AUTHOR=Li Dan , Zhang Chao , Li Jinguang , Li Mingliang , Huang Michael , Tang You TITLE=MCCM: multi-scale feature extraction network for disease classification and recognition of chili leaves JOURNAL=Frontiers in Plant Science VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1367738 DOI=10.3389/fpls.2024.1367738 ISSN=1664-462X ABSTRACT=

Currently, foliar diseases of chili have significantly impacted both yield and quality. Despite effective advancements in deep learning techniques for the classification of chili leaf diseases, most existing classification models still face challenges in terms of accuracy and practical application in disease identification. Therefore, in this study, an optimized and enhanced convolutional neural network model named MCCM (MCSAM-ConvNeXt-MSFFM) is proposed by introducing ConvNeXt. The model incorporates a Multi-Scale Feature Fusion Module (MSFFM) aimed at better capturing disease features of various sizes and positions within the images. Moreover, adjustments are made to the positioning, activation functions, and normalization operations of the MSFFM module to further optimize the overall model. Additionally, a proposed Mixed Channel Spatial Attention Mechanism (MCSAM) strengthens the correlation between non-local channels and spatial features, enhancing the model’s extraction of fundamental characteristics of chili leaf diseases. During the training process, pre-trained weights are obtained from the Plant Village dataset using transfer learning to accelerate the model’s convergence. Regarding model evaluation, the MCCM model is compared with existing CNN models (Vgg16, ResNet34, GoogLeNet, MobileNetV2, ShuffleNet, EfficientNetV2, ConvNeXt), and Swin-Transformer. The results demonstrate that the MCCM model achieves average improvements of 3.38%, 2.62%, 2.48%, and 2.53% in accuracy, precision, recall, and F1 score, respectively. Particularly noteworthy is that compared to the original ConvNeXt model, the MCCM model exhibits significant enhancements across all performance metrics. Furthermore, classification experiments conducted on rice and maize disease datasets showcase the MCCM model’s strong generalization performance. Finally, in terms of application, a chili leaf disease classification website is successfully developed using the Flask framework. This website accurately identifies uploaded chili leaf disease images, demonstrating the practical utility of the model.