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Phylogenetic conservation in
plant phenological traits varies
between temperate and
subtropical climates in China
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Yu Zhou1, Wei Liu1 and Junhu Dai1,2*

1Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural
Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China, 2University of Chinese
Academy of Sciences, Beijing, China
Phenological traits, such as leaf and flowering dates, are proven to be

phylogenetically conserved. The relationship between phylogenetic

conservation, plant phenology, and climatic factors remains unknown. Here,

we assessed phenological features among flowering plants as evidence for

phylogenetic conservatism, the tendency for closely related species to share

similar ecological and biological attributes. We use spring phenological traits data

from 1968-2018 of 65 trees and 49 shrubs in Xi’an (temperate climate) and

Guiyang (subtropical climate) to understand plant phenological traits’

relationship with phylogeny. Molecular datasets are employed in evolutionary

models to test the phylogenetic conservatism in spring phenological

characteristics in response to climate-sensitive phenological features.

Significant phylogenetic conservation was found in the Xi’an plant’s

phenological traits, while there was a non-significant conservation in the

Guiyang plant species. Phylogenetic generalized least squares (PGLS) models

correlate with phenological features significantly in Xi’an while non-significantly

in Guiyang. Based on the findings of molecular dating, it was suggested that the

Guiyang species split off from their relatives around 46.0 mya during the middle

Eocene of the Tertiary Cenozoic Era, while Xi’an species showed a long

evolutionary history and diverged from their relatives around 95 mya during

the late Cretaceous Mesozoic Era. First leaf dates (FLD) indicative of spring

phenology, show that Xi’an adjourned the case later than Guiyang. Unlike FLD,

first flower dates (FFD) yield different results as Guiyang flowers appear later than

Xi’an’s. Our research revealed that various factors, including phylogeny, growth

form, and functional features, influenced the diversity of flowering phenology

within species in conjunction with local climate circumstances. These results are

conducive to understanding evolutionary conservation mechanisms in plant

phenology concerning evolutionary processes in different geographical and

climate zones.
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1 Introduction

Phylogenetic conservatism (closely related species tend to show

similar traits) might be the biological basis for specific phenological

events in plants or sensitivity to abiotic environmental factors

(Davies et al., 2013; CaraDonna et al., 2014; Yang et al., 2021).

Still, it is poorly understood how evolutionary mechanisms and

geological and climatic conditions influence plant phenology and

phylogeny relationships. Numerous studies focus more on the

interannual variation of phenology that is affected by climatic

factors (such as temperature, precipitation, and daylight) (Ge

et al., 2015; Piao et al., 2019). In contrast, many studies

demonstrated that plants are now leafing out earlier and

flowering earlier in response to a warming climate (Wolkovich

et al., 2012; Bucher et al., 2018; Menzel et al., 2020; Rosbakh et al.,

2021). Climate change is due to geological changes such as

latitudinal range (Hickling et al., 2006; Mason et al., 2015) and

elevational extent (Chen et al., 2011). However, recent research

suggested that the biological foundation for phenological

occurrences in some plants or sensitivity to abiotic environmental

stimuli may be related to plant phylogeny, which states that closely

related species tend to exhibit comparable phenological properties

(Caradonna and Inouye, 2015; Yang et al., 2021). This might

undermine evolutionary conservatism by causing variations in

phenological timing or temperature sensitivity among closely

related species. Phylogenetic conservation may be obscure

because the same biological groups may encounter various

environmental l imitations and have followed different

evolutionary pathways (Davies et al., 2013; Du et al., 2015).

Therefore, it is essential to accurately improve the future forecast

of how geographical and environmental factors combined with

phylogenetic conservatism impact plant phenophases.

Changes in plant phenology are not uniform across the globe

due to the variance in plant phenological sensitivity to climate

change (Menzel et al., 2006; Gao et al., 2019). Spatial variance in

plant phenology change rate can modify well-established

phenological patterns along geographical gradients (Ma et al.,

2018; Vandvik et al., 2018; Liu et al., 2019). There are substantial

spatial variations because of regional geographical conditions

affecting climate (van der Wiel and Bintanja, 2021). For example,

surprising regional differences with local hotspots have been

identified in temperature changes across the United States

(Eilperin et al. , 2020). The constraint of phylogenetic

conservation change in plant phenological features due to

geographical and climatic zones must be understood at a regional

scale (i.e., climate differences and geographical variables) (Alice

Boyle and Bronstein, 2012). Relatively little attention has been paid

to the potential impacts of geographical variables (such as latitude

and altitude) that influence climatic variability, which will have

consequences in phenological and phylogenetic conservation. By

studying these variables at different spatial and temporal scales, the

effects of climate and geography on the evolutionary mechanisms

influencing phylogenetic conservatism in plant phenophases will be

more correctly predicted.

Phylogenetic conservation contributes to plants by clarifying

taxonomic status, identifying unique evolutionary lineages,
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determining relictual and recently derived species, and

investigating the phylogenetic value for conservation priority

between regional and widespread species (Coates, 2000; Ryder,

1986). The phylogenetic conservatism in plant phenophases in

response to climatic sensitivity has been well-reported (Davies

et al., 2013; Caradonna and Inouye, 2015; Du et al., 2015).

However, the mechanism behind how climatic factors would add

considerable uncertainty and affect the relationship between plant

phenology and phylogeny is still unknown. For a meaningful

prediction of plant phylogeny and phenology correlations with

regional climatic differences, an ability to consider attributes of

shared evolutionary history is essential (Cleland et al., 2012;

Wolkovich and Cleland, 2014).

The phylogenetic conservatism of phenological features has

since been evaluated using various techniques, such as Blomberg’s

K and Pagel’s lambda methods (Blomberg et al., 2003; Münkemüller

et al., 2012; Davies et al., 2013; Li et al., 2016). Significant efforts

were made to gather phenological records and plant characteristic

data from national flora books to know the relationship between

plant phenology and phylogeny. However, the accuracy of these

studies’ phenological and genetic data is not very high (Du et al.,

2015, 2017). The extent of these studies ranged from three years

(Basnett et al., 2019) to a few decades (Davies et al., 2013; Du et al.,

2017; Yang et al., 2021), which varied greatly in these studies. Using

incomplete genetic and phenological datasets can cause

incongruence in the phylogenetic signals in plant phenophases.

The comparison of chloroplast genome (cpDNA) sequences among

different plant species is an essential source of plant molecular

phylogenetic data, making it an ideal molecule for tracing the

evolutionary history of plant species (Chen et al., 2022). Here, we

use the complete chloroplast genome (cpDNA) dataset to

reconstruct the phylogenetic gene genealogies of plant species to

better understand the phylogenetic conservation between plant

phenological and climatic sensitive phenological traits.

