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Phosphorus (P) is an essential macronutrient for maize (Zea mays L.) growth and

development. Therefore, generating cultivars with upgraded P use efficiency

(PUE) represents one of the main strategies to reduce the global agriculture

dependence on phosphate fertilizers. In this work, genome-wide association

studies (GWAS) were performed to detect quantitative trait nucleotide (QTN) and

potential PUE-related candidate genes and associated traits in greenhouse and

field trials under contrasting P conditions. The PUE and other agronomy traits of

132 maize inbred lines were assessed in low and normal P supply through the

greenhouse and field experiments and Multi-locus GWAS was used to map the

associated QTNs. Wide genetic variability was observed among the maize inbred

lines under low and normal P supply. In addition, we confirm the complex and

quantitative nature of PUE. A total of 306 QTNs were associated with the 24 traits

evaluated using different multi-locus GWAS methods. A total of 186 potential

candidate genes were identified, mainly involved with transcription regulator,

transporter, and transference activity. Further studies are still needed to elucidate

the functions and relevance of these genes regarding PUE. Nevertheless,

pyramiding the favorable alleles pinpointed in the present study can be

considered an efficient strategy for molecular improvement to increase

maize PUE.
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Introduction

The significant increase in maize yield is mainly attributed to

genetic improvement, crop management, and fertilizer use (Byerlee,

2020). On the other hand, the dependence of modern agriculture on

mineral fertilizers is alarming. The excessive and indiscriminate use

of fertilizers has caused severe environmental problems such as

water eutrophication, soil acidification, and air pollution (Seleiman

et al., 2021). More than 20 million tons of phosphate fertilizers are

applied in agriculture annually, and the global demand will be ~25

million tons by 2050 (Bindraban et al., 2020). Moreover, phosphate

rocks are a finite resource, and their global reserves could be

depleted in the next 300–400 years (Glaser and Lehr, 2019).

In Brazil, agriculture is extremely dependent on imported

phosphate fertilizers, and their use has increased over the years

(Withers et al., 2018). Most Brazilian soils are high-phosphorus (P)

fixing soils, intensely weathered and rich in (hydro)oxides of iron and

aluminum (Rodrigues et al., 2021). Thus, large amounts of phosphate

fertilizers are needed to overcome the rapid immobilization of

inorganic P (Pi) in these regions. In addition, the expansion of

Brazilian agricultural lands by the conversion of degraded pastures

or native savannas (Cerrado region) will require considerable amounts

of phosphate fertilizers (Withers et al., 2018). In this context,

developing cultivars with greater P use efficiency (PUE) represents

one of the main strategies to reduce Brazilian agriculture's dependence

on phosphate fertilizers and reduce the demand for P input (Pavinato

et al., 2020) as well as one step further into sustainability.

Plants have developed several adaptive mechanisms to enhance

Pi availability in the soil, along with better uptake, translocation, and

use under limiting conditions of this nutrient (Wang et al., 2019a,

2021). For instance, root exudation of phosphatases and organic acids

is key in improving soil Pi availability (Wang and Lambers, 2020).

Plants can also modify root system architecture to increase Pi uptake

under P-limiting conditions (Iqbal et al., 2020). Moreover, high-

affinity Pi transporters are abundantly produced under P-deficient

conditions to raise Pi root uptake and redistribution within the plant

(Wang et al., 2021). Additionally, several alternative metabolic

pathways and lipid membrane remodeling play a leading role in

redistributing Pi from senescent to developing tissues to allow

maximum biomass production (Dissanayaka et al., 2021).

Among the molecular improvement methods, genome-wide

association studies (GWAS) have been widely adopted to identify

quantitative trait nucleotides (QTN) in various crops worldwide (Li

et al., 2019a; Cortes et al., 2021). Because PUE is a highly complex trait,

strongly influenced by the environment and controlled by several genes

with minor effects (Parentoni et al., 2010; Mendes et al., 2014; Meirelles

et al., 2016; Bernardino et al., 2019), the use of multi-locus GWAS

methods is better suited to dissect the genetic architecture of this trait in

plants (Zhang et al., 2019). Multi-locus GWAS methods rely on a

random-SNP-effect model where no multiple correction test is

required. There are generally two steps in these models. Initially, a

reduced number of molecular markers is selected using different

algorithms. These markers are then used in multi-locus models to

distinguish true signals (Zhang et al., 2019). Recently, several multi-

locus GWAS methods have been developed and have shown increased
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detection power and accuracy to estimate QTN effects when compared

to single-locus GWAS methods (Zhang et al., 2020).

Many quantitative trait loci (QTL) have already been identified

in maize for low P tolerance, mainly related to root architecture

system and biomass accumulation during early development stages

(Zhang et al., 2014; Sahito et al., 2020). On the other hand, few

studies were carried out in the field. Among them, studies that

quantified PUE and its components are even scarcer, focusing more

on grain yield components (Xu et al., 2018) and on root system

architecture (Gu et al., 2016; Wang et al., 2019). In this sense, the

objectives of the present study were: i) to estimate the genetic

variability in tropical inbred maize lines for PUE-related traits

under contrasting P conditions, ii) verify possible correlations

between the traits evaluated in the greenhouse and field, iii)

detect genomic regions associated with PUE-associated traits, and

iv) identify potential candidate genes to improve maize PUE.
Materials and methods

Genetic material

A total of 132 tropical maize inbred lines were evaluated,

composed of 77 field corn and 55 popcorn lines from the Maize

Breeding Program of the State University of Maringá (UEM),

Maringá, Brazil. These inbred lines represent part of the genetic

variability present in the main hybrids and varieties offield corn and

popcorn cultivated in Brazil. Seed samples were obtained from the

UEM Germplasm Bank and later multiplied in the 2017-2018

summer season to standardize seed germination. Information on

the origin of the maize lines is presented in Supplementary Table 1.
Greenhouse trials

Inbred lines were evaluated under controlled conditions in a

greenhouse at the Agronomy Department of the State University of

Londrina (UEL) in Londrina, Paraná, Brazil (23°17'34”S, 51°10'24”W,

and 550 m altitude) in September 2019. Two independent

hydroponic systems were developed for low (2.5 mM) and normal

P (250 mM) conditions using Magnavaca nutrient solution

(Magnavaca et al., 1987). Each hydroponic system consisted of

eight 28-L polyethylene boxes (58 × 40 × 16.5 cm). The

hydroponic boxes were interconnected and connected to a 300-L

reservoir, that is, the same nutrient solution ran throughout the entire

system. The pH of the nutrient solution was maintained at 5.8 ± 0.2

and permanently aerated by a pressurizing water pump (Model

Pl400P 40 MCA, Lorenzetti Ltda, Campinas, Brazil).

