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Non-destructive assessment of
cannabis quality during drying
process using hyperspectral
imaging and machine learning
Hyo In Yoon †, Su Hyeon Lee †, Dahye Ryu, Hyelim Choi,
Soo Hyun Park, Je Hyeong Jung, Ho-Youn Kim
and Jung-Seok Yang*

Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung,
Gangwon, Republic of Korea
Cannabis sativa L. is an industrially valuable plant known for its cannabinoids,

such as cannabidiol (CBD) and D9-tetrahydrocannabinol (THC), renowned for its

therapeutic and psychoactive properties. Despite its significance, the cannabis

industry has encountered difficulties in guaranteeing consistent product quality

throughout the drying process. Hyperspectral imaging (HSI), combined with

advanced machine learning technology, has been used to predict

phytochemicals that presents a promising solution for maintaining cannabis

quality control. We examined the dynamic changes in cannabinoid

compositions under diverse drying conditions and developed a non-

destructive method to appraise the quality of cannabis flowers using HSI and

machine learning. Even when the relative weight and water content remained

constant throughout the drying process, drying conditions significantly

influenced the levels of CBD, THC, and their precursors. These results

emphasize the importance of determining the exact drying endpoint. To

develop HSI-based models for predicting cannabis quality indicators, including

dryness, precursor conversion of CBD and THC, and CBD : THC ratio, we

employed various spectral preprocessing methods and machine learning

algorithms, including logistic regression (LR), support vector machine (SVM), k-

nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB). The

LR model demonstrated the highest accuracy at 94.7–99.7% when used in

conjunction with spectral pre-processing techniques such as multiplicative

scatter correction (MSC) or Savitzky–Golay filter. We propose that the HSI-

based model holds the potential to serve as a valuable tool for monitoring

cannabinoid composition and determining optimal drying endpoint. This tool

offers the means to achieve uniform cannabis quality and optimize the drying

process in the industry.
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1 Introduction

Cannabis sativa L. is a valuable industrial plant used as a raw

material for producing various products including seed, oil, drugs,

medicine, and fiber. Notably, cannabis plants contain cannabinoids

such as cannabidiol (CBD) and D9-tetrahydrocannabinol (THC),

which possess medicinal and psychoactive properties (Amin and

Ali, 2019). In the cannabinoid biosynthesis pathway, both

cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid

(THCA) serve as precursors for these active compounds. These

acidic forms are synthesized from a single compound,

cannabigerolic acid (CBGA), which are catalyzed by oxidocyclase

enzymes (Tahir et a l . , 2021) . Nonenzymatic thermal

decarboxylation during heat exposure converts CBDA and THCA

into their neutral forms CBD and THC, respectively. Typically,

these end products are not present in growing cannabis but are

typically formed through postharvest drying processes.

Drying is a crucial postharvest step in cannabis processing.

Cannabis flowers contain approximately 80% water, and the drying

process primarily prevents microbial growth and facilitates long-

term storage (Lazarjani et al., 2021). Decarboxylation of

cannabinoids is heat-induced; thus, the drying temperature and

conditions, including humidity and pressure, are critical

determinants affecting product quality (AL Ubeed et al., 2022).

Turner and Mahlberg (1984) found that decarboxylation occurred

when the leaves dried at 60°C, while at 37°C only cannabinoid acids

were detected. According to Chen et al. (2021), hot-air drying

increased CBDA conversion rate and decreased drying time as the

temperature increased from 40°C to 90°C. The conventional drying

method involves hanging and air drying in well-ventilated rooms,

maintaining a temperature range of 18–21°C and a relative

humidity of 50–55% (Challa et al., 2021). These conditions were

designed to mitigate unwanted alterations in cannabis composition

during the post-harvest process. However, current practices result

in longer processing times, unnecessary expenses, and an increased

risk of contamination (Das et al., 2022). Unfortunately, there are no

established or predictive models for determining drying endpoints

or total drying times. Moreover, even with identical drying

conditions, dryness may vary considerably based on factors such

as drying facility, flower size, and overall conditions. The adoption

of real-time diagnosis technology for cannabinoid quality could

potentially resolve issues related to drying endpoints and durations.

Hyperspectral imaging has emerged as a powerful tool for

monitoring plant physiology and evaluating food quality in

agriculture (Lu et al., 2020). Using the technologies, Jin et al.

