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Zhirui Ma1, Lei Wen1, Siqing Lin1, Yingxuan Lin1, Hongyan Sun1

and Sagheer Ahmad3

1College of Life Sciences, Fujian Normal University, Fuzhou, China, 2Fujian Provincial Key Laboratory
for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of
Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal
University, Fuzhou, China, 3College of Landscape Architecture and Art, Fujian Agriculture and Forestry
University, Fuzhou, China
As an upright tree with multifunctional economic application,Machilus pauhoi is

an excellent choice in modern forestry from Lauraceae. The growth

characteristics is of great significance for its molecular breeding and

improvement. However, there still lack the information of WUSCHEL-related

homeobox (WOX) and Auxin response factor (ARF) gene family, which were

reported as specific transcription factors in plant growth as well as auxin

signaling. Here, a total of sixteen MpWOX and twenty-one MpARF genes were

identified from the genome ofM. pauhoi. Though member of WOX conserved in

the Lauraceae, MpWOX and MpARF genes were unevenly distributed on 12

chromosomes as a result of region duplication. These genes presented 45 and

142 miRNA editing sites, respectively, reflecting a potential post-transcriptional

restrain. Overall, MpWOX4, MpWOX13a, MpWOX13b, MpARF6b, MpARF6c, and

MpARF19a were highly co-expressed in the vascular cambium, forming a

working mode as WOX-ARF complex. MpWOXs contains typical AuxRR-core

and TGA-element cis-acting regulatory elements in this auxin signaling linkage.

In addition, under IAA and NPA treatments, MpARF2a and MpWOX1a was highly

sensitive to IAA response, showing significant changes after 6 hours of treatment.

And MpWOX1a was significantly inhibited by NPA treatment. Through all these

solid analysis, our findings provide a genetic foundation to growth mechanism

analysis and further molecular designing breeding in Machilus pauhoi.
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Introduction

Plants produce shoot apical meristem (SAM) tissues during

development, which contain a population of stem cells. These stem

cells have the ability to produce new cells, ensuring the continuous

formation of new tissues and organs as the plant develops (Bowman

and Eshed, 2000; Barton, 2010). SAM is crucial for plant growth and

development in the above-ground portion of the plant. The

regulatory network responsible for its formation and development

is highly complex, influenced by various external environmental

factors and internal regulatory factors. The genes CUC1 and CUC2

(Aida et al., 1997), SHOOT MERISTEMLESS (Barton and Poethig,

1993) and WUSCHEL (WUS) (Mayer et al., 1998) have been proven

to be involved in the regulatory network. The WUS gene is

specifically required for maintaining the structural and functional

integrity of shoot and floral meristems, which are crucial for central

meristem identity (Laux et al., 1996).The WUSCHEL-related

homeobox (WOX) gene family is a plant-specific class of

transcription factors that belongs to a subclass of the homeobox

(HOX) superfamily (Alvarez et al., 2018). Based on their phylogenetic

relationships, plant WOX proteins can be classified into three

categories: the WUS clade, the intermediate clade and the ancient

clade (van der Graaff et al., 2009). The ancient clade includes

conserved WOX genes from algae to angiosperms. The

intermediate clade consists of members from ferns to angiosperms,

and the modern clade is exclusive to seed plants. This classification

reflects the evolutionary time when WOX genes appeared in plants

(Lian et al., 2014).WOX genes are characterized by short chains of

amino acids (60-66 residues) folded into a helix-loop-helix-turn-helix

structure known as the Homeodomain (HD), which is responsible for

DNA-binding (Gehring et al., 1990; Gehring et al., 1994; Gu et al.,

2020). In addition to the HD structural domain, WOX proteins

contain a unique WUS-box motif (TLXLFP) that is conserved in the

WOX gene and is essential for WUS activity (Ikeda et al., 2009). The

WUS-box is specific to the WUS clade members and functions as an

activator and contains a C-terminal EAR domain that involves

transcriptional repression. EAR-motif interacts with TOPLESS

(TPL)/TPL-related (TPR) corepressor to repress the transcription

of auxin-responsive genes (Szemenyei et al., 2008; van der Graaff

et al., 2009).WUS (WUSCHEL) was the first gene in theWOX family

to be identified. This gene is essential for maintaining the structural

and functional integrity of stem and inflorescence meristems in A.

thaliana (Laux et al., 1996). The WUS protein performs dual

function, acting both as a transcriptional repressor and as an

activator involved in the regulation of AGMOUS (AG) expression

in A. thaliana (Ikeda et al., 2009). AtWUS transcription factors

regulate the differentiation of apical stem cells by controlling auxin

hormone signaling and response pathways through the regulation of

histone acetylation (Ma et al., 2019). The WUS gene also affects the

formation of tiller buds in rice. Xia et al. discovered that the loss of

OsWUS function led to decreased tillering and increased apical

dominance (Xia et al., 2020). Researchers have recently identified

and analyzed the WOX gene families of several other plants. For

example, 13, 18, 18, 14 and 31 WOX members are identified in

Ginkgo biloba (Nardmann et al., 2009), Populus (Liu et al., 2014b), tea

(Wang et al., 2019), Pinus pinaster (Alvarez et al., 2018) and maize
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(Zhang et al., 2010), respectively. WOX performs specific functions in

key developmental processes, including embryonic patterning, stem

cell maintenance, organogenesis, floral development, and hormone

signaling (Haecker et al., 2004; Cheng et al., 2014; Costanzo et al.,

2014; Dolzblasz et al., 2016). WOX4 has been demonstrated to be

associated with cambium formation in A. thaliana (Suer et al., 2011)

and Populus (Kucukoglu et al., 2017). WOX5 acts downstream of

SHORTROOT (SHR)/SCARECROW (SCR) genes in maintaining

the stem cell identity (homeostasis) of the root apical meristem

(RAM) quiescent center in A. thaliana (Stahl et al., 2009).