Using plant functional traits (the characteristics of plants that

determine responses in the surrounding environment, other species,

and trophic levels) has become an efficient and accurate way to

investigate the effects of large-scale land and climate change (Dıáz

and Cabido, 2001; Suding et al., 2008; Pérez-Harguindeguy et al.,

2016). The functional traits of plants are essential biological

characteristics that most likely reflect the adaptation strategies of

plants to the environment (Funk et al., 2017). However, our

understanding of the confounding influences of plant functional

traits (i.e., life forms, pollination style, deciduous, and evergreen)

affect plant phenology and phylogenetic conservation remains

unclear. There is evidence that differences in plant functional

traits, such as life form, and biotic and abiotic pollination mode,

may also be associated with interspecific variation in plant

phenology (Wolkovich and Cleland, 2014; Du et al., 2017; Bucher

et al., 2018; Liu et al., 2021). However, some studies also found there

were no significant differences in the flowering time of the

entomophilous plants (Janeček et al., 2021). Therefore, the

relationship between functional traits and plant phenology still

deserves further exploration. This study analyzed the relationship

between plant functional traits and the spring phenological

characteristics of species in two different geographical regions.
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Climate determines the reproductive phenology of plants,

such as temperature and precipitation cause various reproductive

structures to grow and mature (Rathcke and Lacey, 1985; Høye

et al., 2007; Wang et al., 2023). Ting et al. (2008) concluded that the

fruiting period is progressively shorter with increasing latitude

because the climate varies with the geographical gradient. On the

other hand, our analysis may become highly ambiguous if we ignore

the long-term variations in geography and climate that affect the

length of reproductive phenology. Recent studies on the phenology

of common alder are consistent with the idea that local geographical

climate variation affects phenology (Ziello et al., 2009; Wang et al.,

2023). For instance, China’s average annual rainfall gradually drops

as northern latitude rises and east longitude falls (Xu and Zhang,

2020), shortening the time that photosynthesis (Huxman et al.,

2004). Another illustration is when a species cannot break the

dormant state of its seeds due to an environment that is too warm

for it. On the other hand, frost damage can occur to plants that

flower early or prematurely (Morin et al., 2007). Thus, the length of

reproductive phenology may be shortened. Consequently, a

thorough account of the global distribution and spatial patterns

of the duration of reproductive phenology is needed. Therefore, it’s

equally essential to comprehend how plants might react to

climate change.

This study investigates the phylogenetic conservatism in spring

phenological characteristics and the functional traits correlations

with phenological elements such as life forms (trees and shrubs) and

evergreen or deciduous species in two different climatic conditions

zones, i.e., Xi’an (temperate climatic) and Guiyang (subtropical

climatic) in China. The phylogenetic signal and evolutionary

models analyzed phylogenetic conservation in plant phenological

traits. It should be noted that because a small sample size may

reduce the predicted accuracy of the phenological model, we

excluded species with less than 50 years of flowering and leaf-out

data. To accomplish our objective, we address the following

questions: (i) To explore the phylogenetic conservation between

plant spring phenophases and climatic-sensitive spring

phenophases of two different climatic zones, i.e., Xi’an and

Guiyang in China. (ii) How do temperate and subtropical climatic

conditions influence the phylogenetic signals in plant phenological

traits of Xi’an and Guiyang species? (iii) To investigate different

geographical and climatic conditions that are directly connected to

the area’s evolutionary processes, which strongly impact plant

spring phenology and phylogeny relationships.
2 Materials and methods

2.1 Study sites

Xi’an and Guiyang are two historical regions of China with

different geographical and climatic conditions. Xi’an (34°12’N, 108°

57’E) is the capital of the Shaanxi province located in north-central

China (Bai et al., 2010). Xi’an (400m a.s.l) has a temperate semi-

humid climate with an average temperature of 13°C and average

precipitation of 578 mm annually (Bai et al., 2010). The vegetation

in Xi’an is sharply differentiated into northern and southern zones
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with mixed deciduous broad-leaved and evergreen forests. Guiyang

(26°38’N and 106°37’E) is the city of Guizhou Province, located in

southwestern China. Guiyang is a humid subtropical climatic region

at 1,050-1,275m a.s.l (Figure 1). Due to its high altitude, the annual

temperature is 15.3°C, and rainfall is about 11,000mm (Figure 2).

Guiyang City typically has harsh climatic conditions (subtropical

climate), such as high relative humidity, long, cloudy, rainy days,

and little sunshine. Natural wealth lies in its forests; about one-tenth

of the land is under natural forest. It has rich and valuable

woodlands of wild plants, among which several highly valued

herbs are used in traditional Chinese medicine.
2.2 Phenological and meteorological
data observation

The phenological observation records of the first leaf dates

(FLD) and first flower dates (FFD) of 77 and 37 plant species from

Xi’an and Guiyang respectively have been collected from the China

Phenological Observation Network (CPON). The details of plant

species and functional traits (life forms and evergreen or deciduous

species) are given in Supplementary Table 1. The phenological

observation data at each site (Xi’an and Guiyang) were collected

from 1968-2018, followed by defined observation criteria and

procedures (Wan and Liu, 1979). According to observational

standards, the first leaf out and flowering dates are determined as

a fixed individual plant of a specific species starts generating the first

leaf and the first flower, respectively (Dai et al., 2013; Wang et al.,

2015). We then compared differences in phenophases (FLD and

FFD) and their deviations in the period 1968-2018 between Xi’an

and Guiyang species.

The meteorological data is extracted from the China

Meteorological Data Service Center website (https://data.cma.cn/)

to acquire daily mean temperatures and precipitation from 1963 to

2018 for each station. We used the daily mean temperatures and

precipitation data to calculate spring phenology’s temperature and

precipitation sensitivity.
2.3 Molecular phylogenetics and
divergence time analysis

The available complete chloroplast genomes (cpDNA) of

selected Xi’an and Guiyang station plants were downloaded from

GenBank (NCBI accession numbers and species details presented in

Supplementary Table 1). Agaricus bisporus and Cantharellus cibarius

complete genomes are added as outgroups. Before phylogenetic

analysis, each station dataset is aligned separately using Genious v

12.0 software and the multiple alignment application MAFFT

(Darling et al., 2004). We directly generated an alternate

phylogeny from DNA sequence data to test the sensitivity of our

findings to the tree topology. Further details of tree reconstruction

are provided as supplementary information (Supplementary

Information Index II). We refer to the final topology as the ML tree.

