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Aster L. is an economically and phylogenetically important genus in the tribe

Astereae. Here, the complete plastomes of the eight Aster species were

assembled and characterized using next-generation sequencing datasets. The

results indicated the complete plastomes of Aster had a quadripartite structure.

These genomes were 152,045–152,729 bp in length and contained 132–133

genes, including 87 protein-coding genes, 37–38 tRNA genes, and eight rRNA

genes. Expansion or contraction of inverted repeat regions and forward,

palindromic, complement, and reverse repeats were detected in the eight

Aster species. Additionally, our analyses showed the richest type of simple

sequence repeats was A/T mononucleotides, and 14 highly variable regions

were discovered by analyzing the border regions, sequence divergence, and

hotspots. Phylogenetic analyses indicated that 27 species in Astereae were

clustered into six clades, i.e., A to D, North American, and outgroup clades,

and supported that the genera Heteropappus, Kalimeris, and Heteroplexis are

nested within Aster. The results indicated the clades B to D might be considered

as genera. Divergence time estimate showed the clades A, B, C, and D diverged at

23.15 Mya, 15.13 Mya, 24.29 Mya, and 21.66 Mya, respectively. These results shed

light on the phylogenetic relationships of Aster and provided new information on

species identification of Aster and its related genera.
KEYWORDS

Aster, chloroplast genome, comparative analysis, Astereae, phylogenetic relationship,
divergence time
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1 Introduction

The tribe Astereaehas has ~222 genera and ~3,100 species, which is

the second largest tribe of Asteraceae (Noyes and Rieseberg, 1999;

Brouillet et al., 2004; Panero et al., 2004; Panero and Crozier, 2016; Fu

et al., 2016). The tribe Senecioneae has over 150 genera and 3,500

species (Nordenstam, 2007), more than the species number of the tribe

Astereae. Aster is one of the large genera of Astereae and contains more

than 152 species. Themajority ofAster species are distributed in Eurasia,

with only one species reaching North America (Nesom, 1994a, b; Chen

et al., 2011). The species of Aster are mainly perennial herbs and are

rarely annual or biennial herbs, subshrubs, or shrubs. The genus is

characterized by capitula solitary or arranged in corymbiform or,

sometimes, paniculiform capitulescences; white, pink, purple, or blue

ray florets; and phyllaries imbricate or arranged in two equal layers.

Traditionally, Aster was defined as a genus encompassing around

300 species distributed in both the New World and the Old World

(Jones, 1980; Semple and Brouillet, 1980; Jones and Young, 1983).

However, in recent years, studies on the basis of morphology (Nesom,

1994a; Nesom and Robinson, 2007), Restriction Fragment Length

Polymorphism (RFLPs) (Xiang and Semple, 1994), or DNA markers

(Noyes and Rieseberg, 1999; Selliah and Brouillet, 2008; Li et al., 2012;

Jafari et al., 2015; Korolyuk et al., 2015) have shown that the New

World Aster species were distinct from the Old World taxa with a

considerable genetic divergence. These New World taxa were treated

as 13 separate genera (Nesom, 1994a, b), and the generic delimitation

of the Old World species remained controversial. Some studies

accepted a border Aster s.l., which includes most or all of the

species of Aster from the Old World (Merxmüller et al., 1976; Ito

et al., 1995; Chen et al., 2011). On the contrary, other studies treated

the Old World species into Aster s.s. and 12 segregated genera (e.g.,

Kalimeris Cass., Heteroplexis C.C.Chang, Heteropappus Less.)

(Tamamschjan, 1959; Grierson, 1975; Nesom, 1994b; Nesom and

Robinson, 2007; Chen et al., 2011). However, recent molecular

phylogenetic analyses have suggested that neither Aster s.l. nor

Aster s.s. was monophyletic (Selliah and Brouillet, 2008; Pelser

et al., 2010; Li et al., 2012; Jafari et al., 2015; Korolyuk et al., 2015;

Fu et al., 2019). On the basis of analyses using Internal Transcribed

Spacer (ITS), Enternal Transcribed Spacer (ETS), and trnL-F

sequences, Li et al. (Li et al., 2012). showed that Eurasian Aster

(referred to as EA Aster hereafter) is polyphyletic and supported that

the genera Kalimeris and Heteropappus belonged to Aster. In

addition, Li et al. (Li et al., 2012). proposed and suggested that

Aster section Alpigenia, Aster ser. Albescentes, and Aster ser.

Hersileoides should be elevated to the generic rank. However, the

taxonomic position of Aster pycnophyllus Franch. ex Diels. remained

unresolved. Another phylogenetic study using ITS and psbA-trnH

sequences showed that the genera of Heteropappus and Kalimeris

were nested within Aster, supporting the results of Jafari et al. (Jafari

et al., 2015). Korolyuk et al. (Korolyuk et al., 2015). divided the

Eurasian (EA) Aster into three groups, namely, a typical Eurasian

asters group,Heteropappus group, and Asterothamnus group, but the

relationships among these three groups were not strongly supported,

and, hence, the boundary of Aster remained unclear. Although, the

previous studies have indicated that the non-monophyly of Aster, the

insufficient sampling of species, and low coverage and inadequate
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informative sites of molecular markers hampered the resolution of

the phylogenetic trees of Aster and its related genera.

The chloroplast genome is one of the three DNA genomes,

alongside the nuclear and mitochondrial genomes. In general, it is

inherited maternally and possesses a highly conserved circular DNA

arrangement, typically ranging from 115 kb to 165 kb in size (Wicke

et al., 2011; Daniell et al., 2016). The complete chloroplast genome is a

quadripartite structure, consisting of a large single copy (LSC), a small

single copy (SSC), and two inverted repeats (IRs) (Daniell et al., 2016).

The length differences are mostly due to expansion/contraction of IR

regions (Zhu et al., 2016) or gene losses (Magee et al., 2010). In

addition, the complete sequences of chloroplast genomes are

commonly used for phylogenetic reconstruction at lower taxonomic

levels, e.g., within genus, and population genetic analyses in plants.

