

VI+T 0.78 0.52 0.63

RF

VI 0.82 0.47 0.57

T 0.66 0.61 0.77

VI+T 0.82 0.46 0.58

CNN Scaled raw image 0.83 0.50 0.61
All the statistical analyses in the table pass the significance test at the p< 0.001 level.
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evaluate the potential of vegetation indices and texture features, and

then we evaluated the estimation accuracies of classical machine

learning (PLSR, RF) models and deep learning (CNN) model. The

results showed that vegetation indices exhibit higher correlation

than texture features in LAI estimation. The strong correlation

likely stems from vegetation indices being based on the linear

combination of spectral reflectance, which partially captures the

photosynthetic capacity of vegetation. These findings aligns with

studies like Han, et al. (Han et al., 2022), who pointed out that

vegetation indices had excellent performance for LAI estimation.

However, the results of this study differ from those of earlier studies

(Ilniyaz et al., 2023; Fan et al., 2023). These discrepancies may be

attributed to the sensitivity of texture features to factors such as

vegetation type and image resolution. Moreover, the vegetation

indices employed in this study also differ from those used in
Frontiers in Plant Science 09
previous studies, potentially contributing to the observed

variations in results. While the LAI estimation accuracy using

combined spectral and textural features is higher than that using

either features alone, the overall accuracy improvement is not

substantial. The marginal enhancement in accuracy observed

when combining spectral and textural features may be attributed

to the fact that both feature sets are already strongly correlated with

LAI. Consequently, their aggregation does not elicit a substantial

synergistic effect. The findings of this study are consistent with

previous research (Zhang et al., 2022b), which has also

demonstrated that combination of spectral and texture features is

limited to the improvement of LAI estimation accuracy.

Additionally, we also found that among the ten texture features

obtained after filtering, eight were derived from the red light band,

while only two were derived from the near-infrared band. This
A B C

FIGURE 6

Scatter plot of correlation analysis of LAI estimation results of three models. PLSR (A), RF (B) and CNN (C). All the statistical analyses in the figure
above pass the significance test at the p< 0.001 level.
A B C

FIGURE 5

LAI spatial distribution map estimated by PLSR (A), RF (B) and CNN (C).
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finding suggests that the red light band exhibits a stronger

correlation with LAI, indicating that the wheat canopy is more

sensitive to the red light band.
4.2 Performance of the three LAI
inversion model

In this study, traditional machine learning and deep learning

models were used to estimate wheat LAI. The results demonstrated

that the CNN model achieved the highest accuracy, followed by the

RF model and the PLSR, which exhibited the lowest accuracy. This

outcome aligns with previous studies indicating superior accuracy

of the CNN model compared to conventional machine models

(Wittstruck et al., 2022; Yamaguchi et al., 2021). In contrast to

conventional machine learning approaches, a distinguishing feature

of the CNN model is its ability to extract features directly from raw

data (Xu et al., 2021), eliminating the need for laborious manual

feature selection and cumbersome computation processes. That

might be the reason why CNN outperforms other models. Extensive

studies have revealed that the relationships between LAI and

spectral information are intrinsically nonlinear (Ma et al., 2022;

Gao et al., 2023). In general, the RF regression model demonstrates

remarkable robustness in handling high-dimensional data and

nonlinear relationships, while PLSR, being a linear regression

method, is not adequately equipped to capture these intricate

nonlinear relationships between spectral reflectance and LAI. As a

result, PLSR exhibits inferior accuracy in estimating LAI compared

to the RF model.

Despite the high inversion accuracy achieved by the three

models in this study, it was observed that at high LAI values

(Figure 4), the majority of points in the scatter plot deviated

below the 1:1 line, indicating a tendency for underestimation by

the models. The primary cause of this underestimation lies in the

fact that when LAI values are high, the vegetation canopy density

typically increases, making it challenging for light to penetrate into

the vegetation interior, leading to saturation effects, thus hindering

the ability of images to capture wheat canopy information

(Wittstruck et al., 2022; Li et al., 2021). On the other hand, the

imbalanced distribution of samples with varying LAI values in the

dataset may also contribute to the underestimation of LAI values.