(2017) developed a model for predicting leaf water content, one

of the important parameters for photosynthesis and biomass

efficiency in Miscanthus plants. Jung et al. (2022) developed a

diagnostic model for gray mold disease, including identification of

asymptomatic infection sites on strawberry leaves. In particularly,

the technologies for postharvest quality control have been

developed, such as diagnosis of senescence status in broccoli

plants during storage (Kabakeris et al., 2015), prediction of

dietary fiber contents in fresh-cut celeries during storage (Yan

et al., 2017), and prediction of anthocyanin content in purple

sweet potato slices during drying process (Liu et al., 2017). In
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previous studies on cannabis, hyperspectral imaging has been

utilized for plant identification (Pereira et al., 2020) and predict

CBD and THC content (Lu et al., 2022).

The advantages of hyperspectral imaging, such as its speed,

reliability, and non-destructiveness, broaden its potential use as a

quality control technology for plant products (Kiani et al., 2018).

However, extracting valuable information from high-dimensional

data laden with redundant information and undesired noise owing

to the measurement conditions is a significant challenge in

hyperspectral image analysis (Saha and Manickavasagan, 2021).

Therefore, the use of efficient algorithms and data-processing

techniques is essential. Several spectral preprocessing techniques,

including the Savitzky–Golay filter (SG filter), derivative (Der), and

multiplicative scatter correction (MSC), have been utilized to

address scattering, reduce noise, and enhance spectral features

(Vidal and Amigo, 2012; Yoon et al., 2023). Machine learning

algorithms provide an opportunity to establish classification or

regression models that utilizes an extensive range of predictors in

hyperspectral imaging, including logistic regression (LR), support

vector machine (SVM), k-nearest neighbor (KNN), random

forest (RF), and Gaussian naïve Bayes (GNB) (Saha and

Manickavasagan, 2021).

Our study aims to confirm the hypothesis that CBD and THC

concentrations change as drying progresses, regardless of consistent

moisture content and weight. We developed a nondestructive

method to evaluate the quality of cannabis flowers during drying

using hyperspectral imaging and machine learning. To achieve this

objective, we collected data on cannabinoid levels in flowers

subjected to different drying conditions and durations. Several

spectral preprocessing techniques, such as the SG filter, 1st Der,

2nd Der, and MSC, have been applied with several machine-

learning algorithms, such as LR, SVM, KNN, RF, and GNB. The

resulting model has the potential to monitor cannabis quality,

optimize drying endpoints and duration, and enhance drying

processes in the cannabis industry.
2 Materials and methods

2.1 Plant material and growth conditions

For this study, we utilized medical cannabis plants (C. sativa L.),

specifically the ‘Cherry Blonde’ cultivar (Blue Forest Farms, NY,

USA). The seeds were germinated in 40-mm peat pellets (Jiffy

International, Kristiansand, Norway) using tap water in an indoor

farming system. The growth conditions consisted of an air

temperature of 24 ± 2°C/18 ± 2°C (day/night), relative humidity

of 60 ± 5%, light intensity at a photosynthetic photon flux density

(PPFD) of 200 μmol m–2 s–1, and 16-h photoperiod. After two

weeks, the emerged seedlings were transferred to a cocopeat (chip:

peat = 1:1) growbag (CocoGrow Cube 8.4 L, SJ Corp., Damyang,

Korea). Irrigation was carried out using a drip irrigation system

with a Hoagland nutrient solution. During the vegetative phase, all

plants were grown under the identical conditions, except for the

light intensity (PPFD of 400–450 μmol m–2 s–1) reaching the top of

the plants. Cannabis flowers were induced by a short-day
frontiersin.org
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photoperiod, reducing light exposure from 16 h to 12 h during the

reproductive phase. After 8 weeks of short-day conditions, we

collected approximately 1 kg of fully matured female flowers for

experimental and data-tracking purposes.
2.2 Drying conditions

Cannabis flowers were dried in six open plastic trays each under

two drying and relative humidity conditions: hot-air drying (59 ±

3.6°C and 10 ± 3.7%) and cool-air drying (19 ± 1.2°C and 44 ±

8.2%). The cool-air drying conditions were similar to the traditional

air-drying conditions (Challa et al., 2021). The air temperature and

relative humidity were measured and recorded at 20-min intervals

using a temperature and humidity data logger (RC-51H; Elitech

Technology, Inc., Milpitas, CA, USA). The changes over time under

these drying conditions are shown in Supplementary Figure S1. The

flowers in each tray were weighed before drying and at 2, 4, 7, and 9

days post-drying. The relative weight change and relative water

content (RWC) were calculated as follows:

Relative weight change ( % )  =  wt=w0 �  100

RWC (% )  =  (wt –  w0 �  DM)=wt �  100

where wt is the weight at time t, w0 is the fresh weight at harvest, and

DM is the ratio of dry matter (DM = 0.21894) measured from

flowers of the same cultivar. Flower samples were collected twice

from five trays per treatment to obtain hyperspectral images and

cannabinoid data for model development. For tracking data, weight

and hyperspectral imaging data were collected from a single tray

under each of the two drying conditions.
2.3 UHPLC analysis for cannabinoids

Flower samples were collected prior to drying and at 2, 4, 7, and

9 days after drying. Subsequently, the samples were promptly

immersed in liquid nitrogen and were freeze-dried at –80°C. The

lyophilized samples were ground finely, and the powder (1 g) was

extracted using methanol (16 mL) under sonication at 50°C for 20

min. The extracts were centrifuged, filtered through a 0.22 μm

membrane filter (Whatman, Maidstone, UK), and concentrated

using a nitrogen gas evaporator. These concentrated extracts were

then re-dissolved in DMSO to achieve a concentration of 10 mg/mL

and stored at –80°C before analysis. The samples were diluted to 0.1

mg/mL with methanol before injection into an ultra-high-

performance liquid chromatography (UHPLC) system. To

quantify the target compounds, four standards (CBDA, CBD,

THCA, and THC) were purchased from Cerilliant (Cerilliant

Corp., Round Rock, TX, USA) and dissolved in acetonitrile at a

concentration of 1 mg/mL. UHPLC analysis was performed using a

Shimadzu Nexera X3 UHPLC system (Shimadzu Corp., Kyoto,

Japan), equipped with two pumps (LC-40B), a column oven (CTO-

40C), an autosampler (SIL-40C), and a photodiode array (SPD-

M40). Separations were achieved on a YMC-Triart C18 column

(100 × 2.0 mm, 1.9 μm; YMC Co., Ltd., Kyoto, Japan), with a mobile
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phase composed of 0.2% formic acid in both water (A) and

acetonitrile (B). The gradient elution was set as follows: 75% B for

0–4 min, linear increase to 90% B in 4–10 min, decreased to 75% B

within the next 0.5 min and re-equilibrated to initial gradient 75% B

until 13 min. The column temperature was 30°C. The sample

injection volume was 5 μL.
2.4 Hyperspectral image collection
and processing

The hyperspectral imaging system consisted of a hyperspectral

imaging camera (MicroHSI 410 SHARK, Corning, NY, USA) and

eight 20 W halogen lamps placed within a movable stage in a dark

chamber (Figure 1). The camera captured line-scan images with 150

spectral bands in the 400–1,000 nm range at a rate of 100 mm/s. The

hyperspectral images were obtained at a spatial resolution of 682 ×

1,540 pixels. Each round of scanning involved five samples for the

experimental data and one tray for the tracking data. Hyperspectral

data were examined within Python 3.9 environment (Python

Software Foundation, Wilmington, DE, USA) using the Spectral

Python (SPy) library.

A threshold technique was used to eliminate the background

from the hyperspectral cube data. A normalized band difference
B

A

FIGURE 1

Hyperspectral imaging system (A) and description of hyperspectral
data processing (B) in this study. The regions of interest (ROI) were
selected through a threshold technique.
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(NBD) was calculated using reflectance values at 764.74 and 684.69

nm, where NBD = (R764.74 – R684.69)/(R764.74 + R684.69) and R

denotes the reflectance values at the wavelength in a single pixel. A

threshold was applied to the images to enhance the contrast

between the plants and background, and pixels with NBD > 0.3

were selected as regions of interest (ROI) (Figure 1B). Classification

data were collected by extracting multiple ROI from 90

hyperspectral images. Only regions with 20 × 20 pixels covering

more than 70% of the ROI were selected without overlapping were

selected, resulting in 27–73 data points for each sample. An average

spectrum was extracted from each data point, and a total of 4,707

spectral data were used to develop the classification model.
2.5 Model development for
quality classification

Four quality characteristics, namely dryness, CBDA conversion,

THCA conversion, and CBD : THC, were categorized into two or

three classes based on RWC and cannabinoid content (Table 1). To

determine the classes of each characteristic, we conducted a

sensitivity analysis for each range using the raw spectrum and a

logistic regression model (Supplementary Figure S2).

To predict and classify the quality traits of harvested cannabis

flowers, we compared combinations of different spectral

preprocessing methods and machine learning algorithms. Five

spectral preprocessing methods were used: raw spectrum, SG

filter with a third-order polynomial fit with five data points: 1st

Der, 2nd Der, and MSC. The pre-processed average spectra are

shown in Supplementary Figure S3. Five machine learning

algorithm classifiers were used: LR, SVM, KNN, RF, and GNB.