Seeds were disinfested by immersion in 95% ethanol solution

(v/v) for 30 s followed by immersion in 5% H2O2 solution (v/v) for

10 min and six washes with sterile deionized water. The seeds were

then placed on filter paper (GermtestTM, 24 × 33 × 0.02 cm)

(Cienlab Ltda., Campinas, Brazil), moistened with distilled water,

and placed in a growth chamber at a temperature of 27 ± 2°C and

70% relative humidity. Seven days after sowing (at development
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stage V1), uniform seedlings were selected and transplanted to

hydroponic systems after removing the endosperm to eliminate

seed reserves. The experiment was carried out using a completely

randomized design with three repetitions. After 12 days of growth

in nutrient solution (stage V2), the inbred lines root system was

digitized in a 600 dpi image using an Epson L3110 scanner (Seiko

Epson Corp., California, USA), and the root architecture traits were

assessed using the GiaRoots software (Galkovskyi et al., 2012).
Field trials

Inbred lines were evaluated at the School Farm of UEL (23°

17'34”S, 51°10'24”W, and 550 m altitude) during the 2018–2019

summer and 2019 fall/winter seasons. This region has a humid

subtropical climate and soil classified as Dystroferric Red Latosol.

Two distinct areas were selected to conduct the experiments under

low and normal P conditions, carried out in the same areas during

the two seasons. P (Mehlich 1) contents in the areas ranged from

4.87–5.11 mg dm3 (low P) to 17.32–19.32 mg dm3 (normal P). The

soil physicochemical analyses and other traits of the experimental

areas are presented in Supplementary Table 2.

The experiment was set in a randomized complete block design

with three repetitions. Plots consisted of a 4 m long line, 0.45 m

spacing between lines, and 0.20 m between plants. Two levels of

phosphate fertilization were used in each environment, totaling four

independent experiments. Before planting, normal P environments

were fertilized with 120 kg P2O5 ha
–1, 40 kg K2O ha–1, and 40 kg N

ha–1, while low P environments only received 40 kg K2O ha–1 and

40 kg N ha–1. The topdressing nitrogen (N) fertilization was carried

out using 180 kg N ha–1 applied at stage V6, while the other cultural

practices were performed according to crop demand. At physiological

maturation (stage R6), three uniform and representative plants from

each plot were collected for phenotypic evaluations.
Phenotyping under greenhouse and
field conditions

The detailed description of the 24 traits evaluated in the

greenhouse and field experiments is presented in Table 1. To

determine the P content in plant tissues, samples were oven-dried

at 60°C for 72 h and milled in Willey-type knife mill MA340

(Piracicaba, São Paulo, Brazil). Then 0.1 g aliquots were digested in

nitroperchloric solution (HNO3:HClO4) according to Malavolta

et al. (1989). P content was determined by the molybdenum blue

spectrophotometric method (Pradhan and Pokhrel, 2013), reading

the samples in an Agilent 8453 spectrophotometer (Agilent

Technologies, California, USA) at 660 nm.
Deviance analysis and genetic parameters

Data were analyzed using the best linear unbiased predictor

(BLUP) and restricted maximum likelihood (REML) methods by

the software Selegen–REML/BLUP (Resende, 2016) and R version
Frontiers in Plant Science 03
3.6.0 (https://www.r-project.org) via the 'lme4' package. The

deviance analyses (ANADEV) of the traits obtained from the

greenhouse and field trials were carried out using the following

mathematical models, respectively:

yim = μ+Gi + Pm + GPim+eim

Where µ is the overall mean, Gi is the random effect of the i-th

genotype, Pm is the fixed effect of the m-th level of P, GPim is the

random effect of the genotype × P level interaction, and eim ~ N(0,

s²) is the random effect of the error associated with each

experimental unit.

yijkm = μ+Gi + Bj=k=m + Sk + Pm + GSik + GPim + SPkm

+ GSPikm+eijkm

Where μ is the overall mean, Gi is the random effect of the

i-th genotype, Bj/k/m is the random effect of the j-th block within

the k-th season and within the m-th P level, Sk is the fixed effect of

the k-th season, Pm is the fixed effect of the m-th P level, GSik is the

random effect of the genotype × season interaction, GPim is the

random effect of the genotype × P level interaction, SPkm is the fixed

effect of the yield × P level interaction, GSPikm is the random effect of

the genotype × yield × P level interaction, and eijkn ~ N(0, s²) is the
random effect of the error associated with each experimental unit.

The significance of the ANADEV random effects was verified by

the likelihood ratio test (Resende, 2016). The heritability in the broad

sense (h2) of the traits evaluated in the greenhouse and field were

estimated, respectively, using the following formulas: h2 =
ŝ 2

g

ŝ 2
g  + ŝ 2

e
and

h2 =
ŝ 2

g

ŝ 2
g  + 

ŝ 2
gs
s  + 

ŝ 2
e
rs

, where ŝ 2
g is the genotypic variance, ŝ 2

gs is the

variance of the genotype × season interaction, ŝ 2
e is the residual

variance, r is the number of repetitions in each season, and s is the

number of seasons. The selective accuracy (Ac) was obtained as

follows: Ac =
ffiffiffiffiffiffiffiffiffiffiffi
1−PEV
ŝ 2

g

q
, where PEV is the variance of the prediction

error of the genotypic values, and ŝ 2
g is the genotypic variance.
Correlations and principal
component analysis

Correlations between traits and principal component analyses

(PCA) were performed using BLUP means. The significance of the

estimates was verified using the t-test at a 5% probability level (a =

0.05). The correlation estimates were visualized using the

correlation network approach. These analyses were performed by

the 'qgraph' and 'ggbiplot' packages of the R software version 3.6.0.
Genotyping-by-sequencing

Genomic DNA was initially isolated from leaf tissues of inbred

lines, as established by Coan et al. (2018). DNA samples were then

sent to the Genomic Diversity Institute at Cornell University for

genotyping-by-sequencing (GBS) according to the protocol
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described by Elshire et al. (2011). Sequencing was performed in the

Illumina HiSeq 2000 sequencer (Illumina Inc., San Diego, USA).

The sequences were deposited in the European Variation Archive

(EVA) (GCF_902167145.1).

Sequencing data were analyzed using the Tassel 5.0 GBS v2

software (Glaubitz et al., 2014). The sequences obtained were

aligned to the reference genome of Zea mays L. version AGPV3

(B73 RefGen v3) obtained from the MaizeGDB database (https://

www.maizegdb.org). SNP markers quality control was performed

using the VCFtools software version 0.1.15 (Danecek et al., 2011),

removing the SNPs through the following criteria: i) non-biallelic,

ii) minor allele frequency (MAF) less than 5%, iii) inbreeding

coefficient less than 90%, and iv) missing data greater than 90%.

Heterozygous SNPs were treated as missing data since the evaluated

lines are highly inbred and, thus, these SNPs may come from

sequencing errors. Missing data were imputed with the hidden

Markov model (HMM) using the Beagle software version 5.0
Frontiers in Plant Science 04
(Browning et al., 2018). After filtering, a total of 273,775

high-quality SNPs were retained for subsequent analyses

(Supplementary Figure 1).
Population structure and kinship matrix

The population genetic structure was inferred using the

Bayesian clustering model through the software Structure version

2.3.4 (Pritchard et al., 2000) based on the method described by

Evanno et al. (2005). One hundred thousand MCMC (Monte Carlo

Markov chain) iterations, a burn-in period of 10,000 iterations, an

admixture model, and correlated allelic frequencies were used.