In BEAST v1.8 .0 , the mult iple foss i l cal ibrat ions

(Supplementary Information Index I) were used to estimate the
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divergence periods between lineages with a relaxed clock and Yule

process speciation prior (Near et al., 2005; Marshall, 2008;

Drummond et al., 2012; Lukoschek et al., 2012). MrModeltest 2.3

was used to choose the GTRAGMMA nucleotide substitution

model (Nylander, 2004). In this case, we considered the

uncertainty of prior knowledge using a normal prior probability

distribution. The parameters were sampled every 5,000 generations,

while the analysis was run for 20,000,000 generations. Using Tracer

v. 1.6 (Drummond et al., 2012), the appropriate sample size (>200)

was established, and the first 10% of the samples were eliminated as

burn-ins. To construct a maximum clade credibility chronogram

depicting the mean divergence time estimates with 95% highest

posterior density (HPD) intervals, we used Tree Annotator v.1.8.0

(Drummond et al., 2012) to compile the collection of post-burn-in

trees and associated parameters. FigTree V1.3.1 (Drummond et al.,

2012) displayed the resulting divergence times.
2.4 Phylogenetic conservatism in
spring phenology

For phylogenetic conservatism, phylogenetic topology was the

resort. The following analyses were carried out using the “ape”

(Paradis et al., 2004) and “picante” (Kembel et al., 2010) libraries in

R (http://www.R-project.org; R Development Core Team).

Blomberg’s K technique was used to analyze each station’s

phylogenetic signal using spring phenological variables (Blomberg

et al., 2003; Gao et al., 2022). A trait’s evolution is influenced by
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phylogeny if K=1 shows that the inter-species correlation equals the

Brownian expectation. According to Brownian motion (BM), K>1

demonstrates that trait similarity is more significant than expected

(Blomberg et al., 2003). In contrast, K<1 denotes either stability (i.e.,

the characteristic is phylogenetically conserved) or absence of

phylogenetic structure (i.e., the trait is not phylogenetically

conserved) (Wiens et al., 2010). Using the phytools library in the

R, we calculated the K parameter for each phenological

characteristic. To determine whether the observed values

significantly deviate from the randomized arrangement. The P-

value might alternatively be derived by 1000 interactions in the

computation of K (Revell, 2012).

We approached the close fitting of evolutionary models for

evaluating phylogenetic conservatism as a random variation and

evolutionary stasis shaped by selection can be directly captured by

the white noise (WN) model and Ornstein-Uhlenbeck (OU) model,

respectively (Felsenstein, 1985; Blomberg et al., 2003; Butler and

King, 2004; Kozak and Wiens, 2010; Diniz-Filho et al., 2015).

Phylogenetic signal representation (PSR) curves to investigate the

evolutionary patterns of trait development (Diniz-Filho et al., 2012).

We assessed each trait’s evolutionary processes by comparing the

close fitting of the three most popular evolutionary models (BM,

OU, and WN) with the highest value of weight Akaike Information

Criterion model to make up for the limitations of the phylogenetic

signal approach (wAIC) (Butler and King, 2004; Diniz-Filho et al.,

2012). Phylogenetically independent trait variation was modeled

using the WN model with random variation, the BM model of

progressive drift, and the OU model for stasis or stable selection. It
A

B

FIGURE 1

(A) Representation of geographical map with all climatic zones of China and the location of Xi’an and Guiyang. (B) The altitude difference between
Xi’an and Guiyang.
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is predicated on the phylogenetic eigenvector regression (PVR)

model, which employs eigenvectors obtained and chosen from a

pairwise phylogenetic distance matrix to describe trait variation. To

construct PSR curves, we followed Staggemeier et al. (2015)

methods to know the evolution and conservation of phenological

traits. Additionally, the PSR curve’s shape reflects the pace of trait

evolution in the phylogenetic tree (Diniz-Filho et al., 2012).
2.5 Sensitivity of plant phenology and
phylogenetic conservation

The spring phenological traits sensitivity analysis to

temperature and precipitation was performed differently between

Guiyang and Xi’an stations. To identify the preseason, we

determined the Pearson’s correlation coefficient (r) between FLD/

FFD and temperature during the 1 day, 2 days,…, and 120 days

before the average FLD/FFD of the study period, respectively. The

preseason was then identified as the period with the highest “r” (Dai

et al., 2019). The regression slope between the FLD/FFD and the

daily mean temperature averaged throughout the preseason

determined the temperature and precipitation sensitivity. The

above method (section 2.4) was applied to know the phylogenetic

conservation in the sensitivity of plant phenology.

We performed the frequency distribution analysis to compare

the temperature sensitivity as days and precipitation sensitivity as

days/mm to check the advancement of the Xi’an and Guiyang

species in spring phenology (FLD and FFD).
2.6 Statistical analysis

This paper mainly analyzes the influence of three functional

traits, i.e., life form (shrubs and trees), pollination style (biotic and

abiotic), and distinct plant groups (deciduous and evergreen), on

spring phenological traits (Figure 2). Refer to “Flora of China” for

functional traits classification: life form; trees whose maximum

height exceeds six meters are classified as trees, and those whose
Frontiers in Plant Science 05
size does not exceed six meters are grouped as shrubs. Pollination

methods: gymnosperms and angiosperms with small, odorless

flowers and many stamens are classified as anemophilous plants;

angiosperms with large, fragrant flowers, conspicuous petals, and

brightly colored flowers are grouped as insect-borne plants (Du

et al., 2017). Deciduous plants are considered a group of plants that

shed their leaves seasonally, while evergreen plants are considered a

group of plants that keep their leaves throughout the entire year. We

used phylogenetic generalized least squares (PGLS) models to

compensate for phylogenetic autocorrelation. The ‘pgls’ function

from the Caper R package fits PGLS models (Orme et al., 2014).

This allowed us to study the impacts of various plant function

features on spring phenological traits in temperature and

precipitation variations. Figure 2 represents the functional traits

and numbers of species in Guiyang and Xi’an. We performed the

mean and median range analysis to compare the plant functional

features such as tree and shrub species, biotic and abiotic

pollination, and deciduous and evergreen species between the

spring phenological traits (FLD and FFD, temperature and

precipitation sensitivities of FLD and FFD) of Guiyang and Xi’an.
3 Results

3.1 Plant phenological characteristics in
Guiyang and Xi’an areas

Our results compare the spring phenological characteristics and

the differences between each Guiyang and Xi’an species. Guiyang’s

first leaf dates (FLD) indicate that leafing begins at 40 days and lasts

until 100, while Xi’an FLD findings suggest that later leafing starts

after 60 days and lasts until 120 (Figure 3). Overall, Xi’an adjourned

the case later than Guiyang. The first flower dates (FFD) produce

distinct outcomes compared to FLD. While Xi’an’s FFD results

show later leaves beginning before 50 days and ending at 250 days,

Guiyang’s results show blooming flowers starting at 50 days and

lasting more than 300 days. Typically, Guiyang flowers are later

than that of Xi’an.
B

C

A

FIGURE 2

(A) Graphical overview of shrubs and trees; wind and insect-pollinated species; deciduous and evergreen species in Xi’an and Guiyang (B)
Temperature and precipitation graph of Xi’an (C) Temperature and precipitation graph of Guiyang.
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The spring phenological traits sensitive to temperature and