PtrWUSa/b and PtrWOX13a/b/c are expressed in the vascular

cambium and differentiating xylem cells in poplar (Haghighat et al.,

2024). PtoWOX5a is participating in the development of adventitious

roots in poplar (Li et al., 2018b) and the GhWOX13 gene affects the

development of cotton fiber (He et al., 2019). WOX14 promotes the

differentiation and lignification of vascular cells in the inflorescence

stems of A. thaliana (Denis et al., 2017). However, there are limited

studies on the regulatory functions of this gene family in forest trees,

particularly in Lauraceae.

The primary form of auxin in plants is indole-3-acetic acid (IAA).

It regulates the growth, division, and specific differentiation of cells,

participating in the growth and development of various plant parts

(Ljung, 2013). The highly conserved nuclear auxin signal

transduction pathway is composed of the TIR1/AFB-Aux/IAA

auxin co-receptors, the transcriptional co-repressor TOPLESS

(TPL), and the AUXIN RESPONSE FACTORS (ARFs) (Galli et al.,

2018). ARFs bind with specificity to TGTCTC auxin response

elements (AuxRE) in promoters of these genes and function in

combination with Aux/IAA (auxin/indole acetic acid) repressors,

which dimerize with ARF activators in an auxin-regulated manner

(Guilfoyle and Hagen, 2007). The ARF protein has a specific structure

and can perform distinct functions, enabling it to participate in

multiple signal transduction pathways and other regulatory

processes. ARF typically contain three domains: the N-terminal B3-

like DNA-binding domain (DBD), the transcriptional regulatory

ARF domain of the middle region (MR), and the C-terminal

dimerization domain (CTD) (Tiwari et al., 2003; Li et al., 2016).

The DBD domain directly and specifically binds to the AuxRE of

plant auxin-responsive genes, such as GH3 and SAUR. ARF domains

can be categorized as activation domains (AD) or repression domains

(RD) based on their functions. The CTD domain is capable of

forming dimeric interactions between ARF-ARF or ARF-Aux/IAA

to regulate the auxin response (Guilfoyle and Hagen, 2007). The

stems of plants play a crucial role in providing support and

transporting nutrients, and their growth and development are

significantly influenced by auxin. PoptrARF2.1, PoptrARF2.2,

PoptrARF3.1, PoptrARF3.4, PoptrARF6.2, and PoptrARF6.3 were

found to regulate the growth and development of phloem and

xylem (Kalluri et al., 2007) and ARF7 as a molecular bridge of GA

and auxin signaling pathways to regulate cambial development in

poplar (Hu et al., 2022). PoptrARF5 plays a key role in the

development of secondary xylem (Johnson and Douglas, 2007).

Moreover, PtoARF5 is able to drive the PtoIAA9-dependent

cellular behaviors for secondary xylem differentiation in poplar (Xu

et al., 2019). EgrARF of Eucalyptus grandis are also expressed in all

parts, with the highest expression of EgrARF3 and EgrARF4 in the
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stem and phloem. EgrARF5 is highly expressed in both xylem and

phloem, while EgrARF10 and EgrARF19A are highly expressed in the

vascular cambium (Yu et al., 2014).

It has been demonstrated that WOX11 and 12 are direct target

genes for growth hormones in de novo organogenesis (Liu et al.,

2014a). In addition, WOX9 is predicted to be a downstream target

gene of the MP/BDL (ARF5)-dependent auxin signaling pathway

(Haecker et al., 2004). Moreover, ARF5 promotes xylem production

mainly through the direct activation of xylem-related genes and

repression of WOX4 (Brackmann et al., 2018). Meanwhile,

intermediate branches of related WOX genes (IC-WOXs) and

class A auxin response factors (A-ARFs) form various protein

complexes to activate three distinct root types in A. thaliana

(Zhang et al., 2023b). A study on the molecular mechanism of

leaf flattening to form broad leaves in A. thaliana, has is found that

redundant abaxial-rich ARF repressors can inhibit the expression of

WOX1 and PRS through direct DNA-binding (Guan et al., 2017).

The aforementioned studies demonstrate a complex regulatory

relationship between the WOX genes and ARF.

Machilus pauhoi is an evergreen broad-leaved tree of the genus

Machilus in the family Lauraceae, which is characteristics by its

strong budding ability, adaptability and versatility. With a straight

stem and rapid growth, it is a fast-growing species with high

economic value among broad-leaved trees (Chunhui et al., 2019).

The rapid and high growth of forest trees is attributed to the vigorous

top advantage of the plant. Recently, there have been numerous

studies on the agronomic traits and physical characteristics of M.

pauhoi (QuanLin et al., 2002; Quanlin et al., 2008; Leilei et al., 2016;

Man et al., 2016; Pan et al., 2016; Yan et al., 2018; Yu-xing et al.,

2018). However, there is no available report on the MpWOX and

MpARF gene currently. Therefore, in this study, we identified and

analyzed the WOX and ARF gene family in the M. pauhoi genome,

including phylogenetic tree, gene collinearity, gene structure and

expression pattern analysis under treatments with IAA andNPA. The

aim of this study was to provide valuable information for further

investigation of the functions of theWOX and ARF gene families and

their interactions in the growth and development of M. pauhoi.
Results

Physicochemical properties of MpWOXs
and MpARFs

A total of sixteen MpWOX and twenty-one MpARF genes were

identified through HMM search and BLAST. The MpWOX and

MpARF proteins were named according to their homology with A.