Subgroup values (DK) between one and ten were tested, with ten

independent interactions for each K value. The ideal number of K

was determined using the Structure Harvester software version

0.6.92 (Earl, 2012).
TABLE 1 Description of the 24 traits evaluated in 132 tropical corn lines under greenhouse and field conditions.

Traits Unity Description

Greenhouse evaluations

Shoot biomass (SB_g) mg Shoot biomass of samples oven-dried at 60°C for 72 h

Root biomass (RB) mg Root biomass of samples oven-dried at 60°C for 72 h

Total dry biomass (TB) mg Sum of dry shoot and root biomass

Root superficial area (RSA) cm2 Root superficial area measured by the GiaRoots software (Galkovskyi et al., 2012)

Root volume (RV) cm3 Root volume measured by the GiaRoots software (Galkovskyi et al., 2012)

Root average diameter (RD) mm Root average diameter measured by GiaRoots software (Galkovskyi et al., 2012)

Number of total roots (NR) number Root total number measured by the GiaRoots software (Galkovskyi et al., 2012)

Root length (RL) cm Root total length by the GiaRoots software (Galkovskyi et al., 2012)

Phosphorus content in the shoot (PS_g) mg g–1 Shoot phosphorus content

Phosphorus uptake efficiency (PUpE_g) mg mg–1 Ratio between plant total P total and P available for the plant (Moll et al., 1982)

Phosphorus utilization efficiency (PUtE_g) mg mg–1 Ratio between shoot dry biomass and plant total P (Moll et al., 1982)

Phosphorus use efficiency (PUE_g) mg mg–1 Ratio between shoot dry biomass and P available for the plant (Moll et al., 1982)

Field evaluations

Plant height cm Measured from the soil until the flag leaf insertion

Ear height (EH) cm Measured from the soil until the main ear insertion

Ear length (EL) cm Average ear length measured with a digital caliper

Ear diameter (ED) mm Average ear diameter measured with a digital caliper

Shoot biomass (SB_f) g Shoot biomass of samples oven-dried at 60°C for 72 h

Harvest index (HI) % Ratio between grain yield and shoot dry biomass

Phosphorus harvest index (PHI) % Ratio between grain phosphorus content and shoot phosphorus content

Phosphorus content in the grain (PG) g kg–1 Grain phosphorus content

Phosphorus content in the shoot (PS_f) g kg–1 Shoot phosphorus content

Phosphorus uptake efficiency (PUpE_f) g g–1 Ratio between plant total P and P available for the plant (Moll et al., 1982)

Phosphorus utilization efficiency (PUtE_f) g g–1 Ratio between grain yield and plant total P (Moll et al., 1982)

Phosphorus use efficiency (PUE_f) g g–1 Ratio between grain yield and P available for the plant (Moll et al., 1982)
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PCA was performed using the Tassel software version 5.2.48

(Bradbury et al., 2007). Additionally, the Euclidean distance

between the inbred lines was calculated, and the UPGMA

(unweighted pair group method using arithmetic averages)

hierarchical grouping was performed. These analyses were

performed using the R software version 3.6.0 via the packages

'SNPRelate', 'factoextra', and 'ggplot2'. The kinship matrix was

calculated based on the centralized identity-by-state (IBS) method

(Endelman and Jannink, 2012) using the Tassel software version

5.2.48 (Bradbury et al., 2007).
Linkage disequilibrium analysis

Linkage disequilibrium (LD) analysis was performed using the

'LDcorSV' package of the R software version 3.6.0. LD was

estimated on all chromosomes simultaneously and individually.

In addition to the conventional measure of r2, corrected r2 was

estimated by: i) population structure (r2Q), ii) kinship matrix (r2K),

and iii) population structure plus kinship matrix (r2QK) (Mangin

et al., 2012). The results of the Bayesian clustering and IBS method

were used to correct the population structure and kinship matrix,

respectively, as presented above. LD was adjusted using the

nonlinear regression method proposed by Hill and Weir (1988)

using the nls function of the R software version 3.6.0. The LD decay

was defined by the distance at which half of the maximum LD

decayed (LD half decay). This estimate indicates the initial slope of

the LD decay, and it was considered the most consistent in the

comparative study conducted by Vos et al. (2017).
Multi-locus GWAS

For multi-locus GWAS analyses, least square means (lsmeans)

estimated from the lsmeans function of PROC GLM in SAS software

version 9.0 (SAS Institute, Cary, USA) were used. Multi-locus GWAS

analyses were performed using eight datasets: i) 2018-2019 summer

season at low P (LP_18), ii) 2018-2019 summer season under normal

P (NP_18), iii) 2019 fall/winter season in low P (LP_19), iv) 2019 fall/

winter season in high P (NP_19), v) combination of 2018–2019 and

2019 seasons in low P (LP_C), vi) combination of 2018–2019 and

2019 seasons under normal P (NP_C), vii) greenhouse at low P

(LP_G), and vii) greenhouse in normal P (NP_G).

Five multi-locus GWAS methods implemented in the

‘mrMLM.GUI’ package (Zhang et al., 2020) of the R software

version 3.6.0 were used: i) mrMLM (Wang et al., 2016),

ii) FASTmrMLM (Tamba and Zhang, 2018), iii) FASTmrEMMA

(Wen et al., 2018), iv) ISIS EM-BLASSO (Tamba et al., 2017), and

v) pLARmEB (Zhang et al., 2017). The population structure (Q) and

kinship matrix (K) were included in the tested models to minimize

the identification of false-positive associations and increase

the statistical analysis power. Critical values for significant

associations were LOD (logarithm of odds) ≥ 3 (or P = 0.0002)

for all methods. To obtain more accurate results, only the QTNs

detected by at least three different methods were considered truly

significant and, later, used in the search for candidate genes.
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Favorable alleles

The QTNs detected had their favorable alleles identified, that is, the

favorable alleles that cause positive effects on the traits. Then, a

heatmap based on Ward's method and Euclidean distance was

performed to group the inbred maize lines into clusters with

different amounts of favorable alleles. In addition, box plots were

made to verify if the pyramiding of these favorable alleles would

result in higher PUE and its components. These analyses were

performed using R software version 3.6.0. through the 'pheatmap'

and 'ggplot2' packages.
Candidate genes

Candidate genes were selected based on the reference genome of

Zea mays L. version AGPV3 (B73 RefGen v3) obtained from the

MaizeGDB database (https://www.maizegdb.org). The search

radius of candidate genes was established based on the results

obtained from the LD half decay. The classical genes or those

with known functions in maize were annotated using the

MaizeGDB database. Additionally, the molecular functions of all

candidate genes were annotated according to the Gene Ontology

(GO) database (http://www.geneontology.org/).
Results

Deviance analysis and genetic parameters

The deviance analyses showed a significant effect (P ≤ 0.01) of

genotype and genotype–P level interaction for all traits evaluated in the

greenhouse trials (Table 2). Low P reduced all characteristics, except for

PUtE_g, PUpE_g, and PUE_g. The reductions in these traits ranged

from –4.8 (RD) to –65.0% (PS_g), while a high increase was observed for

PUtE_g (161.9%), PUpE_g (169.6%), and PUE_g (678.9%)

(Supplementary Figure 2). The estimates of h2 ranged from 0.55 (RV)

to 0.74 (RD and RSA) at low P, while under normal P conditions, the

estimates varied from 0.63 (RV) to 0.86 (RD). Ac values ranged from

0.74 (RV) to 0.86 (RD and RSA) and 0.86 (RV and SB_g) to 0.92 (RD

and RSA) under low and normal P conditions, respectively.