We applied the one-vs.-rest method to binary classification

algorithms, such as LR and SVM, for multiclass classification. The

model implementation was programmed in Python 3.9 based on

SciPy and the scikit-learn package.
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2.6 Model evaluation and statistical analysis

For model development and evaluation, the dataset was

randomly divided into calibration and prediction sets in a ratio of

8:2. The calibration set was used to train the models and determine

the spectral preprocessing method and classifier based on the

highest accuracy using 10-fold cross- validation. The final model

was subsequently evaluated using the prediction set, and the results

were presented as a confusion matrix and receiver operating

characteristic (ROC) curve. The four evaluation metrics were

computed from the confusion matrix values, as follows:

Accuracy  =  (TP  +  TN)=(TP  +  TN  +  FP  +  FN)

Precision  =  TP=(TP  +  FP)

Recall  =  TP=(TP  +  FN)

F1-score  =  2 �  (Precision) �  (Recall)=(Precision  +  Recall)

where TP is true positive; FP, false positive; TN, true negative; and FN,

false negative.Accuracy is the ratio of correct estimates to all predictions,

and precision is the ratio of correct estimates to all positive predictions.

The F1-score is defined as the harmonic average of recall and precision,

indicating the overall accuracy of the classification. The ROC curve

represents the changes in the true positive rate (recall) and false positive

rateby the threshold.Theareaunder thecurve (AUCROC)was calculated

from the ROC curve to evaluate the predictive performance of the

models. To confirm the applicability of the final model for monitoring,

we tested it on tracking data.

The weight and cannabinoid content of the cannabis flowers

were compared using two-way ANOVA and Tukey’s honestly

significant difference (HSD) test to assess the effects of the drying

method and period. Statistical analyses were performed using R

software (R 4.2.2; R Foundation, Vienna, Austria).
TABLE 1 Classification class for quality of cannabis flowers during drying process.

Quality Class
Number of data

Total Calibration Prediction

Dryness Extreme dried 0< RWC ≤ 10 2,202 1,761 441

Dried 10< RWC ≤ 40 1,839 1,471 368

Fresh 40< RWC ≤ 100 666 533 133

CBDA conversion Low CBD% 0< C/TC ≤ 20 2,505 2,004 501

Middle CBD% 20< C/TC ≤ 60 1,001 801 200

High CBD% 60< C/TC ≤ 100 1,201 960 241

THCA conversion Low THC% 0< T/TT ≤ 20 2,594 2,075 519

Middle THC% 20< T/TT ≤ 50 1,631 1,305 326

High THC% 50< T/TT ≤ 100 482 385 97

CBD : THC High C:T 0< C/T< 20 1,371 1,097 274

Extreme high C:T 20 ≤ C/T ≤ 100 3,336 2,668 668
RWC, relative water content; C/TC, CBD percentage of total CBD (CBD + CBDA); T/TT, THC percentage of total THC (THC + THCA); C/T, ratio of total CBD to total THC.
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3 Results

3.1 Changes in weight and water content
of cannabis flowers during drying process

The relative weight and water content of the cannabis flowers

decreased rapidly during the initial two days of drying under both

hot- and cool-air conditions (Figure 2). In particular, flowers

subjected to hot-air conditions were completely dried after two

days, with no significant changes observed in weight and RWC.

During the nine days of the drying period, RWC declined from

78.1% to 12.7 ± 0.9% under cool-air conditions and 3.6 ± 1.4%

under hot-air conditions.
3.2 Spectrum and color changes of
cannabis flowers during drying process

The average spectra of the hyperspectral images revealed the

spectral reflectance of cannabis flowers, and the variations were

more closely associated with the drying method than to the drying
Frontiers in Plant Science 05
duration (Figure 3). The drying-induced changes in reflectance

were categorized into four ranges, and representative spectral

images are shown in Figure 4. The reflectance at wavelengths

below 552.61 nm was lower after hot-air drying compared to

other drying conditions. In contrast, higher values were observed

in the range of 556.61–612.65 nm after cool-air drying in

comparison to alternative conditions. For spectra within the

wavelength range of 616.65–708.7 nm, the highest values were

observed after cool-air drying, followed by hot-air drying, with

the lowest levels prior to drying. Notably, reflectance in the range of

720.71–884.81 nm experienced a rapid decrease under both drying

conditions, with the most pronounced decline observed after only

two days of hot-air drying. Conversely, cool-air drying resulted in

gradual decrease over a longer drying period.
3.3 Changes in cannabinoids of cannabis
flowers during drying process