precipitation reveal that Guiyang’s temperature sensitivity leaf

phenology (FLD-ST) begins leafing when the temperature is

between -8 and -2 °C. However, according to FLD-ST data, plants

from Xi’an begin to leaf at temperatures between -5 and -1 °C

(Figure 3). In general, Xi’an has a lower leaf-out temperature than

Guiyang. On the other hand, species from Guiyang and Xi’an

commence flowering with an average temperature of -14 to -2 °C

according to the temperature sensitivity of the first flower date

(FLD-ST) (Figure 3). In Guiyang and Xi’an species, the first leaf

date (FLD-Sprc) precipitation sensitivity exhibits the same

pattern, with an average precipitation of -0.2 to 0.3mm

before leafing begins. In contrast, first flower date (FFD-Sprc)

precipitation sensitivity analysis indicated that average rainfall

starts flowering at -0.2 to 0.5mm in Guiyang. The FFD-Sprc
findings for the Xi’an species show that flowering begins at -0.2

to 0.4mm in precipitation. Overall, Xi’an experiences less blooming

than Guiyang.
3.2 Phylogenetic conservation in plant
phenology and sensitivity of
plant phenology

The K-value was below one for all the spring phenological

characteristics in Xi’an and Guiyang, predicted by Brownian

motion. However, the signal intensity was different between the

two locations. The leaf and flower phenological characteristics show
Frontiers in Plant Science 06
weaker and non-significant phylogenetic signals (K values) in

Guiyang. Therefore, the phylogenetic conservation signals in the

spring phenological characteristics (FLD, FLD-ST, FLD-Sprc, FFD,

FFD-ST, FFD-Sprc) of Xi’an species were solid and significant

(Table 1). The WN model had the lowest wAIC value among the

three evolutionary models, demonstrating that all the spring

phenological traits were not preserved phylogenetically in

Guiyang (Table 1). The OU model’s lower wAIC number for all

Xi’an phenological traits indicates that the evolution of spring

phenological qualities was slower than predicted by the Brownian

model. However, the findings from three evolutionary models of

Xi’an show a similar pattern with substantial conservation,

demonstrating that the degree of phylogenetic conservatism in

phenological traits has recently changed.
3.3 Phylogenetic signals of each species
(tree topology) in plant
spring phenophases

Our molecular phylogenetic tree results demonstrate that

closely related genera and species are located nearby in the

topology (Figures 4, 5). However, the sizes of the circles in front

of each species reveal the traits’ values, i.e., a more significant size

denotes later FLD or FFD, strong temperature sensitivity, or a

greater need for precipitation. We addressed the outcomes of

substantial phylogenetic conservation in Xi’an species here. Our

findings show that the values of FFD, FFD-ST, and FFD-SPrc of
FIGURE 3

Spring phenophases of plant species collected from 1968 to 2018 in Guiyang and Xi’an. FLD, first leaf date; FFD, first flower date; FLD-ST, first leaf
date temperature sensitivity; FFD-ST, first flower date temperature sensitivity; FLD-SPrc, first leaf date precipitation sensitivity; FFD-SPrc, first flower
date precipitation sensitivity, respectively. DOY, Day of the year.
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Xi’an species are more robust (Figure 5). High K values illustrate

phylogenetic conservatism in FFD, FFD-ST, and FFD-SPrc in Xi’an.

However, phylogenetic signals in the timing of spring phenology

were not significantly different from these findings. These findings

indicated that the phylogenetic conservatism is more significant and

stable in the Xi’an species FFD, FFD-ST, and FFD-SPrc (Table 1;
Frontiers in Plant Science 07
Figure 5). In contrast, the findings of the Guiyang species are

identical, except that FLD-SPrc results demonstrate stronger

precipitation sensitivity (Table 1; Figure 4). According to different

site ecologies, species sample sizes, and the accuracy of the

underlying site-level phylogenetic trees, significance differed

between sites. This variation is most likely due to these factors.
FIGURE 4

Phylogenetic signals of phenological traits in Guiyang station. A plot of spring phenological attributes at the tips of the phylogenetic tree of 37
species in Guiyang. FLD; first leaf date, FFD; first flower date, FLD-ST; first leaf date temperature sensitivity, FFD-ST; first flower date temperature
sensitivity, FLD-SPrc; first leaf date precipitation sensitivity, FFD-SPrc; first flower date precipitation sensitivity, respectively. The sizes of the circles
are proportional to the values of the traits, i.e., a larger size indicates later FLD or FFD, a larger size indicates stronger temperature sensitivity, and a
larger size means FLD-SPrc is more sensitive with precipitation. Bootstrap values of Neighbor Joining, Maximum Likelihood and Bayesian
Interference are written above each branch respectively. Molecular divergence time and 95% HPD values are written below each branch.
TABLE 1 Phylogenetic conservation signals in spring phenophases and response to climatic sensitivity (temperature and precipitation).

No. Name of Phenophases Blomberg’s K value P Value BM OU WN

Guiyang

1 FLD 0.13 0.367 370.7142 335.716 333.3738*

2 FFD 0.12 0.463 478.10 462.64 461.87*

3 FLD-ST 0.11 0.547 186.47 151.43 149.15*

4 FFD-ST 0.09 0.646 241.212 218.061 215.7854*

5 FLD-SPrc 0.08 0.83 291.75 278.93 274.89*

6 FFD-SPrc 0.10 0.66 321.42 277.96 275.34*

Xi’an

1 FLD 0.228 0.165 615.6328 598.8631* 603.7633

2 FFD 0.209 0.165 829.7437 807.9478* 808.2966

3 FLDST 0.207 0.217 232.9588 210.1808* 213.7730

4 FFDST 0.195 0.169 405.8885 382.4478* 383.6406

5 FLD-SPrc 0.09 0.641 214.503 191.2332* 265.2623

6 FFD-SPrc 0.133 0.128 224.303 199.1742* 214.5212
FLD, first leaf date; FFD, first flower date; FLD-ST, first leaf date temperature sensitivity; FFD-ST, first flower date temperature sensitivity; FLD-SPrc, first leaf date precipitation sensitivity; FFD-
SPrc, first flower date precipitation sensitivity; WN, white noise model; OU, Ornstein-Uhlenbeck model; and BM, Brownian motion. * Means significant conservative value.
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3.4 The evolutionary history of Xi’an and
Guiyang species

With strong bootstrap support values, both phylogenetic trees

developed larger bi-phyletic clades. We calculated the divergence

periods for the biphyletic tree lineages in Guiyang to be 36 mya

based on the cpDNA data. The molecular dating results suggested

that the species in each clade appeared to have separated from their

relatives during the middle Eocene in the Tertiary Cenozoic Era at

46.0 mya (Figure 4). According to the cpDNA findings, the

divergence periods for Xi’an’s species’ significant biphyletic tree

lineages were 76 mya. The molecular dating findings also indicated

that the Xi’an species in each clade separated from its relatives

during the late Cretaceous Mesozoic epoch (Figure 5).
3.5 Evolutionary patterns of
phenological traits

The spring phenological trait evolution rate was not as steady as

predicted by the Brownian model. PSR curves were higher than the

null model but lower than the 45-degree reference line for all

phenological characteristics. The findings indicated that the black

line in Guiyang was closer to the yellow line in each stage than in

Xi’an, indicating that the development of spring phenological traits

in Guiyang was more consistent with random shift and that

phylogeny had a less significant impact than in Xi’an (Figure 6).