In the field trials, the deviance analyses presented significant

triple interaction (P ≤ 0.05) between genotype–season–P level for

EH, ED, EL, PS_f, HI, PUtE_f, and PUE_f. For genotype–P level

interaction, significant effects (P ≤ 0.05) were observed for SB_f, EL,

PS_f, HI, PUtE_f, PUpE_f, and PUE_f. All traits assessed showed

significant effects of genotype (P ≤ 0.01) and genotype-season

interaction (P ≤ 0.05). Low P led to reduced values for all

evaluated traits, except PUtE_f, PUpE_f, and PUE_f. The

reductions in trait values ranged from –4.8 (EL) to –37.5% (PHI),

while PUtE_f (19.4%), PUpE_f (221.9%), and PUE_f (256.7%)

increased greatly. The estimates of h2 ranged from 0.44 (HI)

to 0.72 (PH) under low P and from 0.52 (PS_f) to 0.82 (EH)

under normal P conditions. Ac values ranged from 0.66 (HI) to

0.84 (PH) and 0.76 (PS_f) to 0.91 (EH) under low and normal P

conditions, respectively.
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Correlation and principal
component analysis

The correlations among traits in the greenhouse and field are

shown in Figure 1. In general, there was a greater correlation

between the traits within than between the field and greenhouse

trials. However, few differences were observed between low and

normal P conditions, mainly due to the magnitudes of the

correlation estimates rather than their direction. Strong positive

correlations were observed between greenhouse traits under both P

conditions, primarily root system-related traits, PUtE_g, and

PUE_g. Under field conditions, high and positive correlation
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estimates were found for PH × EH, PUE_f × HI, PUE_f ×

PUpE_f, PUE_f × SB_f, PG × PHI, and PUpE_f × SB_f.

Conversely, negative correlations were reported for PS_g ×

PUpE_g in the greenhouse under low and normal P conditions.

PCA of low versus normal P, low P, and normal P conditions

are shown in Figure 2. Together, the first two principal components

(PC1 and PC2) explained 65.2% (low P), 70.5% (normal P), and

72.9% (low versus normal P) of the total existing variation. There

was a clear distinction between low versus normal P, with PUE_g,

PUE_f, PUtE_g, PUtE_f, PUpE_g, and PUpE_f vectors associated

with low P, while the others were associated with normal P

(Figure 2A). The field corn and popcorn lines showed distinct
TABLE 2 Mean, standard deviation (SD), broad-sense heritability (h2), selective accuracy (Ac), and likelihood ratio test (LRT) for 24 traits evaluated
under normal (NP) and low phosphorus (LP) conditions obtained in the greenhouse and field.

Traits1/
Means ± SD

DP%
h2 Ac LRT1

LP NP LP NP LP NP G G×P G×S G×P×S

Greenhouse

RD (mm) 0.38 ± 0.05 0.40 ± 0.03 –4.8 0.74 0.86 0.86 0.92 ** **

NR (n°) 10.0 ± 2.8 11.6 ± 3.4 –13.8 0.69 0.77 0.83 0.91 ** **

RSA (cm2) 27.5 ± 11.1 37.2 ± 8.3 –26.0 0.74 0.75 0.86 0.92 ** **

RL (cm) 215.1 ± 11.2 311.2 ± 87.3 –30.8 0.67 0.69 0.81 0.90 ** **

RV (cm3) 0.35 ± 0.14 0.46 ± 0.12 –23.8 0.55 0.72 0.74 0.86 ** **

SB_g (g) 71.3 ± 22.4 88.1 ± 11.3 –19.0 0.56 0.64 0.75 0.86 ** **

RB (g) 30.9 ± 8.6 41.7 ± 9.2 –25.9 0.58 0.66 0.76 0.87 ** **

TB (g) 102.3 ± 30.7 129.8 ± 33.9 –21.1 0.61 0.63 0.78 0.88 ** **

PS_g_ (mg g–1) 0.74 ± 0.12 2.1 ± 0.4 –65.0 0.71 0.79 0.84 0.91 ** **

PUtE_g (mg mg–1) 0.49 ± 0.15 0.18 ± 0.04 161.9 0.64 0.81 0.80 0.89 ** **

PUpE_g (mg mg–1) 1493 ± 268 554 ± 112 169.6 0.63 0.79 0.79 0.88 ** **

PUE_g (mg mg–1) 711.4 ± 220.9 91.3 ± 23.2 678.9 0.67 0.84 0.81 0.91 ** **

Field

PH (cm) 129.3 ± 12.9 136.6 ± 14.9 –5.2 0.72 0.81 0.84 0.90 ** ns ** ns

EH (cm) 64.1 ± 9.5 69.1 ± 11.2 –7.2 0.68 0.82 0.82 0.91 ** ns ** *

SB_f (g) 163.7 ± 46.4 186.4 ± 37.9 –12.2 0.61 0.74 0.78 0.86 ** * ** ns

ED (mm) 30.7 ± 4.5 32.4 ± 5.0 –5.2 0.61 0.68 0.78 0.82 ** ns ** **

EL (cm) 12.2 ± 1.6 12.8 ± 1.8 –4.8 0.66 0.73 0.81 0.85 ** ** ** *

PS_f (g kg–1) 1.3 ± 0.2 1.3 ± 0.3 –5.2 0.51 0.58 0.71 0.76 ** ** ** **

PG (g kg–1) 1.9 ± 0.2 3.1 ± 0.3 –37.4 0.48 0.63 0.69 0.79 ** ns ** ns

PHI (%) 0.19 ± 0.03 0.31 ± 0.04 –37.5 0.45 0.61 0.67 0.82 ** ns ** ns

HI (%) 36.5 ± 16.1 40.7 ± 17.6 –10.3 0.44 0.59 0.66 0.77 ** ** ** **

PUtE_f (g g–1) 210.9 ± 35.6 176.5 ± 31.1 19.4 0.46 0.67 0.67 0.81 ** ** ** **

PUpE_f (g g–1) 0.102 ± 0.044 0.031 ± 0.013 221.9 0.48 0.65 0.69 0.80 ** ** * *

PUE_f (g g–1) 19.3 ± 3.2 5.4 ± 1.8 256.7 0.49 0.62 0.70 0.78 ** ** ** **
fro
ns, **, and * indicate non-significance, and significance at 1 and 5% probability by the chi-square test, respectively, for the random effects of genotypes (G) and their interactions with phosphorus
(P) levels and season (S). Traits are described in detail in Table 1.
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collective behavior under both P conditions. At low P, the field corn

lines were associated with ED, SB_f, PUtE_f, PUpE_f, and PUE_f

vectors, whereas the popcorn lines were mainly linked to the PH,

EH, PG, and PHI vectors (Figure 2B). Under normal P, the field

corn lines were associated with the ED, HI, SB_f, PUtE_f, PUpE_f,

and PUE_f vectors, while the popcorn lines were primarily linked

with the PH, EH, PG, PHI, and PS_f vectors (Figure 2C).
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Population structure

