AUTHOR=Duan Jingpeng , Liu Jing , Huang Zhihuan
TITLE=Predicting the distribution pattern changes of dye plant habitats caused by climate change
JOURNAL=Frontiers in Plant Science
VOLUME=15
YEAR=2024
URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1364481
DOI=10.3389/fpls.2024.1364481
ISSN=1664-462X
ABSTRACT=
Climate change has accelerated the habitat loss and fragmentation of wildlife. Dye plants of “Fengxiang dyeing” are important indigenous natural resources for traditional printing and dyeing craft in southwest China, is of practical and cultural importance for dozens of ethnic minorities. However, lack of the spatial distribution information of these plants has hampered holistic and efficient conservation management measures. We analyzed the potentially suitable areas of four dye plants (Liquidambar formosana, Strobilanthes cusia, Persicaria tinctoria and Indigofera tinctoria) necessary for “Fengxiang dyeing” based on their geographical distribution sites under different climatic situations using the maximum entropy (MaxEnt) model. The results showed that temperature, precipitation and elevation were the most important factors affecting the suitable geographical areas of the four dye plants. Under the current climate conditions, the overlapping suitable habitat areas of the four plants were mainly in the four southern provinces of China, including Guizhou, Guangxi, Guangdong and Hainan. L. formosana was used as the base plant for combination with the other three plants under the two future climate scenarios (SSP126 and SSP585), and the overlapping suitable habitat areas of the obtained seven combination patterns were considered suitable for potential craft development. Five patterns showed an increase, while two patterns showed a decreasing trend with the increasing carbon emission. The prediction results showed that the overlapping suitable habitat center of the four plants will gradually move to the northeast, indicating that the overlapping suitable habitat area and craft distribution area will be changed. These results provide the basis for understanding the spatial distribution pattern changes of dye plants caused by climate change and establishing measures for protecting and developing printing and dyeing craft.