Additionally, the pace of evolution is changing quickly. Although

evolution progresses slowly at first, it accelerates quickly toward the

conclusion of the curve. This demonstrated that younger species are

evolving more rapidly in Xi’an and Guiyang than elder species.
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3.6 Plant functional trait relationship with
spring phenology

We investigated the functional characteristics (trees and shrubs;

biotic and abiotic pollination; deciduous and evergreen) that

influenced the spring phenology of plants in Guiyang and Xi’an.

Our findings indicated that the dominant tree species in Xi’an

exhibit later leafing and early flowering. In Guiyang, tree species had

leafed out (15.55 days) later than shrubs with a significant

correlation, while the tree’s flowers bloomed (45 days) earlier

than shrubs (Table 2). Trees predominate in Guiyang, suggesting

leaf out and flowering would occur later. Similarly, the tree species

of Xi’an also exhibit the same pattern, leaf out emerging (9.2 days)

later and significantly correlated with shrubs. In comparison,

flowering occurs (0.988 days) sooner in the trees than in shrubs

in Xi’an (Table 2). The temperature and precipitation sensitivity of

leaf out and flowering (FLD-ST, FFD-ST, FLD-SPrc, and FFD-SPrc) in

Guiyang species indicate non-significant results. While temperature

sensitivity results of leaf out (FLD-ST) in Xi’an species show

significant correlations, with a rise of 1°C, trees’ reaction to

temperature is 0.657 days/°C later than shrubs. On the other

hand, the temperature sensitivity of flowering (FFD-ST) and

precipitation sensitivity of leaf out and flowering (FLD-SPrc and

FFD-SPrc) in Xi’an species reveal a non-significant correlation.

Regarding pollination types (biotic and abiotic pollination of

plants), we discovered that flowering phenology (FFD) and

temperature-sensitive flower phenology (FFD-ST) interacted with

a non-significant but strong relationship with biotic and abiotic

pollination in Xi’an and Guiyang. At the same time, leaf-out

phenology (FLD) and temperature-sensitive leaf phenology (FLD-

ST) show a non-significant and weak relationship with abiotic and
FIGURE 5

Topology diagram and phylogenetic signals of phenological traits in Xi’an station. A plot of spring phenological attributes at the tips of the
phylogenetic tree of 77 species in Xi’an. FLD; first leaf date, FFD; first flower date, FLD-ST; first leaf date temperature sensitivity, FFD-ST; first flower
date temperature sensitivity, FLD-SPrc; first leaf date precipitation sensitivity, FFD-SPrc; first flower date precipitation sensitivity, respectively. The sizes
of the circles are proportional to the values of the characteristics, i.e., a larger size indicates later FLD or FFD, stronger temperature sensitivity (ST
with higher absolute value), and FLD-SPrc more precipitation requirement. Bootstrap values of Neighbor Joining, Maximum Likelihood and Bayesian
Interference are written above each branch respectively. Molecular divergence time and 95% HPD values are written below each branch.
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biotic pollination in Xi’an and Guiyang species. The wind strongly

correlated with flowering phenology under climatic sensitivities

(FFD-ST and FFD-SPrc) (Table 2). These findings indicated that

various pollination methods offer distinct correlation patterns with

spring phenological features for the Guiyang and Xi’an species.

Plants that receive both biotic and abiotic pollination produce

leaves later but flowers earlier, with non-significant correlations

(Table 2). The sensitivity of temperature and precipitation to leaf

phenology reveals a weak relationship with biotic and

abiotic pollination.

Our analysis of the distinct groups of plant species revealed a

significant interaction between the flowering phenology in Xi’an and

the mechanisms governing the species of evergreen and deciduous

plants. Findings suggested that Guiyang species exhibit non-

significant and weak correlations in all phenological traits with low

values of the coefficient of PGLS. Contrarily, plant species in Xi’an

show a different pattern with earlier leaf out in evergreen and

deciduous plant species (2.046 days) and earlier flowering with

significant and robust responses to evergreen and deciduous plant

species (57.721* days) (Table 2). The temperature sensitivity findings

of flowering (FFD-ST) in Xi’an species are (4.626* days/°C) stronger

and significant reaction (Table 2). The results of the precipitation
Frontiers in Plant Science 09
sensitivity test for leaf out and flowering in Guiyang and Xi’an species

indicate a non-significant and stronger response with evergreen and

deciduous plant species (Table 2).

The mean and median range analysis revealed that similar

phenological traits show a similar pattern in each functional

attribute in both study areas, e.g., first leaf out dates (FLD) show

a similar trend of mean and median range in each functional trait of

Xi’an and Guiyang (Figure 7). The leaf out and flowering dates were

counted as Days of Year (DOY), and the temperature sensitivity

(days/°C) and precipitation sensitivity were shown as (days/mm) in

Figure 6. The range of leaf-out phenology offers more than other

phenophases in all functional traits, revealing that leaves take more

time to bloom. Flowering phenology shows the minor range of

mean and median in all available features except evergreen species.

This represents more range, indicating that flowers take more time

to bloom in the evergreen species group. The results also revealed

that the mean and median of temperature sensitivity in all

functional traits show the same pattern, indicating that

temperature has equal importance in leaf and flowering

phenology in all plant’s functional characteristics. On the other

side, the mean and median of the precipitation sensitivity range

show a different pattern in all functional features, representing that
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FIGURE 6

Spring phenological traits’ phylogenetic signal representation (PSR) curves. The red and yellow bands show the confidence intervals for the BM
model and WN random expectations. We can find the 1:1 line in black. The black dots represent the phylogenetic eigenvectors that were
consecutively added. The x-axes reflect the cumulative total of the eigenvalues, while the y-axes represent the R2 values of the successive PVR
models. (A) FLD; first leaf date, (B) FFD; first flower date, (C) FLD; first leaf date, (D) FFD; first flower date, (E) FLD-ST; first leaf date temperature
sensitivity, (F) FFD-ST; first flower date temperature sensitivity, (G) FLD-ST; first leaf date temperature sensitivity, (H) FFD-ST; first flower date
temperature sensitivity, (I) FLD-SPrc; first leaf date precipitation sensitivity, (J) FFD-SPrc; first flower date precipitation sensitivity, (K) FLD-SPrc; first leaf
date precipitation sensitivity, (L) FFD-SPrc; first flower date precipitation sensitivity, respectively.
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TABLE 2 The relationship between plant spring phenophases and sensitivity of spring phenophases with plant functional trait based on phylogenetic
generalized least squares (PGLS) models.