thaliana WOX and ARF proteins. The analysis of the

physicochemical properties of MpWOX and MpARF revealed

significant differences among members of different gene families

(Supplementary Table 2). The molecular weights of MpWOX

ranged from 19864.29 to 37964.66 Da and the isoelectric points

ranged from 5.76 to 9.19. The molecular weights of MpARF ranged

from 41288.75 to 131242.66 Da, and the isoelectric points ranged

from 5.5 to 8.54. The grand average of hydropathicity (GRAVY)
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index of all proteins were negative indicating that MpWOX and

MpARF had good hydrophilicity. The aliphatic index was greater

than 40, showing their thermostability. Subcellular prediction showed

that MpWOXs and MpARFs were all localized in the nucleus, this

provided a possible interaction and linkage common space.
Phylogenetic tree of WOX and ARF
in Lauraceae

To gain a deeper understanding of the evolutionary relationships

of proteins in various species, particularly in Lauraceae, phylogenetic

tree was constructed for 99 WOX and 163 ARF proteins in 7 species.

The evolutionary tree was clearly divided into two main branches,

WOX and ARF. The 99 WOX proteins could be divided into three

branches: the WUS clade (WC), intermediate clade (IC) and ancient

clade (AC). The WC contained the most WOX genes (58). The

number of MpWOX proteins varied greatly in different branches

(Figure 1A). The ancient clade contained members of the

MpWOX13a and MpWOX13b. The intermediate clade contained 4

MpWOX members. The remaining MpWOXs were found in the

WUS clade. According to the phylogenetic tree, 163 ARF proteins can

be classified into 4 classes (I-IV). The ARF proteins in the seven

species were primarily distributed in class I and class II. Class II

contained the most ARF proteins (58). The MpARF proteins

contained eight members in class II, seven members in class I, and

only three members in both class III and IV (Figure 1A). Polyploidy

in plant evolution is one of the important driving forces behind gene

family expansion and the diversification of gene functions

(Fernández-Mazuecos and Glover, 2017). There were numerous

multi-copy genes in both WOX and ARF gene families of M.

pauhoi, particularly MpWOX2, MpARF2, MpARF19 and MpARF6,

each of which has three copies in the M. pauhoi genome.

In addition, the number of WOX genes varied from twelve to

sixteen in different species (Figure 1B). The number of genes in

different subfamilies showed a similar trend, with the WUS clade

having the highest number of genes, the intermediate clade having the

next highest and the ancient clade having the lowest numbers among

all species. This trend in the number of WOX genes was particularly

evident in Lauraceae. The number of ARF genes varied from 18 to 27 in

different species (Figure 1C). The number of ARF genes fluctuated

greatly in Lauraceae plants. P. americana and P. bournei have the same

number of ARF genes (27), while C. camphora contains only 18 ARF

genes. Compared to A. thaliana, the number of class II members

tended to increase in the five species of Lauraceae. In contrast, the

number of class II members tended to decrease in Lauraceae, possibly

due to the presence of functional redundancy in some genes.

The prediction and analysis showed that MpWOX and MpARF

proteins of the same subfamily tended to have similar secondary

structures, including alpha-helix, beta-turn, and random coil

distributions (Supplementary Table 4; Supplementary Figure 1), as

well as tertiary structures (Supplementary Figure 2). The secondary

structures of proteins in different subfamilies were quite different,

which was mainly reflected in the large fluctuation of alpha helix

content (Supplementary Table 4).
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Characterizations of MpWOX and
MpARF proteins

The conservative motif showed that MpWOX contained ten

distinct motifs. Motif 2 and motif 1 were commonly found in the

MpWOX proteins. Motif 10 was specifically present in the ancient

clade of the MpWOX. Interestingly, motif 7 and motif 4 only existed
Frontiers in Plant Science 04
in the intermediate clade. Motif 3, motif 8, motif 2, motif 1 and motif

5 were present in all MpARF proteins. Motif 14 was specifically

present in the three MpARF proteins of class I, while all three genes of

class I were missing motif 6. The results of protein structure analysis

showed that members with similar phylogenetic relationships also

had similar intron/exon structures. The number of introns varied

between one and three in theMpWOX genes. The numbers of introns
B

A

C

FIGURE 1

Phylogenetic analysis of WOX and ARF. (A) The evolutionary tree contains a total of 99 WOX and 163 ARF genes. The 99 WOX proteins can be
divided into three different branches. The WC is WUS clade. IC, which stands for intermediate clade. AC is an ancient clade. There are 163 ARF
proteins divided into 4 classes (I-IV). Different branches are marked with various colors. (B) Number of WOX gene members on different evolutionary
branches in seven species. (C) Number of ARF gene members on different evolutionary branches in seven species. The tree contains sequences
from Machilus pauhoi (Mp), Cinnamomum kanehirae (Ck), Cinnamomum camphora (Cc), Persea americana (Pa), Phoebe bournei (Pb), Arabidopsis
thaliana (At) and Oryza sativa (Os). The WOX and ARF proteins in M. pauhoi are marked with red. In addition, the tertiary structures of some proteins
are displayed, and proteins with tertiary structures are labeled with purple dots in part A.
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in the MpARF gene were highly variable, ranging from four

(MpARF16b) to eighteen (MpARF2c). Long introns were found in

both MpWOX and MpARF genes, such as MpWOX13a, MpWOX2c,

MpARF6c, MpARF2a. The presence of longer introns may be due to

the insertion of transposons within the genes (Figures 2A, B).