Based on the PCA, the first two components explained 19.27

and 2.54% of the total existing variation, respectively, and it is

possible to observe a distinction between field corn and popcorn

lines (Figure 3A). Similar results were found by the UPGMA and

Bayesian groupings (Figures 3B, C). Bayesian analysis classified
A B C

FIGURE 2

Principal component analysis (PCA) of 132 inbred tropical maize lines evaluated for 24 traits in the greenhouse and field under low versus normal P
(A), low P (B), and normal P (C) conditions. A detailed description of the characteristics can be found in Table 1.
A B

FIGURE 1

Correlation network among 24 traits evaluated in 132 inbred tropical maize lines under low (A) and normal P (B) conditions obtained in field and
greenhouse trials. A detailed description of the characteristics is presented in Table 1. Correlation network between 24 traits evaluated in 132 inbred lines
of tropical maize under low (A) and normal P (B) conditions obtained in field and greenhouse trials. Respectfully, the green and red lines represent
Pearson estimates positive and negative linear correlations and the thickness of the lines is proportional to the magnitude of the correlation.
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seven popcorn lines as admixture, with an ancestry coefficient lower

than 0.6 for each subpopulation.
Linkage disequilibrium analysis

LD showed rapid decay and exhibited variations within each

chromosome (Supplementary Figure 3). Considering all

chromosomes, the differences between uncorrected r2 (r2 = 0.16;

LD half decay = 1.41 kb) and corrected population structure (r2K =

0.15; LD half decay = 1.27 kb) were small. On the other hand, r2 was

affected by the corrections of the kinship matrix (r2Q = 0.07; LD half

decay = 0.89 kb) and kinship matrix plus population structure

(r2KQ = 0.07; LD half decay = 0.89 kb), presenting similar results

(Supplementary Figure 4). Regarding individual chromosomes,

Chr07 and Chr05 showed the fastest and slowest decay,

respectively. From the results obtained from the LD half decay,

the search distance for candidate genes was defined as ± 1 kb.
QTNs identified and method performance

The histograms of the lsmeans used to identify the QTNs are

shown in Supplementary Figures 5, 6. A total of 5838 QTNs was

discovered by the five different multi-locus GWASmethods evaluated

(Supplementary Figure 7). The pLARmEB method (n = 1710)

identified the highest number of QTNs, followed by the

FASTmrMLM (n = 1604), ISIS EM-BLASSO (n = 1224), mrMLM

(n = 756), and FASTmrEMMA (n = 544) methods. Among these

QTNs, 810 were co-detected by two methods, 255 by three, 44 by

four, and seven by five. On the other hand, 3242 QTNs were found by

only one of the evaluated methods. Thus, only 255 QTNs were
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considered highly reliable, as they were co-detected by at least three

methods and, consequently, were maintained in the present study

(Supplementary Table 3).

The FASTmrMLM method was the most efficient (95.4%), as

292 of the 306 QTNs were detected by this method, followed by

pLARmEB (94.1%), ISIS EM-BLASSO (85.0%), FASTmrEMMA

(29.1%), and mrMLM (19.9%). The 306 QTNs discovered are

distributed in the ten chromosomes (Chr) of maize, ranging from

15 (Chr08) to 60 QTNs (Chr01) (Supplementary Figure 8A). A

greater number of QTNs was detected in the field trials (n = 227)

compared to greenhouse trials (n = 79) (Supplementary Figure 8B).

In the greenhouse, 35 and 44 QTNs were found under low and

normal P conditions, respectively (Supplementary Figure 8C),

whereas 118 (low P) and 107 (normal P) QTNs were detected in

the field trials (Supplementary Figure 8D).

The 79 QTNs identified in the greenhouse were associated with RV

(n = 3), PUpE (n = 4), PUE (n = 5), SB (n = 5), NR (n = 6), RD (n = 6),

RL (n = 6), PS (n = 7), TB (n = 7), RSA (n = 8), PUtE (n = 9), and RB

(n = 13) (Supplementary Table 3). The phenotypic variation explained

(PVE) by these QTNs ranged from 0.01 to 16.31%. In turn, the 227

QTNs identified in the field were associated with PUE (n = 13), EL (n =

14), ED (n = 16), PG (n = 18), PH (n = 18), EH (n = 19), HI (n = 19),

SB (n = 19), PUtE (n = 20), PUpE (n = 22), PS (n = 24), and PHI (n =

25) (Supplementary Table 3). The PVE by these QTNs varied from

0.01 to 18.62%.

A total of 16 pleiotropic QTNs were detected in the greenhouse

(n = 10) and field (n = 6) trials (Table 3). In the greenhouse

experiment under low P, pleiotropic QTNs were associated with

SB–TB (S2_170934541), PUtE–RL (S4_198262446), and RL–RSA

(S5_97898187 and S9_11783675). Furthermore, a pleiotropic QTN

(S1_46130565) was detected in three characteristics (RSA, NR, and

RL). Under normal P conditions, pleiotropic QTNs associated with
A B

C

FIGURE 3

Principal component analysis (A), dendrogram obtained by the UPGMA method (unweighted pair group method using arithmetic averages) through
the Euclidean distance (B), and Bayesian clustering considering K = 2 (C) among 132 tropical maize lines using 273,775 SNP (single nucleotide
polymorphism) markers.
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TABLE 3 Pleiotropic QTNs identified in traits evaluated in greenhouse and field trials under low and normal P conditions.