Area Functional Traits Phenological Traits Coefficient P Value

Xi’an Life Form (Trees and Shrubs) FLD 9.2 <0.05*

FFD -0.988 0.925

FLD-ST 0.657 0.002*

FFD-ST -0.367 0.602

FLD-SPrc 0.029 0.1739

FFD-SPrc 0.014 0.549

Guiyang Life Form (Trees and Shrubs) FLD 15.5476 <0.01*

FFD -45 0.214

FLD-ST 0.322 0.688

FFD-ST -1.2833 0.6125

FLD-SPrc -0.001 0.98

FFD-SPrc 0.015 0.763

Xi’an Pollination Form (Biotic Vs Abiotic) FLD 3.786 0.179

FFD -17.319 0.09

FLD-ST 0.178 0.417

FFD-ST -0.402 0.5608

FLD-SPrc 0.0274 0.156

FFD-SPrc -0.084 0.001

Guiyang Pollination Form (Biotic Vs Abiotic) FLD 7.19 0.169

FFD -22.821 0.453

FLD-ST 0.473 0.477

FFD-ST -0.706 0.738

FLD-SPrc 0.030 0.187

FFD-SPrc 0.054 0.034

Xi’an Species Group (Evergreen Vs Deciduous) FLD 2.046 0.214

FFD 57.721 <0.02*

FLD-ST -0.53 0.688

FFD-ST 4.626 <0.01*

FLD-SPrc -0.009 0.98

FFD-SPrc -0.016 0.763

Guiyang Species Group (Evergreen Vs Deciduous) FLD -5.31 0.321

FFD 48.48 0.925

FLD-ST -0.006 0.652

FFD-ST 0.304 0.602

FLD-SPrc 0.038 0.1739

FFD-SPrc -0.046 0.549
F
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FLD, first leaf date; FFD, first flower date; FLD-ST, first leaf date temperature sensitivity; FFD-ST, first flower date temperature sensitivity; FLD-SPrc, first leaf date precipitation sensitivity; FFD-
SPrc, first flower date precipitation sensitivity. * Means significant value.
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precipitation has different effects on each phenophases in each

functional trait.
4 Discussion

4.1 Phylogenetic conservatism in
plant phenophases

There was an association between phylogeny and the strength of

the phenological shifts (Cohen et al., 2018; Inouye, 2022). The

phylogenetic conservation in plant phenophases varies in different

geographical and climatic conditions. In this study, we examined

the correlations between plant spring phenology and the phylogeny
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of plant species in response to climatic and functional

characteristics in Xi’an and Guiyang, China. Results revealed that

phylogenetic signals in spring phenological traits were significantly

conserved in Xi’an but non-conservative in Guiyang (Table 1).

Significant phylogenetic signs in the Xi’an plant’s phenological

characteristics indicate that closely related species typically have

similar climatic adaptability for phenology (Davies et al., 2013).

However, our findings demonstrated that the spring phenological

features (FLD and FFD) showed non-conservative phylogenetic

signals in Guiyang (Table 1), which was comparable with the results

of some studies across the Tibetan Plateau, demonstrating the

absence of phylogenetic signals in leaf unfolding (Yang et al.,

2021). Our finding also indicated that the Guiyang species’

phylogenetic signs of blooming features were considerably more
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FIGURE 7

Mean and median range of spring phenological traits of tree and shrub species, biotic and abiotic pollination, and deciduous and evergreen species
in response to first leaf dates, first flowering dates, temperature and precipitation sensitivity in Guiyang and Xi’an. (A) FLD of biotic and abiotic
pollination species (B) FFD of biotic and abiotic pollination species (C) FLD-ST of biotic and abiotic pollination species (D) FFD-ST of biotic and
abiotic pollination species (E) FLD-SPrc of biotic and abiotic pollination species (F) FFD-SPrc of biotic and abiotic pollination species (G) the FLD of
tree and shrubs (H) FFD of tree and shrubs (I) FLD-ST of tree and shrubs (J) FFD-ST of tree and shrubs (K) FLD-SPRC of tree and shrubs (L) FFD-SPRC
of tree and shrubs (M) FLD of evergreen and deciduous species (N) FFD of evergreen and deciduous species (O) FLD-ST of evergreen and deciduous
species (P) FFD-ST of evergreen and deciduous species (Q) FLD-SPrc of evergreen and deciduous species (R) FFD-SPrc of evergreen and deciduous
species. DOY: Day of the year, FLD; first leaf date, FFD; first flower date, FLD-ST; first leaf date temperature sensitivity, FFD-ST; first flower date
temperature sensitivity, FLD-SPrc; first leaf date precipitation sensitivity, FFD-SPrc; first flower date precipitation sensitivity, respectively.
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significant than those of leaf-out traits. Contrarily, leaf unfolding, a

photosynthetic characteristic, may maximize environmental

resources for promoting reproductive development (Gougherty

and Gougherty, 2018). Consequently, it may be more responsive

to environmental changes than blooming characteristics. These

correlations between structural and functional variables during

evolution may have stabilized environmental circumstances and

shaped flowering traits (Memmott et al., 2007).
4.2 Phylogenetic conservation in climatic
sensitive spring phenological traits

An emerging result of phylogeography and plastic responses to

environmental cues specific to a particular area, like temperature,

precipitation, and photoperiod, were phylogenetic signals. Each site

exposes its species to the same set of environmental stimuli. We

observed considerable variation in strength of conservatism

between temperature and precipitation-sensitive spring

phenophases (FLD-ST, FFD-ST, FLD-SPrc, and FFD-SPrc),

possibly reflecting variation in climatic differentiation. Significant

phylogenetic signals were found in Xi’an species in temperature and

precipitation-sensitive spring phenology (FLD-ST, FFD-ST, FLD-

SPrc, and FFD-SPrc), indicating that species were consistent with

the climate change factors. Nonetheless, in certain instances, the

degree of phylogenetic conservatism for mean FLD and FFD was

higher within sites than seen worldwide. Phylogenetic conservatism

was frequently weaker within an area than across locations. Our

findings point to a significant intrinsic evolutionary conservatism in

the Xi’an species’ phenological features, particularly noticeable

when the species are subjected to similar external environmental

stimuli. Recently, another study also reported the evolutionary

signal of the temperature response of flowering time in Northeast

China (Du et al., 2017). However, our findings demonstrated that

the climatic sensitive spring phenological features (FLD-ST, FFD-

ST, FLD-SPrc, and FFD-SPrc) showed non-conservative phylogenetic

signals in Guiyang, which was similar to the results of spring

phenological elements (FLD and FFD) (Table 1). Some studies in

the Colorado Rocky Mountains (Caradonna and Inouye, 2015)

demonstrated the absence of a phylogenetic signal (i.e., non-

conservative phylogenetic signal) in the temperature sensitivity of

spring phenological time. In comparison, the fact that the Rocky

Mountains in Colorado have a harsher environment as the area

under study and the solid abiotic selection pressures may restrict

species growth and reproduction (Cavender-Bares et al., 2009;