Analysis of the conserved protein sequences of AtWOXs and

MpWOXs revealed that 31 amino acid sequences contained a

conserved homeodomain with an average length of 60 aa. Further

multi-sequence alignment of the amino acids in the WOX
Frontiers in Plant Science 05
homeodomain revealed that the AtWOX and MpWOX

homeodomains were highly conserved. The WUS-box (TLXLFP)

is an important structure for the functioning of WC members. The

WUS-box was observed in all ten WC members of M. pauhoi

(Figure 2D; Supplementary Figure 4). The Batch CD analysis found

that all MpARFs contained Auxin_resp and B3 structural domains,

which further confirms the accuracy of the identifiedMpARF genes.

Additionally, there were ten MpARFs that did not contain the

AUX/IAA superfamily structural domain, and these genes were
B

C D

A

FIGURE 2

Characteristic of MpWOX and MpARF proteins. (A, B) denotes conserved domain and gene structure analysis of MpWOX and MpARF, respectively.
(C) Conserved structural domains of the MpARF. Sequence logo of DBD domain, ARF domain, and CTD domain. (D) Conserved structural domains
of the MpWOX. Sequence logo of homeodomain and the WUS-box specific to the WC member.
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mainly found in class I and class II. We conducted a multiple

sequence comparison among them and the results showed that all

MpARFs contained DBD and ARF domains. The CTD structure of

certain MpARFs were missing to varying degrees. The conserved

structural domains of each gene had a relatively similar sequence

composition to one another (Figure 2C; Supplementary Figure 3).
Collinearity analysis in the current M.
pauhoi Genome

All MpWOX and MpARF genes were mapped to chromosomes

based on the gene coordinate annotation data. The 16MpWOX genes

were unevenly distributed on 8 out of the 12 chromosomes and located

mainly at the ends of each chromosome (Figure 3A). No MpWOX

genes were located on chromosomes 5, 9, 11, and 12. Chromosome 2

boasted the highest count of MpWOX genes, totaling five. Collinearity

analysis showed that there were three pairs of segmental duplication
Frontiers in Plant Science 06
genes inMpWOX. Two of themwere involved genes fromWUS clades,

one was involved a homologous gene from intermediate clades, and

none was involved a homologous gene from ancient clades

(Supplementary Table 5). The 21 MpARF genes were unevenly

distributed on 11 out of the 12 chromosomes of M. pauhoi.

Chromosome 5 was the sole chromosome that lacked any MpARF

genes. Meanwhile, a total of 10 pairs of segmental duplication genes

were identified among the 21 MpARF genes, spanning classes I-IV.

These co-linear gene pairs predominantly consisted of genes that

exhibit multi-copying phenomenon. Notably, chromosome 4 was

involved in the most segmental duplication events, with a total of six

duplication pairs of theMpARF gene localized on this chromosome. In

addition, tandem duplication genes were not present in either the

MpWOX genes or the MpARF genes. Furthermore, the collinearity

betweenM. pauhoi andA. thalianawas analyzed (Figure 4B). A total of

15 pairs of collinear relationships between A. thaliana and M. pauhoi,

which harbored six pairs of homologous genes for MpWOX and nine

pairs of homologous genes for MpARF, respectively (Figure 3B).
B

A

FIGURE 3

Intragenomic collinearity map of MpWOX and MpARF. (A) Intragenomic collinearity map of MpWOX and MpARF. a: The colored lines indicate gene
density. b: The width of the blue lines represents the gene density. c: Chr1-Chr12 represent 12 chromosomes. Green and orange lines represent
collinear pairs between ARF and WOX genes, respectively. Gray lines indicate all synteny blocks in the genome. (B) Synteny analysis of WOX and ARF
genes between M. pauhoi and A.thaliana. Green and orange lines represent collinear pairs between ARF and WOX genes, respectively. Gray lines
indicate all synteny blocks in the genome.
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Cis-acting element prediction and
arrangement rule in the gene promoters

1206 and 1304 cis-acting regulatory elements were predicted in

the promoters of MpWOXs and MpARFs, respectively (Figures 4A,

B). Most of these different cis-regulatory elements were involved in

plant hormonal regulation, abiotic stress, plant growth, and light

response. For MpWOXs, apart from the CAAT-box and TATA-box,

the most prevalent regulatory element was the G-box, which is a

universal regulatory element in plant responses to environmental

stimuli and is widely present in the promoters of light-regulated

genes. ABREs (regulating of abscisic acid) and AREs (anaerobic

induction) were widely present in MpWOXs. Some auxin-

responsive functional elements such as TGA-element (AACGAC)

and AuxRR-core (GGTCCAT) exist in seven MpWOX genes

(Figure 4C). MpARFs contained regulatory elements for auxin,
Frontiers in Plant Science 07
abscisic acid, gibberellin, salicylic acid, and MeJA. In addition, it

contained numerous light-responsive elements, such as G-box, Box4,

and GATA-motif (Figure 4D). In conclusion, all the predicted results

indicated that MpWOX and MpARF may play important regulatory

roles in the responses or regulation by the environment,

phytohormones, and abiotic stresses.
Detection of miRNA targeting MpWOX and
MpARF genes