The utilization of complete chloroplast genomes has become

widespread as an efficient tool for molecular phylogenetics in Aster

(Kumar et al., 2009; Choi and Park, 2015; Zhang et al., 2015; Shen

et al., 2017;Wang et al., 2019; Zhang et al., 2019a; Zhang X. et al., 2021;

Duan et al., 2022; Palazzesi et al., 2022;Wang and Liu, 2023) and other

tribes of Asteraceeae (Vargas et al., 2017; Do et al., 2019; Tyagi et al.,

2019; Zhang et al., 2019b; Yu et al., 2022; Liu et al., 2023). Previous

studies on Aster classification used one to several molecular markers,

such as ITS, ETS, trnL-F, and psbA-trnH sequences (Li et al., 2012;

Jafari et al., 2015), and some studies used only ITS sequences

(Korolyuk et al., 2015), leaving many phylogenetic and taxonomic

questions unresolved. Additionally, the lack of complete chloroplast

genome sequences severely hampers the evaluation analyses of the

genetic diversity of Aster germplasm resources.

In this study, to explore the genetic variation of Aster and its related

genera, we report eight newly sequenced chloroplast genomes in the

genus Aster, namely, Aster polius C.K. Schneid., Aster albescens Wall.,

Aster argyropholis Hand.-Mazz., Aster lavandulifolius Hand.-Mazz.,

Aster procerus Hemsl., A. pycnophyllus, Aster falcifolius Hand.-Mazz.,

and Aster yunnanensis Franch. The objectives of this study were to

(1) analyze the evolution of chloroplast genomes within Aster using

genetic comparative methods, (2) reconstruct the phylogenetic

relationships of Aster and its related genera and further determine the

phylogenetic backbone of Aster, and (3) estimate the divergence time of

Aster and its related genera. This study provides new insights into the

phylogenetics and evolution ofAster and its related genera and also shed

the lights on the genetic diversity of Aster wild germplasm resources.
2 Materials and methods

2.1 Sampling, extraction, and
genome sequencing

Fresh leaves of the eight Aster species were gathered from the

wild (Table 1). The formal identification of the plant material was

undertaken by Dr. Zhixi Fu. The voucher specimens were then

preserved in the herbarium at Sichuan Normal University in China

(SCNU) (contact person: Dr. Zhixi Fu, fuzx2017@sicnu.edu.cn). As

these species are not included in List of National Key Protected

Wild Plants in China, there was no need to obtain a permit for their

collection. Following the CTAB DNA extraction protocol (Allen
frontiersin.org
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et al., 2006), genomic DNA was extracted using the Plant Genomic

DNA Kit (Tiangen, Beijing, China). The construction of the DNA

library was carried out using the Illumina Paired-End DNA Library

Kit (Illumina Inc., San Diego, CA, USA), and, subsequently,

sequencing was performed on the Illumina Genome Analyzer
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(Hiseq 2000, Illumina, San Diego, CA, USA). The resulting raw

data for each of the eight species consisted of approximately 150-bp

paired-end read lengths. The 27 complete chloroplast genomic

datasets are available for download on NCBI (Table 2). In the

final supermatrix, names of species were checked based on Flora of

China (Chen et al., 2011).
2.2 Assembly and annotation of
chloroplast genome

For the assembly of the chloroplast genome, the software SPAdes

3.15.1-Linux was employed, utilizing the default parameters

(Prjibelski et al., 2020). To evaluate the assembly quality, the

circular maps were identified using Bandage software (Wick et al.,

2015). Subsequently, the resulting assembly was annotated using

PGA (Qu et al., 2019), referencing the chloroplast genome sequence

of Eschenbachia blinii (H.Lév.) (NC 037605.1). The annotation results

were then checked using Geneious R11 (Kearse et al., 2012). The

chloroplast genome map was visualized using OGDRAW (https://

chlorobox.mpimp-golm.mpg.de/OGDraw.html). Additionally, the

tRNA sequences were validated using tRNAscan-SE v2.0 (Chan

et al., 2021), available on the Geseq platform (https://

chlorobox.mpimp-golm.mpg.de/geseq.html). The annotated

chloroplast genomes have been submitted to GenBank (Table 2).

Analysis of plastid information was conducted using Geneious R11.
2.3 Comparative genome analysis

To identify potential IR expansion or contraction in eight Aster

species, the reference species was used from A. ageratoides. This

analysis was conducted using the perl script of Irscope (Amiryousefi

et al., 2018). With the A. albescens as reference, the homology of

these sequences was visualized using the mVISTA program (Frazer

et al., 2004, https://genome.lbl.gov/vista/mvista/submit.shtml) with

the LAGAN mode (Brudno et al., 2003).
2.4 Repeat sequences and SSR analysis

In this study, the identification of direct (forward), inverted

(palindromic), complement, and reverse repeats elements was

identified by REPuter (Kurtz et al., 2001), with maximum

computed repeats equal to 50 bp, hamming distance of 3, and

minimal repeat size of 30 bp. Furthermore, the detection of simple

sequence repeats (SSRs) within the complete chloroplast genomes

was performed using Microsatellite (MISA) (Beier et al., 2017). The

thresholds for SSR detection were set to 10, 5, 4, 3, 3, and 3, for

mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively.

The alignment of all sequences from the eight Aster species was

performed using the “–auto” strategy of Multiple Alignment using

Fast Fourier Transform (MAFFT). Nucleotide diversity was then

calculated using a sliding window approach in DnaSP v.6.12.03

(Rozas et al., 2017) with a window length of 600 bp and a step size of

200 bp.
TABLE 1 Information on the 27 Aster species used in the study.

Species GenBank
Voucher

no.