QTN Trait1 Dataset2 Chr Position (bp) QTN effect LOD score PVE (%) MAF Allele Method3

Greenhouse

S1_1159069 PUtE NP_G 1 1159069 –0.04 ~ –0.01 3.83 ~ 62.32 0.38 ~ 3.48 0.042 A 2, 4, 5

PS NP_G –0.49 ~ –0.47 8.14 ~ 9.72 0.41 ~ 5.41 2, 4, 5

S1_151079747 RB NP_G 1 151079747 1.87 ~ 10.23 3.12 ~ 4.85 0.60 ~ 5.42 0.215 A 1, 3, 4, 5

TB NP_G 12.00 ~ 18.27 6.33 ~ 12.43 3.05 ~ 7.08 2, 4, 5

S1_46130565 RSA LP_G 1 46130565 3.42 ~ 4.45 8.65 ~ 9.77 1.32 ~ 7.13 0.450 C 1, 2, 4, 5

NR LP_G 0.61 ~ 1.11 4.36 ~ 12.61 2.33 ~ 7.52 2, 4, 5

RL LP_G 20.63 ~ 34.97 4.51 ~ 10.95 2.54 ~ 4.15 1, 4, 5

S2_170934541 SB LP_G 2 170934541 –13.24 ~ –10.73 7.15 ~ 9.96 4.17 ~ 6.35 0.122 G 1, 2, 4, 5

TB LP_G –14.81 ~ –13.91 6.27 ~ 7.32 1.88 ~ 4.51 2, 4, 5

S3_225847941 RSA NP_G 3 225847941 –6.70 ~ –4.63 4.88 ~ 9.39 2.73 ~ 5.73 0.118 G 2, 4, 5

TB NP_G –23.44 ~ –10.87 3.39 ~ 12.04 1.57 ~ 7.30 2, 4, 5

S4_198262446 PUtE LP_G 4 198262446 –0.10 ~ –0.04 6.86 ~ 28.04 0.93 ~ 5.93 0.070 G 2, 4, 5

RL LP_G –98.96 ~ –48.96 5.20 ~ 16.43 3.79 ~ 15.50 2, 4, 5

S5_212662145 RB NP_G 5 212662145 –5.37 ~ –3.64 3.50 ~ 11.80 2.22 ~ 4.58 0.163 T 1, 2, 4, 5

RSA NP_G –6.75 ~ –3.90 4.98 ~ 10.09 2.50 ~ 7.51 1, 2, 4, 5

S5_97898187 RL LP_G 5 97898187 20.35 ~ 21.37 4.19 ~ 4.77 0.77 ~ 2.03 0.264 A 2, 4, 5

RSA LP_G 2.51 ~ 3.65 4.84 ~ 7.24 0.84 ~ 3.76 2, 4, 5

S9_11783675 RL LP_G 9 11783675 –51.19 ~ –38.40 4.31 ~ 6.88 0.79 ~ 4.14 0.068 C 2, 4, 5

RSA LP_G –8.93 ~ –5.92 7.16 ~ 8.92 1.18 ~ 7.39 2, 4, 5

S10_119011145 PUE NP_G 10 119011145 –12.46 ~ –10.23 3.54 ~ 6.73 3.79 ~ 5.63 0.189 C 1, 2, 5

RB NP_G –6.42 ~ –4.86 4.71 ~ 12.12 4.44 ~ 7.75 2, 4, 5

SB NP_G –18.91 ~ –9.25 4.21 ~ 10.74 2.09 ~ 13.88 1, 2, 4, 5

TB NP_G –17.08 ~ –10.96 4.91 ~ 6.20 2.31 ~ 5.62 1, 2, 5

Field

S1_259083391 PG NP_18 1 259083391 –0.19 ~ –0.10 3.20 ~ 7.93 1.24 ~ 4.47 0.055 C 2, 4, 5

PH NP_18 3.41 ~ 5.39 3.82 ~ 5.12 1.34 ~ 3.35 2, 4, 5

S3_190210784 PUE LP_C 3 190210784 0.90 ~ 4.78 3.59 ~ 10.56 0.93 ~ 6.52 0.279 G 2, 3, 4, 5

PUpE LP_C 0.00 ~ 0.00 3.13 ~ 61.52 0.56 ~ 0.80 2, 4, 5

S5_10594899 HI NP_C 5 10594899 –6.50 ~ –6.06 6.38 ~ 9.59 4.88 ~ 5.62 0.077 C 2, 4, 5

PUE NP_C –0.97 ~ –0.70 6.64 ~ 7.00 2.46 ~ 4.81 2, 4, 5

S7_7624808 ED NP_C 7 7624808 0.88 ~ 1.15 7.19 ~ 8.53 2.50 ~ 4.28 0.157 G 1, 2, 5

PUE NP_C 0.50 ~ 0.91 4.44 ~ 10.44 2.29 ~ 7.83 2, 4, 5

S8_148017105 HI LP_19 8 148017105 3.03 ~ 10.42 3.52 ~ 6.12 0.97 ~ 5.29 0.484 C 2, 3, 5

PUE LP_19 1.30 ~ 4.12 4.99 ~ 6.34 0.56 ~ 6.55 2, 3, 5

S10_127834511 HI NP_C 10 127834511 5.18 ~ 6.38 8.69 ~ 8.95 5.12 ~ 7.77 0.116 C 2, 4, 5

PUE NP_18 0.88 ~ 1.03 4.57 ~ 6.44 1.00 ~ 2.52 2, 4, 5
F
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1Details about the traits are presented in Table 1.
22018 season under low P (LP_18), 2018 season in normal P (NP_18), 2019 season under low P (LP_19), 2019 season in high P (NP_19), the combination of 2018 and 2019 seasons in low P
(LP_C), the combination of 2018 and 2019 seasons in normal P (NP_C), greenhouse under low P (LP_G), and greenhouse under normal P (NP_G).
31 – mrMLM (Wang et al., 2016), 2 – FASTmrMLM (Tamba and Zhang, 2018), 3 – FASTmrEMMA (Wen et al., 2018), 4 – ISIS EM-BLASSO (Tamba et al., 2017), and 5 – pLARmEB
(Zhang et al., 2017).
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PUtE–PS (S1_1159069), RB–TB (S1_151079747), RSA–TB

(S3_225847941), and RB–RSA (S5_212662145) were revealed.

Moreover, a highly pleiotropic QTN (S10_119011145) was found

in four traits simultaneously (PUE, RB, SB, and TB). In the field

trials under low P, pleiotropic QTNs were associated with

PUE–PUpE (S3_190210784) and HI–PUE (S8_148017105).

Under normal P conditions, pleiotropic QTNs were identified

in PG–PH (S1_259083391), HI–PUE (S5_10594899), and ED–

PUE (S7_7624808).
Favorable alleles

The heatmap grouped the inbred maize lines into three distinct

groups regarding favorable allele number (Supplementary Figure 9).

Group 1 was composed of 41 lines, characterized by having the

smallest number of favorable alleles in the field experiments, mainly

under low P conditions. Groups 2 and 3 were formed by 36 and 55

lines, respectively. In general, the lines in group 2 had the highest

numbers of favorable alleles in the greenhouse and field trials in

both P conditions. On the other hand, group 3 lines had the lowest

numbers of favorable alleles, mainly in the greenhouse experiments.

In general, there was no distinction between popcorn and field corn

lines concerning the accumulation of favorable alleles.