Plant miRNA is a group of 21-nucleotides that belongs to

endogenous non-coding single-stranded RNA. To gain a better

understanding of the role of miRNAs in the post-transcriptional

regulation ofMpWOXs andMpARFs, the miRNA editing sites were

predicted based on the psRNATarget database. 45 and 142 miRNA
B

C D

A

FIGURE 4

Cis-regulatory element in MpWOXs and MpARFs. (A, B) represent the number and type of cis-regulatory element in MpWOX and MpARF,
respectively. (C) Structure and sequence of AuxRR-core and TGA-element in MpWOX promoter. (D) Quantitative statistics of major cis-acting
elements in genes.
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editing sites were predicted in 16 MpWOX and 21 MpARF genes,

respectively (Figure 5; Supplementary Table 6). Among them, there

were no miRNA editing sites in MpWOX3a. However, there were

more miRNA editing sites in MpWUS, MpWOX9a, MpWOX9b,

MpWOX11a. MpARF9a contains the most miRNA-targeting sites

(20). MpARF19c contained only one miRNA editing site. At the

same time, these predicted miRNA editing sites were mainly

distributed in the upstream region of the genes.
Tissue-specificity of MpWOX and MpARF
gene expression

Based on the available transcriptome data, we analyzed the

expression ofMpWOX andMpARF genes in leaf, stem, phloem and

vascular cambium (Figures 6C, D). There were significant

differences in the expression of all MpWOX genes across different

tissues. MpWOX4, MpWOX13a and MpWOX13b were expressed

by higher levels in all tissues compared with other members of the

WOX gene family. This suggested that these three genes may act as

important regulatory roles in the growth and development of these

four tissues. AllMpWOX genes exhibited similar expression profiles

in two distinct lineages. In particular, the expression of MpWOX4

gene increased sharply during the transition from vascular

cambium 2 to vascular cambium 3. The change of expression

level may be related to the thickening of plant growth during the

later stages of growth. Compared to the MpWOX genes, all the
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MpARF genes, except MpARF5, MpARF2b, and MpARF16b,

exhibited higher expression in various tissues. Among them,

MpARF6c, MpARF19a, MpARF8, MpARF2c, and MpARF4

showed higher expression in phloem, indicating that these genes

may play an important role in phloem formation. In addition,

MpARF6b, MpARF6c, and MpARF19a were significantly expressed

in the vascular cambium, suggesting that they may perform

essential activities in this tissue. Similarly to MpWOXs, the

MpARF genes showed similar expression patterns in different

lineages (Figure 6A). Based on the expression trend of genes,

aside from genes in cluster 4 and cluster 5, the remaining genes

were mainly clustered in vascular cambium across various periods

in different lineages (Figure 6B).
Interaction networks of WOX-ARF with
functional genes

To further understand the biological function and MpWOXs

and MpARFs regulatory networks, the protein-protein interaction

(PPI) of MpWOXs and MpARFs were predicted and constructed

based on the interaction information of A. thaliana in STRING

database. This interactome map consisted of the essential auxin

signaling transduction components mediated by WOX-ARF

proteins (Figure 7). TPL/TPR corepressors were first described as

direct interactors of the Arabidopsis homeodomain transcription

factor WUSCHEL (Kieffer et al., 2006). In auxin resting state, AUX/
FIGURE 5

The predicted target sites of miRNA of MpWOX and MpARF gene family. Left and right represent the distribution of miRNA editing sites in MpWOX
and MpARF genes, respectively. Detailed miRNA editing information for each gene can be found in Supplementary Table 6.
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IAA repressors binded auxin response factors (ARFs) and repress

their transcription by recruiting the TOPLESS and TOPLESS-

related co-repressors (TPL/TPRs). In the presence of auxin, AUX/

IAAs binded to TIR1/AFB receptors, they were quickly

ubiquitinated and degraded, subsequently releasing the repression

of auxin-responsive genes (Mockaitis and Estelle, 2008). Four WOX

and nine ARF proteins directly interacted with TPL in the

interaction network. There were also interactions between TIR1

and three WOX proteins. In conclusion, based on the predicted

results of the interaction network, WOX proteins may be a potential

regulatory role of ARFs in plant auxin signaling.
MpWOX and MpARF genes response to
hormone treatments

Based on the prediction of cis-regulatory element and PPI, there

was a potential interaction betweenMpWOX and auxin. We treated 1-

year-old M. pauhoi with exogenous hormones and analyzed their

leaves using RT-qPCR. The results indicated that the expression of all

MpARF genes, as well as MpWOX genes, except for MpWOX4, were

strongly induced under IAA treatment (Figure 8A). TheMpARF genes
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exhibited a more consistent trend in expression, with fluctuations of

varying degrees following a significant increase in expression upon

induction for 6 hours. The expression levels of MpWOX13a and

MpWOX13b increased with the prolongation of treatment time. The

expression levels of MpWUS and MpWOX1a were strongly induced

after 6 hours of treatment, and showed a decreasing trend. For NPA

treatment, all genes showed down-regulated expression after 6h

treatment except MpWUS and MpWOX4. MpWUS, MpWOX13a

and MpARF6c had no significant change across all time points. The

expressions of MpWOX1a, MpWOX13b, MpARF1b, MpARF2a, and

MpARF16a were inhibited at all time points (Figure 8B). Based on the

correlation network, there were mainly positive correlations between

MpWOX and MpARF genes, except for MpWOX4 (Figure 8C).
Discussion

Variation in the numbers of WOX and ARF
genes in the Lauraceae family of plants

The WOX gene is a plant-specific TF and plays a crucial role in

stem cell formation, maintenance, differentiation, and organogenesis
B

C

D

A

FIGURE 6

Expression patterns of MpWOX and MpARF genes in M. pauhoi. (A) The transcriptome data of M. pauhoi were obtained from two different lineage,
B18 and B28. Among them, B18 lineage plant materials from Ganzhou, Jiangxi province, and B28 lineage plant materials from Jiande, Zhejiang
province. Phloem 1: 1 year after planting; Vascular cambium 1: 1 year after planting; Leaves 1: 1 year after planting; Phloem 2: 2 years after planting;
Vascular cambium 2: 2 years after planting; Leaves 2: 2 years after planting; Phloem 3: 3 years after planting; Vascular cambium 3: 3 years after
planting. FPKM values are logarithmically transformed using a base of 2 for plotting the heatmap. (B) Gene expression trends of the MpWOX and
MpARF gene. The black line represents the central trend change, and the other color lines represent the trend change of different genes. (C) M.
pauhoi plants. (D) Schematic diagram of the phloem and vascular cambium inside the stem of M. pauhoi.
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(Dolzblasz et al., 2016). ARFs play a crucial role in the auxin signaling