Locality
information
of newly

sequenced
species

Aster altaicus NC034996.1 / /

Aster
ageratoides

MW813970.1 / /

Aster albescens OM912718.1 FZX 2899
Li county,

Sichuan province

Aster
argyropholis

OM912719.1 FZX 2970
Jinchuan county,
Sichuan province

Aster
batangensis

MZ292735.1

Aster falcifolius ON515469.1 FZX 4120
Mao county,

Sichuan province

Aster
fanjingshanicus

ON055287.1 / /

Aster flaccidus MN122101.1 / /

Aster
hersileoides

NC042944.1 / /

Aster
hypoleucus

NC046503.1 / /

Aster indicus MG710386.1 / /

Aster
lavanduliifolius

OM912720.1 FZX 4049
Jinchuan county,
Sichuan province

Aster pekinensis MW255593.1 / /

Aster polius OM912721.1 FZX 2922
Xiaojin county,
Sichuan province

Aster procerus ON515467.1 FZX 693
Linan city,

Zhejiang province

Aster
pycnophyllus

ON515468.1 FZX 4080 Dali city, Yunnan province

Aster souliei OK323961.1 / /

Aster
spathulifolius

NC 027434.1 / /

Aster tataricus NC 042913.1 / /

Aster
tongolensis

OK323962.1 / /

Aster
yunnanensis

ON515470.1 FZX 241
Fugong county,
Yunnan province

Heteroplexis
incana

NC 048508.1 / /

Heteroplexis
sericophylla

MK942054.1 / /
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2.5 Codon usage analysis

MEGA v 7.0 was used to analyze the synonymous codon usage

and the relative synonymous codon usage (RSCU) of the Aster cp

genomes. RSCU values >1 represent frequently used codons than

expected, whereas values <1 signify the opposite. Codons having no

preference value are set to 1.00.
2.6 Phylogenetic analysis

The phylogenetic analysis of the complete chloroplast genomic

dataset, consisting of 27 species of Astereae, was performed using

the maximum likelihood (ML) method implemented in RAxML.

The species of Nannoglottis ravida and Llerasia caucana from basal

group of Astereae were selected as outgroups (Stamatakis et al.,

2008). The analysis was performed on the CIPRES platform (Miller

et al., 2010) (https://www.phylo.org/portal2/). ModelTest (Posada,

2006) was employed to determine the most suitable model for the

dataset. The molecular model GTRCAT was applied for the

analysis. For bootstrap support assessment, the fast bootstrap

option with 1,000 replicates was utilized in RAxML from

CIPRES pla t form. The morpholog ica l ident ifica t ion

characteristics of the genus Aster and its related genera have

been described more clearly by Chen et al. (2011). Therefore, we

define the key to the Aster and related species with reference to the

criteria proposed by Chen et al. (2011) in combination with

classification of previous studies (Li et al., 2012; Jafari et al.,

2015; Korolyuk et al., 2015).
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2.7 Divergence time estimations

For divergence time estimation, we used the complete

chloroplast sequence dataset. The BEAST v.1.8 (Drummond et al.,

2012) was applied to estimate the divergence times with Bayesian

uncorrelated lognormal relaxed clock model. The node of Astereae

was set at 31.42 Mya according to Zhang C. F. (Zhang C. F. et al.

2021). The tree Yule model was selected. The Markov chain Monte

Carlo (MCMC) was run for 10,000,000 generations and sampled

every 1,000 generations. TreeAnnotator v. 1.6 (BEAST package) was

used to summarize and annotate the tree, with the initial 10% of

trees discarded as burn-in. Finally, the tree was visualized in the

program Figtree v.1.4.4 (http://tree.bio.ed.ac.uk/) with 95% highest

posterior density being shown.
3 Results

3.1 Chloroplast genome structure and
feature of Aster

In this study, the complete chloroplast genomes of the eight

species of Aster were sequenced and assembled. The results

revealed a high degree of conservation in the structures of these

genomes (Figure 1). These chloroplast genomes exhibited the

standard quadripartite structure, consisting of a LSC region, a

SSC region, and a pair of IR regions (IRa and IRb). The size of

these genomes varied from 152,045 bp (A. polius) to 152,729 bp

(A. albescens) (Table 2). The GC content ranged from 37.27%
TABLE 2 Comparative analysis of chloroplast genomes of the seven Aster species.

Species
Aster
polius

Aster
albescens

Aster
argyropholis

Aster
lavandulifolius

Aster
procerus

Aster
falcifolius

Aster
pycnophyllus

Aster
yunnanensis

GenBank
accession

OM912721 OM912718 OM912719 OM912720 ON515467 ON515469 ON515468 ON515470

Plastome
size (bp)

152,045 152,729 152,725 152,719 152,656 152,664 152,721 152,589

LSC
length (bp)

83,716 84,410 84,405 84,399 84,438 84,386 84,470 84,374

IR
length (bp)

25,046 25,055 25,055 25,055 24,980 25,040 24,988 25,025

SSC
length (bp)

18,237 18,209 18,210 18,210 18,258 18,198 18,275 18,165

GC
content (%)

37.35 37.3 37.29 37.29 37.27 37.3 37.28 37.31

Number
of genes

133 133 133 133 132 133 132 133

Protein-
coding
genes

87 87 87 87 87 87 87 87

tRNA genes 38 38 38 38 37 38 37 38

rRNA genes 8 8 8 8 8 8 8 8
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(A. procerus) to 37.35% (A. polius). Overall, all chloroplast

genomes have 133 genes except A. procerus and A. pycnophyllus

having 132 genes, including 87 protein-coding genes, 37/38 tRNA

genes, and eight rRNA genes. Additionally, 115 of these genes were

unique and 18 genes were duplicated in the IR regions (Table 3).

The arrangement of these 133 genes in all chloroplast genomes was

found to be completely collinear. There were two introns of four

genes (rps12, rps12, ycf3, and clpP) and single intron of 16 genes

(ndhA, ndhB, petB, petD, atpF, rbcL, rpl16, rpl2, rps16, rpoC1, trnA-

UGC, trnG, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC). The

gene rps12 was trans-spliced, and the genes ndhD and psbL

experienced RNA editing.
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3.2 Expansion and contraction of the
border regions