Considering only the favorable alleles related to PUE and its

components, a gradual increase in these traits was observed by

pyramiding these favorable alleles (Figure 4). Popcorn lines 17-P9-

1-6 and 162-P1780 had the highest and lowest number of favorable

alleles considering all traits, respectively (Figure 5). The 17-P9-1-6

line, considered P-efficient, presented 58.33% (field in normal P),

57.14% (field in low P), 62.16% (greenhouse in normal P), and

58.27% (greenhouse under low P) of the favorable alleles. On the

other hand, line 162P1780, considered P-inefficient, presented only

32.18% (field in normal P), 31.45% (field in low P), 27.02%

(greenhouse in normal P), and 24.13% (greenhouse under low P)

of the favorable alleles.
Candidate genes

A total of 186 potential candidate genes distributed in all maize

chromosomes were identified (Supplementary File 1). Among them,

45 have already been annotated as classical or known genes in the

maize genome, 21 of which have functions related to transcription

factor activity, while the others are mainly associated with transport

and transferase activity. According to the GO annotation, the

primary molecular functions of the candidate genes included

transcription factor, transferase, hydrolase, catalytic binding,

ATP binding, DNA binding, and nucleotide-binding activity. In

addition, several molecular functions directly related to P molecules

were also identified, such as activities of phosphotransferase,

phosphatase, pyrophosphatase, calcium-dependent phospholipid

binding, all-trans-nonaprenyl-diphosphate synthase, glucose-

6-phosphate isomerase , phosphore lay sensor kinase ,

phosphorylative mechanism, phospholipid binding, and

phosphoenolpyruvate carboxylase.
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Discussion

Genotype-environment interaction and
genetic parameters

Genotype–season–P level interaction was observed in most of the

traits evaluated in the field, indicating that the differential behavior of

genotypes depends on the combination of P levels and seasons studied.

Additionally, there were more significant interactions between

genotype–season compared to genotype–P level interactions,

suggesting that season strongly influences the evaluated traits. In the

greenhouse trials, there was a significant genotype-P level interaction

for all characteristics, indicating that the differential behavior of

genotypes also depends on the P level in early evaluations. The

genotype–P levels interaction in maize has already been reported in

several greenhouse and field studies, which confirms that studies

related to PUE and its components should be carried out under

specific P conditions (Xu et al., 2018; Sahito et al., 2020; Li et al., 2021).

The negative influence of low P on the characteristics evaluated

in the greenhouse and field was already expected since P is an

essential element for plant development, constituting key cell

molecules such as ATP, nucleic acids, and phospholipids, in

addition to acting in the central regulation of many metabolisms,

including energy transfer, protein activation, and carbon and amino

acids metabolic processes (Wang et al., 2021). In contrast, the lines

showed higher PUE, PutE, and PUpE under conditions of low P

availability. In general, plants present higher PUE under low P

since, under high phosphate fertilization, part of this element is lost

in erosive processes and/or made unavailable by adsorption and

immobilization processes in the soil (Alewell et al., 2020).

Although PUE-related traits are complex and strongly

influenced by the environment, the heritability and selective

accuracy estimates obtained in the present study fell into

moderate to high, indicating favorable conditions for

improvement aimed at increasing PUE. Heritability is the central

parameter of any breeding program, used to estimate selection

response and explain the proportion of phenotypic variation due to

genetics (Hallauer et al., 2010). In the present study, heritability

estimates were higher under normal P than low P conditions. In

general, stress conditions tend to reduce heritability estimates,

mainly due to the increased environmental influence on plant

phenotype (Vats, 2018). Xu et al. (2018), evaluating 11 PUE-

associated traits in maize, also observed reductions in heritability

estimates under low P compared to normal P conditions.
Correlation between traits

The existence of correlations among traits evaluated in the

greenhouse and field trials would enable the early selection of

genotypes with higher PUE. Unfortunately, however, no relevant

correlations were observed between the traits evaluated in both trials,

indicating that early selection in hydroponic systemsmay not be efficient

in selecting plants with higher PUE under field conditions. Similar

results were reported in other studies, suggesting that different genes and
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morphophysiological mechanisms act at different stages of plant

development (Dissanayaka et al., 2018; Wang et al., 2019a). In fact,

experiments in hydroponic systems or pots using nutrient solutions may

present conditions that are very different from real field conditions since

the environmental influence is much greater in the field than under

greenhouse-controlled conditions (Araus et al., 2018).
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P is relatively immobile in the soil, and its availability is greater

at surface soil horizons, decreasing substantially at deeper soil

horizons (Menezes-Blackburn et al., 2018). Thus, several studies

have reported the importance of the maize root architecture system

for higher PUE under field and greenhouse conditions (Jia et al.,

2018; Klamer et al., 2019). The present study corroborated these
FIGURE 4

Pyramidization of favorable alleles in inbred maize lines evaluated for traits related to phosphorus utilization efficiency (PUtE), phosphorus uptake
efficiency (PUpE), and phosphorus use efficiency (PUE).
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results, showing a high correlation between the root-system-related

traits (RB, RSA, RV, NR, and RL) with PUE in both P conditions

under a hydroponic system. The indirect selection of PUE through

root system traits is highly relevant in breeding programs,

representing a faster and money-saving alternative, as it does not

require laboratory analysis for P quantification. Further, high-yield

phenotyping methods are already well established to characterize

the root system of plants (Tracy et al., 2020).
Linkage disequilibrium

Linkage disequilibrium (LD) is the non-random association of

alleles at two or more loci and plays a central role in association

mapping analyses (Romay et al., 2013). In the present study, we

observed a rapid LD decay. In addition, we also report differences in
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LD decay in relation to chromosomes and correctionmethods assessed,

with LD decay being mainly affected by population structure. Several

studies have reported rapid LD decay in maize, ranging primarily from

0.1 to 10 kb (Yan et al., 2009; Romay et al., 2013; Bennetzen et al., 2018;

Coan et al., 2018). In addition to the different approaches to estimating

LD and LD decay, LD estimates may vary depending on the genomic

region and germplasm evaluated (Vos et al., 2017). In maize, tropical

and subtropical germplasms have faster LD decay when compared to

temperate germplasms, as they have greater genetic diversity and the

presence of rare alleles (Yan et al., 2009; Romay et al., 2013).
Multi-locus GWAS methods

Multi-locus GWAS methods have been recently used to

investigate the genetic basis of essential traits in several
A

B

C

FIGURE 5

Percentage of favorable alleles of two contrasting maize inbred lines for P-efficiency in the field (A) and greenhouse (B) under low and normal P
conditions. The root system of the 185-P9-1-6 and 162-P1788 inbred lines under low and normal P conditions (C).
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agricultural crops, such as maize (Lu et al., 2021), rice (Cui et al.,

2018), bread wheat (Yang et al., 2020), soybean (Zhang et al., 2018),

barley (Hu et al., 2018), and upland cotton (Su et al., 2018). In the

present study, five different multi-locus GWAS methods were

assessed. Among them, the FASTmrMLM and pLARmEB were

the most efficient methods, as they detected more than 94% of the

reliable QTNs in the present study, that is, QTNs co-detected by

three or more methods. Although these methods present a

combined two-step approach, the quantitative and qualitative

differences in the identified QTNs are due to the different

algorithms used in each method (Zhang et al., 2020). Thus,

Zhang et al. (2019) suggested using combined results between the

different methods of multi-locus GWAS to obtain more

accurate results.
QTNs identified

The present study identified a large number of small effects

QTNs, confirming the complex and quantitative nature of PUE in

maize. Using small-effect QTNs associated with traits of interest

represents a smart strategy in genomic selection (GS) approaches

since the use of these QTNs alone can replace the need for high-

density genotyping through random SNPs, thus reducing

genotyping costs (Lan et al., 2020). Furthermore, GS models

using only SNPs known to be associated with traits of interest

showed greater prediction accuracy, as they had lower background

noise (Ali et al., 2020). In addition to their use in GS, these QTNs

may be promising for application in breeding programs aimed at

pyramiding favorable alleles through marker-assisted selection

(MAS) (Boopathi, 2020).