For instance, the dataset in this study contains fewer samples with

high LAI values compared to those with medium and low LAI

values, potentially leading to insufficient learning of spectral

features associated with high LAI values in the models.
4.3 Limitations and future work

Our proposed models demonstrate high precision in estimating

the LAI of small-scale crops. Leveraging similar small-scale data, it

can promptly offer validation and serve as a reference for the

estimation of LAI on a larger scale using satellite remote sensing

data, such as Landsat and Sentinel. Despite the promising results
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obtained in this study, it is important to acknowledge certain

limitations. Firstly, the study exclusively utilizes UAV images of

winter wheat during a single growth period, restricting the

validation and testing of the model’s ability to generalize across

diverse growth stages of winter wheat. This is a crucial aspect for the

practical application of the model in agricultural management, as it

ensures that the model can accurately estimate LAI across the entire

growth cycle (Li et al., 2023). Another critical aspect is the absence of

comparison with mature pre-trained deep learning models. Pre-

trained models are models that have been previously trained on a

vast dataset and can be applied to various tasks. This ability to

transfer learned features across different problems is a key advantage

of deep learning compared to traditional shallow learning methods

(Chollet et al., 2022). Thirdly, researchers have pointed out that

vegetation height is correlated with aboveground biomass (AGB), and

can be used for AGB estimation (Liu et al., 2022b; Li et al., 2020). As

AGB is closely related to LAI, vegetation height can also be employed

for LAI inversion (Wittstruck et al., 2022). Subsequent research may

explore incorporating similar features as model inputs. Finally, it

is important to note that the measured values of LAI were

obtained indirectly, which introduce some error compared to direct

destructive measurements. Therefore, future studies should

consider the potential accumulation of errors between these two

measurement methods.
5 Conclusion

This study compares the performance of classical machine learning

(PLSR and RF) methods and deep learning (CNN) approach in

estimating the LAI of winter wheat using multispectral images

captured by UAV. The results indicate that for PLSR and RF

methods, the estimation accuracy is significantly higher when using

vegetation indices compared to texture features. The highest accuracy is

achieved by combining both vegetation indices and texture features.

For the PLSR model, the R2 obtained using only vegetation indices or

texture features are 0.75 and 0.70, respectively. While for the RF

method, the model’s R2 for using vegetation indices (0.82) is

significantly larger than that using texture features (0.66). Overall,

the highest accuracy is achieved by combining both vegetation indices

and texture features, with R2 values of 0.78 and 0.82 for PLSR and RF,

respectively. In contrast to the classical machine learning methods, the

CNN method exhibits superior LAI estimation accuracy (R2 = 0.83),

demonstrating its ability to effectively extract complex relationships

between spectral features and LAI. Moreover, the spatial distribution

and numerical values of LAI estimation results from the RF and CNN

models exhibit a high degree of similarity, suggesting that both

methods capture the spatial patterns of LAI well. In contrast, the

PLSR model’s results differ significantly from the other two models. In

summary, this study successfully employs CNN in conjunction with

multispectral images from UAV to accurately estimate the winter

wheat LAI. This approach offers a rapid and cost-effective method for

monitoring winter wheat growth, serving as a valuable reference for

winter wheat field management.
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Apolo-Apolo, O. E., Pérez-Ruiz, M., Martıńez-Guanter, J., and Egea, G. A. (2020).
Mixed data-based deep neural network to estimate leaf area index in wheat breeding
trials. Agronomy 10, 175. doi: 10.3390/agronomy10020175

Bellis, E. S., Hashem, A. A., Causey, J. L., Runkle, B. R. K., Moreno-Garcia, B., Burns,
B. W., et al. (2022). Detecting intra-field variation in rice yield with unmanned aerial
vehicle imagery and deep learning. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.716506

Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., et al. (2015).
Combining UAV-based plant height from crop surface models, visible, and near
infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth
Observation Geoinformation 39, 79–87. doi: 10.1016/j.jag.2015.02.012

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/
A:1010933404324

Castro-Valdecantos, P., Apolo-Apolo, O. E., Pérez-Ruiz, M., and Egea, G. (2022).
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