In general, the IR/Single Copy (SC) expansion and contraction

might cause the IR/SC junction position change. The IR/SC borders of

the eight newly sequenced Aster chloroplast genomes were compared

to analyze the expansion and contraction variation in junction regions

(Figure 2). Although overall genomic structure including gene order

and gene number was well conserved, these genomes exhibited slight

differences at four junctions (JLB, JSB, JSA, and JLA). The rps19 gene

of all Aster species located the JLBs, with the IRa region including 60

bp to 62 bp, except for A. pycnophyllus (36 bp). Likewise, the JLAs of
FIGURE 1

Gene map of the Aster chloroplast genome. Genes shown outside the outer circle are transcribed clockwise, and those insides are transcribed
counterclockwise. Genes are color-coded according to different functional groups. The darker gray in the inner circle indicates the GC content, and
the lighter gray indicates the AT content. The inner circle also shows that the chloroplast genome contains two copies of inverted repeats (IRA and
IRB), a large single-copy (LSC) region, and a small single-copy (SSC) region.
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all Aster species were located between rps12 and trnH. The ndhF gene,

related to photosynthesis, was entirely located in the SSC region and

the distance to the junction ranged from five to 54 bp. In our newly

sequenced genomes, the ycf1 pseudogene was identified in all newly

sequenced genomes. The main part of ycf1 gene was in the SSC region,

with other 564 bp to 567 bp in the IRa region. The same fragment was

also found in the IRb region of the ycf1 pseudogene and extended to

SSC region with extension region with 9 bp to 147 bp.
3.3 Repeat sequence analysis

In the SSR analysis of the six species of Astereae, 75 (A.

yunnanensis) to 99 (A. pycnophyllus) SSRs were found, showing a

similar number of SSRs in Astereae (Figure 3A). In addition, these

detected SSRs can be divided into six types, including mononucleotides

(38%), dinucleotides (18.4%), trinucleotides (19.7%), tetranucleotides

(17.9%), pentanucleotides (5.7%), and hexanucleotides (0.3%)

(Figure 3B). The hexanucleotide repeats were only found in the

chloroplast genomes of A. falcifolius and A. prorerus. The four

dominant motif types of these SSRs were A/T (28–38), AT/AT (15–

17), AAT/ATT (11–18), and AAAT/ATTT (7–10) (Figure 3C).

The forward, palindromic, complement, and reverse repeats were

detected in the eight newly sequenced chloroplast genomes

(Figure 4A). A. procerus, A. pycnophyllus, A. yunnanensis, and A.

falcifolius had all four type repeats. A. polius, A. albescens, A.

argyropholis, and A. lavandulifolius had forward, palindromic, and

reverse repeats. On average, 46–49 repeat sequences were identified in

these genomes, with 17–23 forward repeats, 19–25 palindromic

repeats, and 1–8 reverse repeats. However, complement repeats

were only detected in A. procerus, A. pycnophyllus, A. yunnanensis,

andA. falcifolius, with number of 1 to 3. Moreover, the repeats with 30

bp to 39 bp in length were the most common type in these genomes

(Figure 4B), and none of the repeats with 50 bp to 59 bp in length.

These interspersed repeat sequences were mainly present in the

intergenic spacers, and several were observed within the coding

regions and introns. The ycf15, rps12, ycf2, rrn5, rrn4.5, psbN, trnG,

trnT-GGU, ycf4, cemA, trnS-GCU, trnS-UGA, trnS-GGA, psaB, psaA,

accD, psal, psbE, petL, ndhD, and psaC genes contained LDRs. The

interspersed repeat sequences were also more commonly detected in
TABLE 3 List of genes found in the complete chloroplast genomes of
Aster species.

Category Gene
group

Gene name

Photosynthesis Subunits of
photosystem I

psaA, psaB, psaC,
psaI, psaJ

Subunits of
photosystem II

psbA, psbB, psbC, psbD,
psbE, psbF, psbH, psbI,
psbJ, psbK, psbL, psbM,

psbN, psbT, psbZ

Subunits of
Nicotinamide

adenine
dinucleotide
(NADH)

dehydrogenase

ndhA*, ndhB*(2), ndhC,
ndhD, ndhE, ndhF, ndhG,
ndhH, ndhI, ndhJ, ndhK

Subunits of
cytochrome b/
f complex

petA, petB*, petD*, petG,
petL, petN

Subunits of
ATP synthase

atpA, atpB, atpE, atpF*,
atpH, atpI

Large subunit
of rubisco

rbcL*

Self-replication Proteins of large
ribosomal
subunit

rpl14, rpl16*, rpl2*(2),
rpl20, rpl22, rpl23(2),
rpl32, rpl33, rpl36

Proteins of small
ribosomal
subunit

rps11, rps12**(2), rps14,
rps15, rps16**, rps18,
rps19, rps2, rps3, rps4,

rps7(2), rps8

Subunits of
RNA polymerase

rpoA, rpoB,
rpoC1*, rpoC2

Ribosomal RNAs rrn16(2), rrn23(2), rrn4.5
(2), rrn5(2)

Transfer RNAs

trnA-UGC*(2), trnC-
GCA, trnD-GUC, trnE-
UUC, trnF-GAA, trnG*,
trnG-UCC, trnH-GUG,
trnI-CAU(2), trnI-GAU*
(2), trnK-UUU*, trnL-

CAA(2), trnL-UAA, trnL-
UAA*, trnL-UAG, trnM-
CAU, trnN-GUU(2),

trnP-UGG, trnQ-UUG,
trnR-ACG(2), trnR-UCU,
trnS-GCU, trnS-GGA,
trnS-UGA, trnT-GGU,

trnT-UGU, trnV-GAC(2),
trnV-UAC*, trnW-CCA,
trnY-GUA, trnfM-CAU

Other genes Maturase matK

Protease clpP**

Envelope
membrane
protein

cemA

Acetyl-
CoA carboxylase

accD

ccsA

(Continued)
TABLE 3 Continued

Category Gene
group

Gene name

c-Type
cytochrome

synthesis gene

Translation
initiation factor

infA

Genes of unknown function Conserved
hypothetical

chloroplast open
reading

frame (ORF)

#ycf1, ycf1, ycf15(2), ycf2
(2), ycf3**, ycf4
Gene*, gene with one introns; Gene**, gene with two introns; #Gene, pseudo-gene; Gene(2),
number of copies of multi-copy genes.
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LSC and IR than SSC regions. The overall distribution of interspersed

repeat sequences was similar in both IR regions.
3.4 Sequence divergence and hotspots

The mVISTA analysis of these eight Aster species indicated the

complete chloroplast genome shared high levels of sequence

similarity. Genetic variability was more prevalent in the non-

coding regions than in the coding regions. The five genes with the

highest variation were matK, atpA, rps19, ycf2, and ycf1 (Figure 5).