In a QTLome study for low P tolerance in maize under limiting

phosphorous conditions, Zhang et al. (2014) identified 23 meta-

QTLs, that is, genomic regions more likely to harbor candidate

genes responsible for traits related to tolerance to low P and/or

PUE. Among the 306 QTNs discovered in the present study, 20 are

located within the ranges of 11 meta-QTLs. In another analysis of

meta-QTLs, Guo et al. (2018) identified 53 meta-QTLs associated

with the maize root architecture system in the presence and absence

of abiotic stresses (water deficit, high temperature, and P and N

deficiency). Among the 54 QTNs found in the present study to be

associated with root traits, 10 are located within the ranges of eight

meta-QTLs. Thereby, the location of QTNs in genomic regions

known to be associated with traits and characteristics of interest

reinforces the significance and relevance of the QTNs pinpointed in

the present study.
Candidate genes

Among the 186 candidate genes detected in the present study,

45 have already been annotated as classical or known genes in

maize. For instance, the GRMZM2G083841 gene (associated with

PUpE in LP_G) codes for a phosphoenolpyruvate carboxylase,

catalyzing the carboxylation of phosphoenolpyruvate to produce

oxaloacetate and Pi, performing the primary fixation of
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atmospheric CO2 in C4 plants (Nimmo, 2003) . The

GRMZM2G140614 gene (associated with PUE in NP_C) encodes

a glucose-6-phosphate isomerase, an essential enzyme in the

oxidative pathway of pentose phosphate responsible for

producing energy-rich cofactors and generation of carbon

skeletons required for biosynthetic reactions (Yu et al., 2000).

Interestingly, GRMZM2G307119 (associated with RV in NP_G)

was initially related to the formation of spikelet meristems (Chuck

and Hake, 2005). However, Jansen et al. (2013) revealed that this

gene plays a fundamental role in developing lateral roots in maize.

In turn, the GRMZM2G177792 gene (associated with PG in LP_C)

has a peroxidase activity and has been associated with resistance to

biotic stresses (Santiago et al., 2016; Musungu et al., 2020). In

addition to these genes, three main mechanisms and pathways

were discovered:
1. Transcription regulator activity. Transcription factors

regulate gene expression. Previous studies have reported

that many of these factors trigger P stress response and/or

PUE in maize (Calderon-Vazquez et al., 2008; Xu et al.,

2018). Of the 45 classical or known genes identified in the

present study, 21 (~46%) are classified as transcription

factors. The GRMZM2G317160 gene (associated with PS in

LP_19) is a member of the AP2-EREBP family of

transcription factors and plays a significant role in abiotic

stress response (Du et al., 2014). The GRMZM2G479760

gene (associated with HI and PUE in NP_C) belongs to the

basic leucine zipper (bZIP) family. It regulates several

phenomena during maize growth and development and

participates in responses to abiotic stresses and hormonal

signaling (Cao et al., 2019). GRMZM5G808366 (associated

with HI in LP_18) belongs to the auxin response factor

(ARF) gene family and has an elevated expression level

under P stress conditions (Pei et al., 2013). In turn, the

GRMZM2G073823 gene (associated with RB in NP_G) is

already known as an important gene during maize root

growth and development (Jiang et al., 2012; Li et al., 2019b).

2. Transporter activity. Several specific and non-specific

nutrient transporters have been reported in response to P

deficiency stress (Shabala et al., 2016; Xu et al., 2018; Wang

et al., 2021). GRMZM2G161459 (associated with PUtE at

NP_18) encodes the transport peptide PTR2 that transports

a broad spectrum of dipeptides and is involved in several

pathways (Li et al., 2016a). GRMZM2G064467 (associated

with PUE in LP_C) is involved in magnesium

transmembrane transporter activity and responds to

abiotic stresses (Li et al., 2016b). GRMZM2G455557

(associated with PHI in NP_C) encodes a plasma

membrane H+-ATPase, creating electrochemical gradients

for soil nutrient uptake by roots and is involved in

additional solute xylem loading (Falhof et al., 2016). This

gene has already been associated with N assimilation in

maize (Plett et al., 2016), while other genes related to

plasma membrane H+-ATPase have been identified in

response to P deficiency (Yuan et al., 2017; Stein

et al., 2019).
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3. Transferase activity. Transferases are enzymes that transfer

functional groups from one molecule to another, catalyzing

several reactions involving nutrient absorption,

translocation, and storage. They also respond to abiotic

stresses. Among the genes identified in this study,

GRMZM2G104511 (associated with PUE in LP_18)

encodes a protein from the O-fucosyltransferase family,

physically interacting with proteins involved in cell

division and responses to stress and hormones (Jia et al.,

2013). This gene was differentially expressed in maize

under water deficit (Zheng et al., 2020) and P conditions

(Du et al., 2016). The GRMZM5G851405 gene (associated

with PHI in NP_18) encodes a histone acetyltransferase

whose function is to catalyze the acetylation of central

histones by adding an acetyl group to the lysine residue in

the terminal tail of histones. The regulation of histone

acetyltransferases has already been associated with the

phosphate starvation response in Arabidopsis thaliana

(Wang et al. , 2019b). As for GRMZM2G033767

(associated with PUtE in NP_G), it codes for a glycerol-

3-phosphate acyltransferase, an enzyme that catalyzes an

acyl group from an acyl donor to the sn-1 position of

glycerol 3-phosphate and has great importance in

regulating lipid biosynthesis (Murata and Tasaka, 1997).

Finally, the GRMZM2G141810 gene (associated with PS in

LP_19) encodes a tryptophan aminotransferase and is

importantly related to nutrient storage functions in maize

endosperm (Bernardi et al., 2012; Zhan et al., 2018).
Conclusion

Wide genetic variability was observed for PUE, and we

confirmed its complex nature. On the other hand, we did not

verify relevant correlations between traits evaluated in the

greenhouse and field, indicating that early screening may not be

efficient in selecting genotypes with higher PUE under field

conditions. A total of 306 QTNs were associated with the 24

evaluated traits in the present study using different multi-locus

GWAS models. From these QTNs, 186 potential candidates were

identified, mainly involved with transcription regulators,

transporters, and transference activities. Our study provides new

insights into PUE genetic architecture and may serve as a basis for

further functional investigation. In addition, the QTNs detected in

this study can be used for pyramiding favorable alleles to develop

maize varieties with higher PUE and, consequently, less dependent

on phosphate fertilization.
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