pathway by regulating their own expression and influencing the

transcriptional activity of downstream target genes. They achieve this

by binding to the response elements in the promoters of auxin

responsive genes (Liu et al., 2015). Although the WOX and ARF

gene families have been extensively studied in some model plants,

these gene families have been less studied in woody plants, especially

in Lauraceae. Earlier studies have also demonstrated that ARF-WOX

forms a complex in plants to regulate plant growth and development.

In this study, AtWOXs and AtARFs from Arabidopsis were utilized

to identify WOXs and ARFs proteins in five Lauraceae plants,

revealing a range of 12 to 16 WOXs and 18 to 27 ARFs. The

quantities differed less from those of A. thaliana [15 AtWOX

(Haecker et al., 2004), 23 AtARF (Guilfoyle and Hagen, 2001)] and

rice [13 OsWOX (Zhang et al., 2010), 25 OsARF (Wang et al., 2007)],

suggesting that there may not have been a large-scale gene

duplication event in these two gene families in Lauraceae. Members

of the MpARF and MpWOX subfamilies exhibit differences in

molecular weight, isoelectric point, and gene structure. These

variances are commonly observed in other plants (Yang et al.,

2022; Chen et al., 2023). Referring to the classification system of A.

thaliana WOX and ARF genes, WOXs and ARFs can be categorized

into different evolutionary branches, with variations in the number of
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genes among these branches. Deletions of A. thaliana homologous

genes were present in both MpWOXs and MpARFs and these

deletions may be attributed to their functional substitutability (Feng

et al., 2021). Members of the WUS branch accounted for a large

proportion of the species were counted, indicating that each member

of this branch had a specific function in plant growth. At the same

time, the large number of WUS clades might be attributed to gene

duplication during evolution, particularly in seed plants, to ensure the

normal growth of plants (Tang et al., 2017).
Highly conserved structures of MpWOX
and MpARF

The homeodomain is conserved across the WOX gene family

in different species and maintains the functional integrity of the

WOX gene (Kanchan and Sembi, 2020). Our results show that the

HD structure is present in all MpWOX proteins. It has also been

demonstrated that the typical WUS-box is limited to the WUS

clade. Additionally, the WUS-box interacts with TOPLESS-type

co-repressors (WUS, WOX1, WOX5) to mediate gene repression

through histone deacetylation (Zhang et al., 2014; Pi et al., 2015).

All members of the WUS clade have two amino acid motifs T-L at
FIGURE 7

WOX-ARF protein interaction network. Interaction networks between the MpWOX and MpARF are predicted based on the homolog to A. thaliana.
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the beginning of the WUS-box, whereas non-WUS members of

the WOX family show variations at this position (van der Graaff

et al., 2009). In general, ARF proteins contain three domains:

DNA-binding domain (DBD), middle region (MR), and C-

terminal domain (CTD). All MpARFs have a typical B3 domain

required for efficient binding of AuxRE and ARF domain.

However, some MpARFs lack the CTD structure, which may

not participate in the auxin signal transduction pathway in

plants and perform independent functions (Rui-E et al., 2011).

For MpARFs containing DNA-binding domain (DBD) and AUX/
Frontiers in Plant Science 11
IAA domains, we found that these proteins were highly conserved

for residues crucial for DNA and IAA binding. These highly

conserved structures ensure these proteins accurately perform

regulatory functions. The collinearity analysis results revealed

the presence of intraspecific collinear homologous genes in both

MpWOX and MpARF genes, suggesting the occurrence of gene

duplication events in M. pauhoi during evolution, with segmental

duplication being the primary mode. As a result of this intragenic

segmental duplication event, the MpWOX and MpARF gene

family members turn to be multi-copy.
B

C

A

FIGURE 8

The relative expression level of MpWOX and MpARF under hormone treatment. The data is the average ± standard deviation of the repetition of the
three organisms. * and * * stand for p < 0.05 and p < 0.01 respectively, by One-way ANOVAs. (A) The relative expression level of MpWOX and
MpARF gene under IAA treatment. (B) The relative expression level of MpWOX and MpARF gene under NPA treatment. (C) Correlation Heatmap.
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Cis-regulatory elements and expression
patterns reveal the linkage between
MpWOX and MpARF

The miRNA complements and connects with target gene mRNA

to repress gene expression or cleave mRNA, thereby achieving

negative regulation of the target gene. The regulatory role of

miRNA on the expression of certain genes has been discovered and

confirmed in A. thaliana (Wu et al., 2006). In our study, we find that

genes with a higher number of miRNA editing sites exhibit lower

expression levels in various tissues. In addition, among the MpARF

genes, some genes lacking the complete CTD structural domains,

such as MpARF10, MpARF16a, MpARF3a, and MpARF19c, had

relatively low expression levels. Comparison of additional

conserved structural domains revealed that these genes had a low

number of motifs, and the absence of certain motifs may have

impacted their normal regulatory functions. It has been

demonstrated that WOX4 is located downstream of ARF7, which

can directly regulate WOX4 expression and promote the activity of

cambium stem cells in poplar (Hu et al., 2022). Previous studies have

confirmed the existence of a complex regulatory network between

WOX and ARF (Liu et al., 2014a). Some of the MpWOX genes

contain auxin response elements, suggesting that these genes may be

potentially regulated by ARF genes. In MpWOX genes, while

canonical auxin response elements (AuxREs) are absent, they do

contain AuxRR-core and TGA-elements. RhARF18 was able to

directly bind the AuxRR cis-element in the RhAG promoter and

suppress its transcription activity in Rosa hybrida (Chen et al., 2021).