DnaSP analysis revealed nucleotide diversity in single copy genes

and intergenic regions with nucleotide diversity (Pi) ranged from

0.00068 to 0.04577. Six mutation hotspots showed significantly high

Pi values (p > 0.014) (Figure 6), much higher than the average pi

value (p = 0.0038). Among the gene coding regions, the highest Pi

values were found in ndhF, followed by ndhC, trnV (UAC), and

trnM (CAU). Among intergenic regions, the highest Pi values were

detected in the rpl12-ndhF region, followed by ndhC–trnV (UAC),

trnV (UAC)–trnM (CAU), and trnM (CAU)–atpE (Figure 6). We

analyzed the nucleotide diversity of the complete chloroplast
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genomes and the LSC, SSC, and IR regions. The nucleotide

diversity in the complete chloroplast genome was 0.0038, and

higher nucleotide diversity was found in the LSC and SSC regions

than the IR region, showing that the IR regions were more

conserved than the single-copy regions. We found only two

regions with p > 0.02, i.e., trnT (GGU)–psbD and trnL (UAA)–

trnF (GAA), and three regions with p>0.015 and <0.02, i.e., trnU

(UAC)–trnM (CAU), accD, and ycf4/ycf4-cemA (Figure 6).
3.5 Codon usage analysis

The preferences for codon are extremely similar among species.

The analyses showed that 87 protein-coding genes were encoded by

64 codons (including three are stop codons: UAA, UGA, and UAG;

Figure 7). The most prevalent amino acid was leucine. Leucine was

encoded by CUA, CUC, CUG, CUU, UUA, and UUG with 2,420

codons (A. falcifolius) to 2,440 codons (A. yunnanensis). However,

the rarest one was cysteine. Cysteine was encoded by UGC and

UGU with 251 codons (A. falcifolius) to 252 codons (A. polius). In

the complete chloroplast genome of these Aster, only codons
FIGURE 2

Comparison of IR-SC border positions across plastomes of the eight Aster taxa. Genes are denoted by colored boxes. The gaps between the genes
and the boundaries are indicated by the base lengths (bp).
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tryptophan (encoded by UGG) exhibited no bias with RSCU = 1.00.

The common start codon for the protein coding genes was AUG

(M), except for the psbL, rps19, and ndhD genes, which have start

codons of ACG, GUG, and GUG in all species, respectively.
3.6 Phylogenetic analysis

In this study, the complete chloroplast genomes of 27 Astereae

species were used to perform phylogenetic reconstruction, with

Nannoglottis ravida (C.Winkl.) Y.L.Chen and Llerasia caucana

(S.F.Blake) Cuatrec used as outgroup. Phylogenetic analyses of the

supermatrix of 25 taxa (not include outgroups) using the ML

methods yielded a topology (Figure 8) with in-group fell into five

clades: clade A, clade B, clade C, clade D, and North American clade

(Figure 8). Clade A was the largest clade and was strongly supported

(Bootstrap value (BP) = 97/100), containing 12 Aster species and

two Heteroplexis species. The newly sequenced species, namely, A.

falcifolius, A. pycnophyllus, and A. procerus, were nested in clade A.

Other four newly sequenced species, namely, A. argyropholis, A.

albescens, A. lavandulifolius, and A. polius, together with Aster

hypoleucus Hand.-Mazz. formed the strongly supported clade B.

A. hersileoides lonely formed clade C, as the sister group of clade B

with a moderate support (BS = 68). Symphyotrichum subulatum
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(Michx.) G.L. Nesom and Erigeron canadensis L. formed the North

American clade, and it was a sister group of clades A, B, and C with

a high support (BS = 100). The newly sequenced A. yunnanensis

were placed together with A. flaccidus and A. batangensis in clade D

with strong support (BS = 100).
3.7 Divergence time estimations

On the basis of the newly reconstructed phylogeny, the origin

and divergence times of lineages within the genus Aster were

estimated (Figure 9). Divergent time estimate showed that the

divergent time of clade A was dated back to 23.15 Mya. clades B,

C, and D were divergent from 15.13 Mya, 24.29 Mya, and 21.66

Mya, respectively.
4 Discussion

4.1 Plastome structure and
characteristics analysis

The structure, gene position, size, orientation, and gene content of

the plastid genomes of the eight Aster species were highly conserved
A

B C

FIGURE 3

Comparison of simple sequence repeats (SSRs) among eight plastomes. (A) Numbers of SSRs detected in the eight newly sequenced Aster
plastomes. (B) Frequencies of identified SSR types in all eight Aster plastomes. (C) Analysis of SSRs in eight Aster plastid genomes species.
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(Doorduin et al., 2011; Curci et al., 2015; Cheon et al., 2017; Chen

et al., 2018). These genomes of Aster have a standard quadripartite

structure, including a LSC, a SSC, and a pair of IRs (IRa and IRb),

which was the same as that reported for most other Aster (Shen et al.,

2018; Wang et al., 2019; Zhang X. et al., 2021). The sizes of plastomes

of the eight Aster species are between 152,045 bp and 152,729 bp

(Table 2). In addition, these plastomes did not have any loss of introns.

Additionally, the GC contents, which are a crucial factor in genome

organization and stability, of the chloroplast genomes were low

(37.3%) and were similar to that of other Asteraceae species, such as

Aster spathulifoliusMaxim. (37.28%) and A. hypoleucus (37.3%) (Ravi

et al., 2008; Tyagi et al., 2019; Wang et al., 2019). We detected losses of

the trnT (GGU) gene in A. procerus and A. pycnophyllus. In previous

study, the loss of the tRNA was detected in some Asteraceae species

(Lee et al., 2017).
4.2 Expansion and contraction of the
border regions

The IR regions are known to be highly conserved in the genome

of chloroplasts. During evolution, the expansion and contraction of
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the IR, LSC, and SSC regions are common, which leads to variability

in genome length (Kim and Lee, 2004). In this study, the

examination of chloroplast genome variation (Figure 2) showed

that great expansion or contraction of the chloroplast IR region was

not detected. However, ycf1 and ndhF genes located at the SSC/IR

border had the slight variation in position and length in the eight

Aster chloroplast genomes, suggesting boundary contraction and

expansion between the SSC/IR regions in Aster (Liu et al., 2018).
4.3 Repeat sequence analysis