Lessard-Therrien et al., 2014). Their evolution is restricted in

response to temperature and insignificant signals in temperature

sensitivity species (Du et al., 2015; Basnett et al., 2019). The

temperature and precipitation susceptibility of spring phenology

in Guiyang species also showed no evidence supporting a

phylogenetic signal, the same as spring phenology results. These

findings demonstrated that the environmental (temperature and

precipitation) and geographical circumstances (altitude) of the two

regions (Xi’an and Guiyang) are distinct from one another and

contribute to the variation in phylogenetic conservation in the

spring phenology of plants.
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Our findings suggest significant phylogenetic evidence in

temperature and precipitation sensitivity phenological traits of

Xi’an species while non-conservative in Guiyang plant species

(Table 1), indicating species consistent with the studies for

subtropical research (Li et al., 2020). Results revealed that the

temperature of both areas is the same, but the precipitation

difference is double that of Guiyang and Xi’an. Körner and Basler

(Körner and Basler, 2010) previously reported that in most

temperate tree species, phenological events such as flowering and

autumnal cessation of growth are not primarily controlled by

temperature. It was also suggested that phenology might be less

sensitive to temperature and photoperiod and more tuned to

seasonal shifts in precipitation (Reich, 1995; Morellato, 2003;

Sanchez-Azofeifa et al., 2013). Such modifications are expected to

occur in concert with rising global temperatures, but the direction

and magnitude of change vary regionally (Cubasch et al., 2001). A

recent study demonstrated that early flowering advanced under

warming plus precipitation addition compared to warm, dry, mild,

and very wet species (Ganjurjav et al., 2020). The advancement of

spring phenology due to temperature and precipitation leads to

evolutionary progress in phenological parameters that disturb the

phylogenetic conservation of Guiyang species. The observations of

weak conservatism have at least three plausible explanations. First,

there is a chance that inaccurate evolutionary reconstructions or

measured attributes will muddle the potential signal. Second,

phenological cycles could evolve in a way that is poorly

anticipated by phylogeny, for instance, when local adaptation or a

comparable directional selection force is powerful and controls

evolutionary trajectories. Third, phenology may show a flexible

response to the environment independent of taxonomic

membership (i.e., phenological plasticity), such that the

environmental conditions largely determine the phenological

schedules for species and populations.
4.3 Climatic conditions impacted
phylogenetic conservatism in
plant phenophases

Our molecular dating results revealed that Xi’an plant species

diverged from their ancestors during the late Cretaceous period (95

Mya), while the Guiyang species diverged during the middle Eocene

Era (46 Mya) (Figures 4, 5). During the Cretaceous, the study area

experienced large-scale magmatic intrusion under the influence of

the late Yunshan movement, which was characterized by a

significant global greenhouse climate, with a significant decrease

in temperature and an increase in sea level (Wang et al., 2022).

Previously it was also found that the Eocene–Oligocene transition

in south-eastern Tibet changed the climate from sub-tropical/warm

temperate to cool temperate, likely reflective of both uplift and

secular climate (Su et al., 2019). We proposed that the recent

elevation of the Tibet Plateau influences the climatic shift that led

to the phylogenetic divergence of Guiyang species from their

parents and to non-conservative phylogenetic signals. In contrast,

Xi’an species have a long evolutionary history, making them more

climate-adaptive and exhibiting notable phylogenetic conservation.
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However, our findings revealed significant phylogenetic signals

in spring phenology (FLD and FFD) and climate sensitivity (FLD-

ST, FFD-ST, FLD-SPrc, and FFD-SPrc) in Xi’an species, while non-

conservative in Guiyang. The long evolutionary history of Xi’an

species suggested that plants are comparatively more stable and

conserved than Guiyang species. For example, it has long been

assumed, and sometimes demonstrated, that within a habitat type,

the amount of ecological differentiation among species is

proportional to the amount of evolutionary and genetic

divergence (Stephens and Wiens, 2004). Ecological differentiation

can result in reduced resource use overlap between species, allowing

species to stabilize in new habitats slowly. Hence, the phylogenetic

conservation in spring phenological traits is significant and more

substantial in Xi’an after ecological differentiation in new habitats.

Guiyang species have recently diverged and show non-significant

conservation in plant spring phenology.

Another reason for non-conservative Guiyang species is that

they typically have harsh climatic and geographical conditions such

as higher altitude, high precipitation, high relative humidity, long,

cloudy, rainy days, and little sunshine (Figure 2). Previously, it was

reported that harsher settings might cause features among lineages

not closely related to converging, diminishing the phylogenetic

signal (Lessard-Therrien et al., 2014; Du et al., 2015). In contrast,

a report suggested that some tree species showed a significant

relationship between phylogenetic conservatism and plant

phenology at high altitudes under harsh climates (Li et al., 2016).

These phylogenetic linkages may be the basis for species-specific

phenological sensitivity to abiotic variation and may aid in

predicting these responses to climate change (Caradonna and

Inouye, 2015). We also assume that natural selection and their

genetic link were strongly correlated with species spread.

The phylogenetic signals of spring phenology were significantly

conserved in Xi’an, which was highly consistent with the findings of

other studies in Europe and North America (Davies et al., 2013),

and China (Du et al., 2015, 2017; Li et al., 2016). This finding further

supports the phylogenetic constraint theory in temperature and

precipitation sensitivity for flowering. A similar phenomenon is

observed in northern Europe, where tree species richness is low

during glaciations and postglacial dispersal limitations (Svenning

and Skov, 2007). Finally, it is worth mentioning that the combined

effect of both the contemporary environment and historical

contingencies is significant (Hawkins et al., 2003; Montoya et al.,

2007). This is mainly because environmental conditions vary across

biogeographical regions. The different combinations of local

climatic and geographical variables can result in remarkable

changes in plant phenological features. These findings support

our hypothesis that local environmental adaptation (LEA)

changes with geographical variations directly related to regional

climatic conditions and affect the relationship between plant spring

phenology and phylogeny. Furthermore, considerable conservation

regimes in these regions should consider species diversity and their

unique ecological and evolutionary history (Forest et al., 2007). The

effects of historical contingencies are partly complicated by

the contemporary environment (especially climate). We believe

that the impact of the modern environment on plant phenology

is fundamental across the globe, dominating general trends and that
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historical contingency may only cause deviations in phylogenetic

conservation in both regions of Xi’an and Guiyang.
4.4 Interaction between plant functional
traits and spring phenophases