Cannabinoids, such as CBDA, CBD, THCA, and THC, underwent

significant changes during the drying process (Figure 5). The results of

the two-way ANOVA revealed that the drying method, drying period,
FIGURE 2

Relative weight change and water content of cannabis flowers
during the drying period according to drying method: hot-air and
cool-air drying. Circle and vertical bars indicate mean ± SD (n = 6).
Different letters indicate significant differences among drying
method and period at p< 0.05 by two-way ANOVA and Tukey’s
HSD test.
B

A

FIGURE 3

Spectral changes of cannabis flowers during the drying period
(0, 2, 4, 7, and 9 days) according to drying method (A, hot-air
drying; B, cool-air drying). Solid lines and shaded areas indicate
mean ± SD (n = 10).
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FIGURE 4

Spectral images of cannabis flowers before and after 9 days of drying by hot-air and cool-air drying. Color indicates spectral reflectance at 548.61,
600.64, 660.67, and 800.76 nm, respectively.
B C

D E F

A

FIGURE 5

Cannabinoid concentration in cannabis flowers during the drying period according to hot-air and cool-air drying methods: CBDA (A), CBD (B), total
CBD (C), THCA (D), THC (E), and total THC (F). Bars and vertical bars indicate mean ± SD (n = 10). Different letters indicate significant differences
among drying method and period at p< 0.05 by two-way ANOVA and Tukey’s HSD test.
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and their interaction considerably influenced cannabinoid content (p<

0.01), except for total CBD. Total CBD concentration was significantly

affected by the duration of drying, whereas the drying method (p =

0.065) and their interaction (p = 0.098) were not significant. Under hot-

air conditions, CBDA gradually declined between days 4–9 of drying,

resulting in a 65.4% decrease at day 7 compared to the initial value.

However, the CBD content rapidly increased after hot-air drying,

surging by a 20.1-fold after 7 days of drying compared to the initial

value. The total CBD content peaked at 48 h post hot-air drying, with a

59.1% increase from the initial value. After 7 days of hot-air drying,

THCA, THC, and total THC concentrations reached their highest

levels, increasing by 1.7-, 41.1-, and 2.7-fold, respectively, compared to

their pre-drying levels. Meanwhile, under cool-air conditions, CBDA

and THCA reached their maximum values after 4 days of exposure,

showing increases of 62.3% and 81.2%, respectively, compared with

their levels before drying. However, no significant differences were

observed in CBD and TCH levels during the cool-air drying period.

After 4 days of exposure to cool-air drying, the total CBD and total

THC levels increased by 64.8% and 87.2%, respectively, compared to

their initial levels before drying.

3.4 Cannabis quality assessment models
based on hyperspectral imaging

As a result of the 10-fold cross-validation (CV), the spectral

preprocessing method and machine learning model were determined
Frontiers in Plant Science 07
for each quality characteristic (Figure 6). The LR model had the

highest overall accuracy when coupled with theMSC, SG filter, or raw

reflectance, followed by the RF model with 2nd Der. Regarding the

classification of dryness, THCA conversion, and CBD : THC, the LR

model with MSC preprocessing achieved the highest 10-fold CV

accuracies of 0.9979, 0.9450, and 0.9570, respectively. To classify the

CBDA conversion, the LR model with the SG filter method was

selected owing to its CV accuracy of 0.9862.

The selected models were evaluated using five metrics, and they

demonstrated high accuracy in predicting each quality characteristic

(Table 2). The prediction accuracy closely aligned with the CV accuracy

of eachmodel. All confusionmatrices and ROC curves used to calculate

these metrics are detailed in the (Supplementary Figures S4, S5). Only

the THCA conversion model exhibited precision, recall, and F1-score

values lower than the accuracy values, indicating an imbalance among

the classes. Among the THCA conversion classes, the high THC% class

contained a relatively small amount of data (10% of all data), which

consequently led to lower precision, recall, and F1-score values (Table 1,

Supplementary Figure S4).
3.5 Application for cannabis quality
assessment during drying process