Meanwhile, ARF7 and ARF19 are able to bind to the auxin-response

elements of the PHR1 promoter in vitro and vivo (Huang et al., 2018).

WOX4 and WOX14 can regulate the division activity of cambium

cells (Etchells et al., 2013). In our study, MpWOX4 was highly

expressed in the vascular cambium, which was consistent with

previous research. During secondary development of A. thaliana,

the ARF5 is activated by auxin, regulating vascular proliferation early

in development but inhibiting vascular cambium expansion later in

secondary development (Li et al., 2018a). ARF5 also promotes PIN1

expression in the pro-cambium and increases the number of vascular

cambium cells (Wenzel et al., 2007; Smetana et al., 2019).MpARF6b,

MpARF6c, and MpARF19a exhibited higher transcription levels in

the vascular cambium, suggesting that these genes play crucial roles

in the expansion of M. pauhoi cambium cells. Based on the

expression trends of genes at different stages, MpWOX and MpARF

genes exhibit similar expression patterns, showing high expression

during various developmental stages of vascular cambium.

Furthermore, the prediction results of the protein interaction

network confirmed the presence of an interaction between the

ARF-WOX genes. Based on the analysis results and existing

research, we believe there exists a linkage-based expression

regulatory pattern between WOX and ARF in M. pauhoi, especially

playing a crucial role in regulating vascular cambium development.

However, interactions between these genes require further

experimentation, such as Yeast Two-Hybrid (Y2H) and

Bimolecular Fluorescence Complementation (BiFC).
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The linkage of MpWOX and MpARF are
binded by the joining of IAA

In the auxin signaling pathway, the Aux/IAA-TIR1-ARF

signaling cascade regulates the transcription of auxin, facilitating

adjustments in auxin concentration to indicate alterations in the

transcriptional activity of numerous genes (Paponov et al., 2008). In

addition to the Aux/IAA-TIR1-ARF signaling pathway, ARF is also

involved in other signaling pathways and regulated by other

transcription factors, miRNAs, and ta-siRNAs (Yan-Lin et al.,

2017). Based on the prediction from the STRING database, the

protein interaction network is primarily regulated by Aux/IAA,

TIR1, and ARF genes. It is also suggested that the Aux/IAA-TIR1-

ARF signaling pathway plays a crucial role in auxin signal

regulation. In Phoebe bournei (Zhang et al., 2023a), the PbWUS

gene was strongly induced by IAA treatment, which supports our

conclusion. However, the expression levels of PbWOX13a and

PbWOX13b decreased under IAA treatment, which differed from

our results. This discrepancy may be attributed to variations in

species and treatments. In addition, MpWOX1a exhibited a greater

increase in expression compared to several other MpWOX genes

following IAA treatment, likely due to the presence of two auxin

responsive binding elements, TGA-element and AuxRR-core, in

MpWOX1a.There are numerous reports on the response of the ARF

gene to auxin. The transcripts AtARF4, AtARF5, AtARF16,

AtARF19, OsARF1, and OsARF23 exhibited slightly increased

expression after auxin treatment (Nagpal et al., 2005; Okushima

et al., 2005; Garcia et al., 2006; Wang et al., 2007). The expression of

MpARF increased after auxin treatment, consistent with

previous studies.
Materials and methods

Identification of the WOX and ARF genes in
M. pauhoi

The genome data of M. pauhoi used in this study came from

local research group of Fujian Normal University. We utilized

HMMER 3.3.2, based on the Hidden Markov model files of WOX

(PF00046) and ARF (PF06507) from the Pfam (Pfam: Home page

(xfam.org), accessed on 15 October 2023), to search for potential

WOX and ARF genes in the M. pauhoi genome. The potential gene

family sequences in M. pauhoi were obtained by using BLAST to

compare them with the WOX and ARF protein sequences of A.

thaliana from the PlantTFDB database (PlantTFDB - Plant

Transcription Factor Database @ CBI, PKU (gao-lab.org),

accessed on 15 October 2023). Finally, the results obtained from

HMM search and BLAST(2.5.0) (Altschul et al., 1990) comparison

were intersected to obtain the candidate sequences for the final gene

family. The candidate proteins were verified to contain the WOX,

B3 and Auxin-resp domain using NCBI-CDD (Conserved Domains

Database (CDD) and Resources (nih.gov), accessed on 15 October

2023) with the default parameters. Naming ofMpWOX andMpARF
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genes is based on their homology to AtWOX and AtARF genes. The

WOX and ARF gene families of Cinnamomum kanehirae (Chaw

et al., 2019), Phoebe bournei (Han et al., 2022; Zhang et al., 2023a),

Persea americana (Nath et al., 2022) and Cinnamomum camphora

(Shen et al., 2022) were screened and identified using the same

method. The physicochemical properties of the gene family were

analyzed by ExPASy (http://web.expasy.org/protparam). DeepLoc

2.0 (DeepLoc 2.0 - DTU Health Tech - Bioinformatic Services,

accessed on 23 November 2023) was used to predict protein

subcellular localization.
Evolutionary and synteny relationships of
the MpWOX and MpARF genes