This work examined the spring phenology in Xi’an (temperate)

and Guiyang (subtropical) for species concerning phylogeny and

functional features. For instance, our study discovered a strong and

significant correlation between spring phenology and plant functional

traits, such as life forms and distinct groups of plants (deciduous and

evergreen) species in Xi’an (Table 2). The time of leaf expansion is

significant in shrubs and earlier than that of trees in Xi’an, which is

consistent with the research conclusion of Panchen et al (Panchen et al.,

2015). in 8 botanical gardens in temperate regions of the northern

hemisphere. The probable cause is that earlier leaf expansion allows

shrubs to take full advantage of light for photosynthesis before the tree

canopy is fully formed (Rollinson and Kaye, 2012; Panchen et al.,

2015). The study also found a significant relationship between trees and

earlier flowering onset in Xi’an, similar to the research conclusion (Du

et al., 2017). Our results also revealed a significant relationship between

deciduous and evergreen plant species with Xi’an flowering phenology,

as suggested in previous research (Alice Boyle and Bronstein, 2012;

Wang et al., 2020). Our pollination analysis results are not significant

(Table 2), which show two possible explanations: First, wind-pollinated

tree species need to bloom before the canopy closes, thereby reducing

the blocking of leaves on the wind-borne pollen (Fenner, 1998);

Second, the Guiyang and Xi’an regions early spring is relatively dry,

cold and windy, which restricts the activities of pollinators, resulting in

rather a late flowering in plants (Griz and MaChado, 2001).

Additionally, our findings showed that trees have an advantage over

shrubs in light interception and wind pollination for enhancing

reproductive success (Alice Boyle and Bronstein, 2012).

Climatic conditions considerably impacted species’ flowering

phenology differences (Chang-Yang et al., 2013; Qi et al., 2015).

Functional features in this situation might operate as a steppingstone

variable in the interaction between climatic conditions and spring

phenology. Trees are more sensitive to temperature change than shrubs

because of long-term environmental selection (Chávez-Pesqueira and

Núñez-Farfán, 2016; Yang et al., 2018). However, our results support

the association between growth type and spring phenology in Xi’an

temperate climate zones. Temperature-sensitive results with life forms

(trees and shrubs) and distinct groups (deciduous and evergreen) of

plant species show a significant relationship with leaf and flower

phenology in Xi’an, respectively. The above research conclusions

reflect plant species’ different functional trade-off strategies that

respond to the external environment and reflect the differentiation of

plant niches and species to a certain extent. This suggests that more

specific traits better suited for one particular region be used in the

future. We consider identifying the most adaptative characteristics for

surviving plant species in different biomes a vital goal. Finally, this

study also has certain uncertainties, such as being limited by

observation records. These plants usually span multiple families,

resulting in insufficient resolution of the phylogenetic tree, which

affects the accuracy of research conclusions to a certain extent. In the
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future, it is necessary to strengthen the phenological observation of

more species records in the Xi’an and Guiyang area and refine the

analysis to a few families to explore the plants more deeply

and accurately.
5 Conclusions

This study examines the phylogenetic conservation between plant

phenological traits and their relationship with biological characteristics.

It uses first leaf and flower date data from the China Phenological

Observation Network (CPON) for 77 and 40 plant species from Xi’an

and Guiyang, respectively. We have shown that the initial leaf

unfolding and blooming dates of plants in X’ian exhibit significant

phylogenetic signals and are compatible with the OU evolutionary

process; however, plant species show non-significant phylogenetic

conservation in Guiyang. Similar to this, Xi’an species were

significantly phylogenetic conserved with temperature and

precipitation sensitivity of phenological traits (FLD-ST, FFD-ST,

FLD-SPrc, and FFD-SPrc) but non-conservative in Guiyang. Our

results suggested a strong relationship between FFD and FFD-ST
with plant functional traits of distinct plant groups (evergreen and

deciduous) and life forms (trees and shrubs). These findings indicated

that ecological and evolutionary processes under climate change and

natural selection forces affect the phylogenetic conservation of the

above phenological characteristics. Our results extended the basic

phenology theory, providing a new perspective for correctly

evaluating the relationship between climatic conditions and

phylogenetic conservation with plant phenology.
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Chávez-Pesqueira, M., and Núñez-Farfán, J. (2016). Genetic diversity and structure of wild
populations of Carica papaya in Northern Mesoamerica inferred by nuclear microsatellites
and chloroplast markers. Ann. Bot. 118 (7), 1293–1306. doi: 10.1093/aob/mcw183

Chen, J., Guo, Y., Hu, X., and Zhou, K. (2022). Comparison of the chloroplast
genome sequences of 13 oil-tea camellia samples and identification of an undetermined
oil-tea camellia species from hainan province. Front. Plant Sci. 12 (6045), 1024–1026.
doi: 10.3389/fpls.2021.798581

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D. (2011). Rapid
range shifts of species associated with high levels of climate warming. Science 333.
doi: 10.1126/science.1206432

Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., et al.
(2012). Phenological tracking enables positive species responses to climate change.
Ecology 93 (8), 1765–1771. doi: 10.1890/11-1912.1

Coates, D. J. (2000). Defining conservation units in a rich and fragmented flora:
Implications for the management of genetic resources and evolutionary processes in
south-west Australian plants. Aust. J. Bot. 48 (3), 329–339. doi: 10.1071/BT99018

Cohen, J. M., Lajeunesse, M. J., and Rohr, J. R. (2018). Publisher Correction: A global
synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8 (3),
258–258. doi: 10.1038/s41558-018-0099-8

Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., et al. (2001).
Projections of future climate change. In Climate Change 2001: The scientific basis.
Contribution of WG1 to the Third Assessment Report of the IPCC (TAR). Cambridge
University Press, pp. 525–582.

Dai, J., Wang, H., and Ge, Q. (2013). Multiple phenological responses to climate
change among 42 plant species in Xi’an, China. Int. J. Biometeorol. 57, 749–758.
doi: 10.1007/s00484-012-0602-2

Dai, J., Xu, Y., Wang, H., Alatalo, J., Tao, Z., and Ge, Q. (2019). Variations in the
temperature sensitivity of spring leaf phenology from 1978 to 2014 in Mudanjiang,
China. Int. J. Biometeorol. 63, 569–577. doi: 10.1007/s00484-017-1489-8

Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: Multiple
alignment of conserved genomic sequence with rearrangements. Genome Res. 14 (7),
1394–1403. doi: 10.1101/gr.2289704

Davies, T. J., Wolkovich, E. M., Kraft, N. J. B., Salamin, N., Allen, J. M., Ault, T. R.,
et al. (2013). Phylogenetic conservatism in plant phenology. J. Ecol. 101 (6), 1520–1530.
doi: 10.1111/1365-2745.12154

Dıáz, S., and Cabido, M. (2001). Vive la différence: Plant functional diversity matters to
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