The dryness level did not significantly change following hot-air

drying, whereas other quality aspects, particularly the CBDA
B

C D

A

FIGURE 6

Accuracy of 10-fold cross validation results for dryness (A), CBDA conversion (B), THCA conversion (C), and CBD : THC (D) according to spectral
data pre-processing methods and machine learning models.
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conversion, and CBD : THC ratio, showed variations (Figure 7). A

prediction model based on hyperspectral imaging can be extended

from single-pixel-level classification to visualize the distribution of

each class. The developed models were used to monitor the

cannabis quality during the drying process. This model facilitated

the continuous tracking of cannabis quality through changes in

compounds during the drying process.
4 Discussion

We investigated the changes in cannabis quality during the

drying process and devised a nondestructive method for evaluating

the quality of cannabis flowers using hyperspectral images with

machine learning algorithms. Although the weight and RWC

remained constant during the drying process, the concentrations
Frontiers in Plant Science 08
of CBD, THC, and their precursors varied depending upon the

drying conditions. Therefore, cannabis quality is inevitably

determined by drying endpoints and conditions.
4.1 Changes in cannabinoid composition in
cannabis plants

Major cannabinoids, including CBDA, CBD, THCA, and THC,

share a biosynthetic pathway that connects to the precursor

molecule, CBGA (Tahir et al., 2021; Govindarajan et al., 2023).

This biosynthesis predominantly occurs within the trichomes of

cannabis plants (Livingston et al., 2020; Tanney et al., 2021), which

develop in various parts of female cannabis flowers. While trichome

development may vary among different genotypes, it typically

begins gradually after the onset of flowering, with a significant
TABLE 2 Prediction performance of the selected model for cannabis quality in the test set.

Quality
Spectral pre-
processing

Model

Prediction performance

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

AUCROC

Dryness MSC LR 99.7 99.7 99.6 99.7 1.00

CBDA conversion SG filter LR 98.1 97.2 97.4 97.3 1.00

THCA conversion MSC LR 94.7 89.9 89.5 89.7 0.99

CBD : THC MSC LR 95.8 95.0 94.6 94.8 0.99
fr
AUCROC, area under ROC curve.
B

C

D

A

FIGURE 7

Application for quality monitoring of cannabis flowers in drying method and period: dryness (A), CBDA conversion (B), THCA conversion (C), and
CBD THC (D). Colors represents the predicted class. Percentage values indicate the proportion of the class occupied by plant pixels.
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increase observed at approximately 3–4 weeks as female flowers

take form. As the trichomes continue to mature, they synthesize and

accumulate cannabinoids. However, the senescence phase begins at

approximately 8 weeks after flower anthesis, and resin secretion

gradually decreases (Punja et al., 2023).

Cannabinoid trichomes can be categorized into four types: non-

secretory, sessile capitate, pre-stocked capitate, and stocked-capitate

trichomes (Hammond and Mahlberg, 1973). The heads of the

stocked-capitate trichomes are protected by a cuticle layer.

Within the lower part of these trichome heads, 12–16 disc cells

can be found where cannabinoid synthesis occurs (Hammond and

Mahlberg, 1973; Small and Naraine, 2016; Livingston et al., 2020).

In contrast, the upper part of the resin accumulated various

secondary metabolites, including cannabinoids, terpenes, organic

acids, and polysaccharides (Jin et al., 2020; Livingston et al., 2021;

Tanney et al., 2021). Cannabidiolic acid synthase (CBDAS) and D9-
tetrahydrocannabinolic acid synthase (THCAS), responsible for the

synthesis of THCA and CBDA, respectively, from CBGA, are

equipped with secretory signal peptides that guide them to the

resin. CBDAS and THCAS, once secreted into the extracellular

space, catalyze the conversion of CBGA to D9-THCA and CBDA

(Taura et al., 2007).

Remarkably, trichomes maintain their physical integrity even

after the drying process owing to the protective cuticle layer

covering their heads. This preservation of trichome heads

suggests that no spatial limitations hinder the catalytic activity of

THCAS and CBDAS during the drying period (Taura et al., 2007;

Meija et al., 2022). This study provides limited evidence to support

the preserved functional capacity of cannabinoid synthesis

(Figure 5). Further research is needed to understand the

relationship between trichome preservation and precursor

turnover during drying.

Cannabinoid acids, such as CBDA and THCA, are readily

decarboxylated and stabilized by heat during the drying process

(Tahir et al., 2021; Govindarajan et al., 2023). Excessive heat can

lead to the loss of the synthesized cannabinoids. Although the

drying temperatures applied in this experiment were not high

enough to cause significant cannabinoid loss (Wang et al., 2016;

Das et al., 2022), prolonged drying can cause such loss (Addo et al.,

2021; Chen et al., 2021). Therefore, determining the drying

endpoint supports a smooth and stable transition to the next step.
4.2 Cannabis quality in industrial processes

The industrial decarboxylation process is crucial for extracting

the active components, CBD and THC, through heating at a

relatively high temperature, approximately 100°C, for a short

reaction duration (Wang et al., 2016). In this study, CBDA

conversion gradually increased with longer drying times, reaching

83.2% after 9 days of hot-air drying (Figure 5). CBD chemotype

plants with a CBD : THC ratio of approximately 25:1 are commonly

used in medical-grade products (Chandra et al., 2017). The ‘Cherry

Blonde’ cultivar used in this study is a CBD chemotype cannabis

with low THC levels, with a CBD : THC ratio of 36:1 at harvest.