The SSRs are effective molecular markers, and they are often

used for species identification and population genetic analyses

(Thiel et al., 2003). In the eight Aster species analyzed here, A/T

repeats, AT/AT repeats, AAT/ATT repeats, and AAAT/ATTT

repeats were commonly detected (Figure 3C). This phenomenon

may be related to that the AT preference pattern is widely reported

in many plant plastids (Somaratne et al., 2019). In the

rearrangement of the complete chloroplast genomes and sequence

divergence, larger and more complex repeat sequences may play an

important role (Weng et al., 2014). The interspersed repeat
A

B

FIGURE 4

The analysis of the number and length of the long repeats identified from the eight Aster complete chloroplast genomes. The hamming distance of
3, the minimal repeats of 30, and the maximum repeats of 5,000 were applied during the calculating process. (A) Numbers of the type of long
repeats contains F, P, R, and C. (B) Numbers of the length of long repeats.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1367132
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1367132
sequences were more prevalent in the non-coding regions than the

coding regions (Kim et al., 2015). In our study, the ycf2 gene

includes rich repeats, which contained many repeats: forward and

palindromic. This result was consistent with the previous analysis

that showed the gene has already been shown to be associated with

many evolutionary events (Huang et al., 2010).
Frontiers in Plant Science 10
4.4 Sequence divergence and hotspots

DNA barcoding technology has been widely used in the species

identification, phylogeny, and evolution (Doorduin et al., 2011;

Palazzesi et al., 2022). In mVISTA analysis, the matK, atpA, rps19,

ycf2, and ycf1 genes had large differences and were putative markers for
FIGURE 6

The nucleotide variability (Pi) values were compared among the eight Aster taxa.
FIGURE 5

Comparison of the chloroplast genome of the eight Aster newly sequenced species. Dark blue bars represent protein-coding genes, pale blue bars
represent rRNA genes, and red bars represent conserved non-coding sequences. The y-scale axis represents the percentage identity (50%–100%).
mVISTA was used to perform the comparison.
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FIGURE 7

The RSCU values of the 20 amino acids of the complete chloroplast genome of the eight Aster taxa and their different codon usages.
FIGURE 8

The best maximum likelihood (ML) phylogram inferred from 27 chloroplast genomes (bootstrap value are indicated on the branches). The circled
species are the newly sequenced species in this study.
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population genetic and barcoding analyses (Figure 5). Among these

genes, the matK and ycf1 genes have been used in previous plant

phylogenetic and DNA barcoding analyses for land plants (Dong et al.,

2015). Some regions of the plastomes of the eight Aster species showed

high sequence divergence and might be used for phylogenetic

reconstruction. However, these regions are different from the

phylogenetic markers previously reported for Asteraceae (Do et al.,

2019). Therefore, the complete chloroplast genome sequences and

molecular markers might provide fundamental data for further studies

on genus of Aster and related species in tribe Astereae.
4.5 Codon usage analysis

Thirty-one codons with RSCU value >1 were found, indicating that

these codons are preferentially used in coding amino acids. An identical

trend was discovered among the eight species (Figure 7). Leucine was

the most abundant amino acid, whereas the cysteine was the least

abundant amino acid, which is consistent with other Asteraceae species

(Salih et al., 2017; Shen et al., 2017). In addition, most of A/U-ending

codons had RSCU values >1; meanwhile, most of G/C-ending codons

had RSCU values <1, indicating that amino acids tended to using A/U-

ending codons, similar to a previous study (Zhao et al., 2021).
4.6 Phylogenetic analysis

In the tribe Astereae, there are numerous morphologically

similar but distantly related taxa, such as some species of Aster
Frontiers in Plant Science 12
(Noyes and Rieseberg, 1999). Whether some taxa should remain as

genera or be merged into a single genus remains to be determined,

such as genus Kalimeris, Heteropappus, and Heteroplexis, as wells as

Aster series Albescentes, Aster Ser. Hersileoides, and Aster section

Alpigenia (Nesom, 1994b; Noyes and Rieseberg, 1999; Li et al., 2012;

Jafari et al., 2015; Korolyuk et al., 2015; Nesom, 2020). Nesom

(1994b) proposed that Aster series Albescentes should be removed

from Aster. In the Flora of China, Aster series Albescentes species A.

nitidus and A. hersileoides were treated as the unplaced Aster

group. The molecular phylogeny of Li et al. (2012) suggested that

Aster section Alpigenia should be elevated to the new genera,

series Albescentes is considered to be more closely related to

section Alpigenia, and the Aster series Hersileoides is a well-

supported monophyletic group. Therefore, according to the

results of previous studies and the phylogenetic tree of this

study, we classified the 25 species (not including outgroups)

into five clades: clade A (core Aster), clade B (Aster series

Albescentes), clade C (Aster Ser. Hersileoides), clade D (Alpine

Aster, Aster section Alpigenia), and North American clade.

Besides, the phylogenetic analysis of complete chloroplast

genomes provided strong supports for these five clades (clade A,

BS = 100; clade B, BS = 100; clade C, BS = 100; North American

Clade, BS = 100; and clade D, BS = 100).
4.6.1 Clade A (core Aster)
The eight species of Aster formed clade A with high support

(Figure 8): Aster tongolensis Franch., Aster souliei Franch., A.

falcifolius, Aster tataricus L.f., A. pycnophyllus, Aster ageratoides
FIGURE 9

Divergence time estimates of Aster based on complete cp genomes, based on BEAST analysis using the complete chloroplast genomes dataset. Blue
bars indicate 95% highest posterior density intervals.
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Turcz., Aster fanjingshanicus Y.L.Chen & D.J.Liu, and A.

spathulifolius. Additionally, six species of the closely related

genera Kalimeris, Heteroplexis, and Heteropappus were also

included within clade A, supporting the placement of Kalimeris,

Heteroplexis, and Heteropappus within Aster. The general

characteristics of Aster are as follows: large herbs, leaves cauline,

basal leaves, and proximal leaves withered at anthesis usually, stem

leaves well developed, nearly as long as basal leaves, capitula many,

much branched, in corymbiform, terminal solitary rarely,

involucres herbaceous or membranous, involucres 3-numerous,

unequal, imbricate, 2-3(7)–ribbed, and secretory cavity few.