The gene sequences of Oryza sativa were obtained from the

PlantTFDB database. The gene ID and gene name are shown in

Supplementary Table 3. Phylogenetic trees were constructed using

MEGAX (Kumar et al., 2018) (Maximum Likelihood, Bootstrap

1000) and visualized using iTOL (iTOL: Interactive Tree Of Life

(embl.de), accessed on 2 November 2023). Gene annotation

information was used to map genes on chromosomes. MCScanX

(Wang et al., 2012) was used to identify collinearity blocks in M.

pauhoi. Chromosome localization and collinear results in members

of the WOX and ARF gene family are visualized using TBtools.
The MpWOX and MpARF gene structures
and conserved motifs

The conserved motifs of the gene family proteins were analyzed

using MEME (Bailey and Elkan, 1994) (Introduction - MEME Suite

(meme-suite.org), accessed on 3 November 2023) (with the

following parameter settings: the number of motifs: 10, motif

width: 6-100). Phylogenetic relationships, conserved motifs and

exon and intron structures of the WOXs and ARFs were visualized

using TBtools (Chen et al., 2020). Multiple sequence comparison

maps and logo maps of conserved structures of the M. pauhoi and

A. thaliana WOX gene families were drawn using ESPript (https://

espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) and WebLogo

(WebLogo - Create Sequence Logos (berkeley.edu), accessed on 3

November 2023), respectively. SOPMA (https://npsa-prabi.ibcp.fr/

cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html, accessed

on 3 November 2023) was used for protein secondary structure

prediction. The tertiary structure of protein was predicted using

SWISS-MODEL (Waterhouse et al., 2018).
Cis-acting element analysis of the MpWOX
and MpARF genes

The genome sequence and gene annotation information files

were added to the TBtools GFF3 Sequence Extractor submenu. The

upstream bases were set to 2000, and the 2000 bp nucleotide sequence
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upstream of the MpWOX and MpARF genes were used as the

promoter sequence for each MpWOX and MpARF gene. The

promoter cis-regulatory elements of MpWOX and MpARF genes

were predicted using PlantCARE (http://bioinformatics.psb.ugent.be/

webtools/plantcare/html/, accessed on 1 November 2023). Excel was

used to count cis-elements implicated in significant biological

processes such as phytohormone signaling, stress response, site-

binding, light responsiveness, and plant growth. The cis-regulatory

elements of theMpWOX andMpARF gene were visualized in Excel.
The miRNA target prediction and
expression pattern analysis of MpWOXs
and MpARFs

The miRNA and target of MpWOX and MpARF gene were

analyzed using psRNATarget (psRNATarget: A Plant Small RNA

Target Analysis Server (2017 Update) (zhaolab.org), accessed on 16

November 2023). The transcriptome data used for the study were

obtained from our group. The transcriptome data of M. pauhoi were

obtained from two different lineages, B18 and B28. Among them, B18

lineage plant materials were obtained from Ganzhou, Jiangxi

province, and B28 lineage plant materials were provided by Jiande,

Zhejiang province. Firstly, all the data were quality controlled and

filtered using fastp. The obtained data were aligned to the reference

genome using hista2 and the FPKM values of all MpWOX and

MpARF genes were calculated using the FPKM function in the edgeR

package. Finally, TBtools was used to visualize the results and

generate the expression heatmap of MpWOX and MpARF. FPKM

data Logarithm, set base = 2. Using STRING (https://cn.string-

db.org/, accessed on 16 November 2023) protein interaction data,

we predicted and constructed protein interaction network.
Gene expression analysis with RT-qPCR

Plants were grown at Fujian Normal University. We sprayed

exogenous hormones to normal growing M. pauhoi plants. The

hormones consisted of 3-Indoleacetic acid (IAA, 100 mM) and N-1-

Naphthylphthalamic acid (NPA, 100 mM). The surface of the plants

was sprayed with the atomizer until the leaves are completely wet

but without any condensed droplets. Plant leaves were collected in

2.5 mL sterile and enzyme-free cryopreservation tubes before, 6h,

12h and 24h after hormone treatment, respectively, and rapidly

frozen in liquid nitrogen. Total RNA was extracted using Plant

RNA Kit R6827 and quantified by measuring A260/280 nm and

A260/A230 nm values. The obtained RNA was then reverse

transcribed into cDNA using Hifair® III 1st Strand cDNA

Synthesis SuperMix. Primer sequence information for the

MpWOX and MpARF gene were listed in Supplementary Table 1.

The RT-qPCR was performed using theMpactin gene as an internal

reference gene, and the experiment was set up with three biological

replicates. The results were used to calculate the relative gene

expression levels using the 2−DDCt method.
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Conclusion

In this study, we identified two gene families related to

meristematic tissue growth in five Lauraceae plants, with WOX

ranging from 12 to 16 and ARF from 18 to 27. The upstream region

of the MpWOX4 promoter contains two auxin response elements

(TGA-elements) and shows a similar expression pattern in the

vascular cambium as most MpARF genes. MpWOX4 serve as a

conserved gene in the WOX-ARF linkage regulating development

in the vascular cambium development.

In addition,MpWUS,MpWOX1a, andMpWOX13 was strongly

induced by IAA treatment. However, the expression of MpWOX1a

and MpWOX13b was significantly suppressed by NPA treatment.

The MpARF genes were induced to varying degrees by IAA.

Furthermore, there existed a stable linkage between MpWOX and

MpARF genes. Our results will help further investigate the function

of MpWOX and MpARF genes in vascular tissue system, thus

providing an important foundation for the cultivation of precious

forest resources by genome editing and further synthetic biology.
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