Under hot-air conditions, the ratio increased to 55:1 at 2 days after
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drying and subsequently decreased to 22–15:1 at 4–9 days after

drying (Figure 5). The THCA conversion followed a similar pattern,

peaking at 62.5% 2 days after hot-air drying and subsequently

decreasing to 41.5–33.5% during days 4–9. In contrast, under cool

air conditions, the conversion rates of CBDA and THCA and the

CBD : THC ratio remained below 6% and in the range 29–36:1,

respectively. These findings suggest that cool air can effectively

maintain the conversion rates and desired ratios. Although

additional decarboxylation process is required for medical-grade

cannabis production, preservation is a suitable postharvest strategy,

particularly for extended transportation and storage, ensuring a

longer shelf life (AL Ubeed et al., 2022).

Each class of the four qualities in the present study was

determined as the range that could be best classified through

sensitivity analysis (Supplementary Figure S2). A criterion for

classifying the industrial quality of cannabis is required to

accelerate the development of quality control technologies.
4.3 Hyperspectral imaging analysis with
spectral pre-processing and
machine learning

We established a hyperspectral imaging-based model for

evaluating cannabis quality during the drying process, including

dryness, CBDA conversion, THCA conversion, and CBD : THC

ratio. Extracting valuable information from hyperspectral data is

challenging because of high dimensionality, redundancy, and noise

(Saha and Manickavasagan, 2021). To make hyperspectral imaging

applications more adaptable for real-time use, efficient algorithms

and data processing techniques are necessary.

The most common practices of spectral preprocessing used in

this study were derived from chemometric techniques, including

the SG filter, 1st and 2nd derivatives, and MSC (Supplementary

Figure S3). The SG filter is one of the most well-known smoothing

methods for denoising, such as instrumental noise or extreme band

rejection. It is also used to interpolate spectral data that can be used

for other transformations, such as derivatives. In particular, the

hyperspectral imaging of plants requires additional correction

techniques because of the variability arising from these complex

geometries (Mishra et al., 2017). Derivative techniques effectively

reduce the additive effects as a constant offset and linear baseline

shift. These techniques not only emphasize spectral features but also

increase noise levels in the data (Vidal and Amigo, 2012). MSC is

widely used to compensate for additive or multiplicative effects, i.e.,

both light scattering and baseline shift corrections. In this study,

preprocessing methods, except for the SG filter, significantly

affected the accuracy of the models (Figure 6, Supplementary

Figure S3). The similarity in model accuracy between the SG filter

and the raw spectrum may be attributed to the stable conditions in

the dark chamber, which indicate minimal noise from the

measurement environment (Figure 1).

Among the various machine-learning algorithms, we used

common supervised classification methods, including LR, SVM,

KNN, RF, and GNB. In this study, LR models exhibited the highest

accuracy in predicting the four qualities when coupled with the
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MSC or SG filters (Figure 6). LR is a probability-based algorithm

based on a logistic (sigmoid) function that calculates the probability

of a binary outcome (Saha and Manickavasagan, 2021). The

probability (P) with multiple variables has the following general

form:

P =   1= 1 + e−(b0+b1X1+b2X2+…+bnXn)
� �

where X1 to Xn are distinct independent variables; b0 to bn are the
regression coefficients. When the number of samples or predictors

is limited, e.g., in the field of clinical prediction models

(Christodoulou et al., 2019; Nusinovici et al., 2020), LR is

considered more suitable than other machine learning models.

However, the predictor variables in the hyperspectral image-based

model were wavelength bands, and the number was not small (150

in this study). Because of the assumption of a linear relationship

between the features and class labels, LR may not effectively capture

complex nonlinear relationships. For instance, LR models have

limitations in inferring relationships between gene expressions in

large-scale profiling (Chen et al., 2016). In this study, the accuracy

of the LR model was low only when combined with the 2nd Der

pre-processing, likely due to the increased feature complexity

(Figure 6). In contrast, the accuracy of the SVM, KNN, RF, and

GNB models increased when combined with 1st or 2nd derivatives

compared with other preprocessing methods (Figure 6). These

models are appropriate for handling non-linear relationships.