In the previous studies, Heteropappus was considered for

generic rank based on the heteromorphic pappus of ray and disc

flowers (Jones, 1980; Noyes and Rieseberg, 1999; Chen et al., 2011;

Jafari et al., 2015). Based on RFLPs and gene sequences, it is

suggested that Heteropappus altaicus should be classified within

Aster (Ito et al., 1998; Li et al., 2012). Our study showed that Aster

altaicus Willd. (=Heteropappus altaicus) belong to clade A

(BS = 100), supporting the previous results. Li et al. (2012)

proposed A. pycnophyllus should be kept separate as it was

found to be nested within a clade with Myriactis Less. and

distantly related to Aster. In our study, the result shown that A.

pycnophyllus was nested within clade A, with a strong support

(BS = 97).

The genus Kalimeris is defined by the compressed obovoid-

oblong of achenes and short lobe only comprising K. indica (Ito

et al., 1995, Ito et al., 1998; Chen et al., 2011). These traits have also

been analyzed in previous studies. However, many species of Aster

also exhibit similar characteristics such as Aster smithianus Hand.-

Mazz., Aster souliei Franch., and Aster hunanensis Hand.-Mazz.

Hybridization between Aster and Kalimeris was also observed

frequently (Tara, 1972; Gu and Hoch, 1997; Li et al., 2012). Gu and

Hoch (1997) revised the genus Kalimeris based onmorphological and

cytological evidence showing a close phylogenetic relationship

between Kalimeris and Heteropappus. Using RFLPs and DNA

molecular markers, Kalimeris was shown to be not an independent

genus and embedded within the genus Aster (Ito et al., 1995; Li et al.,

2012). In our study (Figure 8), Aster indicus L. (=Kalimeris indicus),

Aster pekinensis (Homce) F.H.Chen (=Kalimeris pekinensis), and

Aster procerus (=Kalimeris procerus) fall within clade A (BS = 100),

supporting the including of Kalimeris in Aster.

The genusHeteroplexis, comprising five species, is an herb endemic

to Guangxi, China (Chen et al., 2011). In the Flora of China, the genus

Heteroplexis shares similarities in morphology and inflorescence with

the genus Aster, but they could be distinguished by its bilaterally

symmetrical corolla and climbing or erect herb (Chen et al., 2011).

Therefore, it is placed within the subtribe Asterinae as close allies of

Aster. Based on the number of outer flowers over the number of

bisexual flowers, Zhang and Bremer (1993) treated Heteroplexis in

Erigeron-Conyza group. According to some characters, e.g., disciform

capitula, oblong-obovoid achenes, and long corolla lobes, Nesom

(1994a) treated Heteroplexis as a member of Baccharidinae. In recent

study, it is the unplaced Aster group (Nesom and Robinson, 2007). Our

results suggested that Heteroplexis should be included with Aster and

treated as a synonym of Aster.
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4.6.2 Clade B (Aster series Albescentes)
The species of clade B exhibit a shrubby growth habit and are

classified within the Aster series Albescentes (Li et al., 2012; Nesom,

2020). Based on the characters of muti-layers involucre and muti-

ribs achene, Nesom (1994b) proposed that Aster series Albescentes

has a distinct position in Aster. Based on the character of pappus,

Nesom (1994b) noted that A. series Albescentes is sister to the NA

Doellingeria Nees. In the Flora of China, the species of Aster ser.

Albescentes were considered as the unplaced Aster group (Chen

et al., 2011). Li et al. (2012) showed that ser. Albescentes is a

monophyletic taxon with high support in a polytomy withMyriactis

and other segregates of Aster s.s., implying that series Albescentes

may belong to the Australasian lineages, in disagreement with the

study of Nesom (1994b). In this study, A. albescens, A. argyropholis,

A. lavandulifolius, A. polius, and A. hypoleucus formed a strong

supported clade B (BS = 88/100) as sister of clade C (Aster Ser.

Hersileoides) (Figure 8). It demonstrates that series Albescentes is a

well-supported monophyletic genus. The newly defined taxon

possesses the following distinct characteristics: shrubs, leaves

cauline, basal leaves and proximal leaves withered at anthesis

usually, non-rosulate, stem leaves well developed, nearly as long

as basal leaves, capitula many, much branched, in corymbiform,

terminal solitary rarely, involucres herbaceous or membranous,

involucres 3-5, imbricate, margin membranous, irregularly lobed.

margin membranous, irregularly lobed, and 4-5(8)–ribbed.

4.6.3 Clade C (Aster Ser. Hersileoides)
Aster series Hersileoides consists of two species, Aster hersileoides

C.K.Schneid. and Aster nitidus C.C.Chang (Yin et al., 2010; Chen

et al., 2011). Chen et al. (2011) treated the A. hersileoides within the

unplaced status in Aster. Based on molecular phylogenetic studies, Li

et al. (2012) strongly suggested that Aster ser. Hersileoides should be

removed from Aster and considered as a separate genus. Our results

supported that the series (represented by A. hersileoides) should be

kept separately from Aster. They are characterized by shrubs, leaves

cauline, non-rosulate, leaf oblanceolate and glabrous, capitula many,

terminal solitary, involucres 3-5, imbricate, 2 inner involucres

equaling, and 3-ribbed. It is reasonable to propose the elevation of

the Aster Series Hersileoides to a generic rank, considering its unique

traits and the phylogenetic results here. Further investigations and

comprehensive molecular analyses will be essential in demonstrating

the full taxonomic status and evolutionary relationships of this clade.

4.6.4 Clade D (Alpine Aster)
In our study, clade D contained Aster batangensis Bureau &

Franch., Aster flaccidus Bunge, and A. yunnanensis (BS = 97). In

previous study, these species have been placed in the genus Aster

(Nesom, 1994b; Nesom and Robinson, 2007; Chen et al., 2011). Li

et al. (2012) recognized that A. batangensis is closely allied with

Aster senecioides Franch. and Aster fuscescens Bureau & Franch.

from Aster section Alpigenia. However, based on morphologic

differences, the study of Li et al. (2012) supported that A.

batangensis might represent a monotypic genus. In our study, A.

batangensis also has a distinct position in clade D. The clade has

some distinctive characteristics: herbs dwarf, leaves rosulate, basal
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leaves at anthesis, cauline leaves reduced, significantly shorter than

basal leaves, capitula solitary few, scapose, rarely branched,

involucres herbaceous 2-3, subequal, non-imbricate, 3-4(6),

secretory cavity, and secretory cavity few. Our molecular findings

strongly support that clade D is an independent group.