SVM is an algorithm that determines the hyperplane that

maximizes the distance between different classes in the data. It

was designed to resolve overfitting issues when dealing with high-

dimensional data (Noble, 2006). KNN is an instance-based

algorithm that assigns data to the major class among its k nearest

neighbors, where k = 5 in this study (Rehman et al., 2019). RF is a

bagging algorithm that constructs multiple decision trees and

combines their predictions (Breiman, 2001). In previous studies

using hyperspectral data, SVM and RF models were more accurate

than the KNN model in predicting nitrogen accumulation in

legume plants (Flynn et al., 2023). GNB uses Bayes’ theorem with

the assumption of feature independence and the Gaussian

distribution of each class and classifies data based on probability

(Frank et al., 2000). These results might be attributed to the linear

relationship between spectral features and cannabis quality, or

because the preprocessing makes the data more linear or removes

nonlinear variations that better match the assumption of LR.
4.4 Industrial quality assessment
techniques based on
hyperspectral imaging

Non-destructive analytical technique using spectroscopy,

include Fourier transform infrared (FT-IR), near-infrared (NIR),

Raman spectroscopy, and hyperspectral imaging (Xu et al., 2023),

ensure rapid and accurate analysis, and qualitative and quantitative

evaluation. In addition to its advantages, hyperspectral imaging
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allows the extension of spectral analysis results of one pixel to a

spatial distribution level. If there is no priority among the qualities,

the spatial homogeneity of the components can be evaluated using

the coefficient of variance (Yoon et al., 2022). For cannabis

products, the quality priority depends on the purpose of the

drying process. Traditional drying methods, such as the cool-air

conditions used in this study, aim to reduce disease or damage and

increase shelf life (Challa et al., 2021). As the conversion rates of

CBDA and THCA or the CBD : THC ratios were preserved under

these conditions, it would be more appropriate to monitor the

quality based on dryness or absolute content (Figure 7A). Although

the cannabinoid content can vary depending on the cannabis

cultivar or developmental characteristics, the accuracy of the

binary classification was high (Supplementary Figure S6).

Therefore, caution should be exercised when using the

cannabinoid content as a criterion. The classification model for

the total CBD content was predicted with an accuracy of 0.741 by

the RF model combined with 2nd Der, and the model for the total

THC content was predicted with an accuracy of 0.833 by the LR

model without spectral preprocessing. The thresholds for defining

CBD and THC levels were 90 μg mg−1 and 3 μg mg−1, respectively,

according to a previous study (Lu et al., 2022). Consequently, the

developed model for dryness- or variety-specific cannabinoid

content based on hyperspectral imaging can serve as a supporting

technology to reduce unnecessary time and enhance quality control

for conventional and large-scale drying processes. Conversely,

industrial decarboxylation process is an essential step for

extracting the active components, CBD and THC, through

heating at a relatively high temperature around 100°C and a short

reaction time (Wang et al., 2016). The endpoint of drying was

determined when the samples with a high CBDA conversion rate

occupied more than 80% of the image, corresponding to 9 days of

hot-air drying (Figure 7B). Accordingly, the developed models for

the conversion rate or ratio of cannabinoids enable the monitoring

of cannabis quality and determination of the drying endpoint,

regardless of the nonuniform environment within the drying

facility, contributing to optimizing the industrial drying process.
5 Conclusion

Our study analyzed the dynamic factors affecting cannabis quality

during the drying process and introduced a nondestructive quality

assessment approach using hyperspectral imaging and machine

learning. Despite the constant weight and water content throughout

the drying process, the cannabinoid content varied with drying

conditions. Thus, our findings emphasize the importance of

determining a precise drying endpoint to maintain consistent

cannabinoid levels. Drying processes can be performed for two

different purposes: to preserve cannabinoid composition at relatively

low temperature or to induce decarboxylation of the acid form through

heat treatment. Both purposes require monitoring techniques for

uniform quality, which can be accurately predicted through the

integration of hyperspectral imaging and machine learning techniques.
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The results of this study indicate that the hyperspectral imaging

model can be used as a valuable tool for monitoring the quality of

cannabis in industrial products. This tool not only facilitates the

evaluation of the uniformity of cannabis quality but also aids in the

identification of the optimal drying endpoint, even in the context of

large-scale and non-uniform conditions. We anticipate that our

findings will catalyze future investigations aimed at improving

drying processes, and thereby contributing to the advancement of

the cannabis industry and the development of cutting-edge quality

control technologies.
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