In conclusion, the previously classification and definition of

Aster is not monophyletic. Clade A (core Aster) includes most Aster

taxa, Heteropappus, Kalimeris, and Heteroplexis. Additionally, clade

B (Aster series Albescentes), clade C (Aster Ser. Hersileoides), and

clade D (Alpine Aster) are identified as independent groups.

Furthermore, it is estimated that the genus Aster comprise more

than 152 species. However, this study only encompassed 25 species

and two outgroup species. Therefore, a more comprehensive and

extensive sampling of chloroplast genome and more data are

necessary to conduct a thorough and comprehensive phylogenetic

study of the genus Aster and its related genera. Based on the results

of both general morphological and molecular phylogenetic analysis,

the identification key was presented as following.

Key to the Aster and related species (clades A to D):
Fron
1. herbs, achenes 2-3(7)–ribbed, phyllaries 2-numerous-layers

2. herbs large or occasionally dwarf, achenes 2-3(7)–ribbed,

phyllaries 3-numerous-layers………………………………

……………………………….Clade A (core genus Aster)

2. herbs dwarf or occasionally large few, achenes 3-4(6)–

ribbed, phyllaries 2-3-layers………………………

…………………………………………………………

………………………………………Clade D (alpine Aster)

1. shrubs, achenes (3)5-7-ribbed, phyllaries 3-numerous-layers

3 . achenes 4-5(8)–r ibbed………Clade B (Aster

ser. Albescentes)

3. achenes 3 ribbed……….Clade C (Aster ser. Hersileoides)
4.7 Divergence time estimations

The divergence time estimation of Aster relied on secondary

calibration because of the lack of fossil record for most Aster taxa.

Most species of Aster and its related genera are distributed in East

Asia (Nesom, 1994b; Brouillet et al., 2009; Chen et al., 2011). The

result of Brouillet et al. (2009) indicated that Aster originated from a

clade with a dispersal from Australasia into East Asia. The result of

our molecular dating suggests that clades A and C began to diversify

in the late Oligocene (23.15 Mya and 24.29Mya, respectively).

Clades B and D originated in the Early Miocene (15.13 Mya and

21.66Mya, respectively). The rapid radiation may be related to

collisions between geological plates (Audley-Charles, 1987; Liu

et al., 2002). Geologic uplift events (first of which began at about

50 Ma) have taken place in the Tibetan Plateau during at least four

different periods since the early Miocene, i.e., 22 Mya, 15–13 Mya,

8–7 Mya, and 3.5–1.6 Mya (Shi et al., 1998; Guo et al., 2002; Spicer

et al., 2003). The origin of the four clades (Clade A-D) likely

occurred independently at first two stages of the uplift and

formation of the Tibetan Plateau. Geological evidence suggests
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that the strong uplift of the Tibetan Plateau, coupled with

favorable oceanic and continental environments, produced a

strong Asian monsoon dominated by the Summer Monsoon (Shi

et al., 1998; Ding et al., 2020). During this uplift movement, the

original Planetary Wind System in East Asia was changed and the

arid zone retreated to the northwest (Shi et al., 1998; Ding et al.,

2020). Eastern China was gradually covered by tropical or

subtropical forests. This scenario also correlates with the current

habitat preferences of the studied taxa (clade A, understorey

vegetation; clades B and C, dry slopes and scree regions; and

clade D, cold and dry alpine meadows). The similar rapid

radiation has also been found in other groups of Asteraceae in

the Tibetan Plateau, such as Saussurea (Liu et al., 2002) and the

Dolomiaea-Diplazoptilon-Xanthopappus group (Wang et al., 2007).
5 Conclusions

The complete chloroplast genomes of the eight Aster species

were sequenced in this study. The results revealed that cp genome

size, structure, gene content, as well as compositional organization

were highly conserved among these species. The chloroplast

genomes of all species exhibited the standard quadripartite

structure, and the size of these species of Aster varied from

152,045 bp to 152,729 bp. They include 87 protein-coding genes,

37/38 tRNA genes, and eight rRNA genes. They have three/four

types of repeats, and the number of SSRs ranged from 75 to 99.

Genes located at the junctions were well conserved among the Aster

species. Furthermore, the genic and IR regions were more conserved

than the intergenic and SC regions, respectively. In addition, the

plastid genome structure of Aster exhibited high consistency and

was obviously different in some regions, such as rps19, ycf1, and

ndhf. Furthermore, the preferences for codon use in our study are

all similar. The most prevalent amino acid was leucine, whereas the

rarest one was cysteine. Moreover, we detected six hotspots that

could be used as candidate DNA barcodes. The analysis of complete

chloroplast genomes and combined datasets provided clear

evidence supporting the moderate to strong differentiation of

clades (clades A, B, C, and D and North American clade). The

phylogenetic results showed that the traditionally defined Aster was

not monophyly. For the delimitation of the genus Aster, Kalimeris,

Heteropappus, and Heteroplexis, the closed allied genera of Aster

were revealed to be nested within the Aster clade and should be

included in Aster. Additionally, we suggest that the clade B (Aster

series Albescentes), clade C (Aster Ser. Hersileoides), and clade D

(Alpine Aster) should be treated as separated genera and taxonomic

treatment. Divergent time estimate showed that the divergent time

of clade A was dated back to 23.15Mya. Clades B, C, and D were

divergent from 15.13 Mya, 24.29 Mya, and 21.66Mya, respectively.

Our analyses suggested that the divergence of the genus Aster is

closely related to the uplift of the Qinghai-Tibet Plateau. This study

sequenced eight plastid genomes of Aster, provided a well resolved

phylogenetic tree of Aster and related genera, and selected putative

markers for further barcoding analysis. This study is important for

us to understand the phylogeny and evolution of Aster and the

further phylogenetic, population genetic, and related studies.
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