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Introduction: As an exceptional geographical entity, the vegetation of the

Qinghai-Tibetan Plateau (QTP) exhibits high sensitivity to climate change. The

Baima Snow Mountain National Nature Reserve (BNNR) is located in the south-

eastern sector of the QTP, serving as a transition area from sub-tropical

evergreen broadleaf forest to high-mountain vegetation. However, there has

been limited exploration into predicting the temporal and spatial variability of

vegetation cover using anti-interference methods to address outliers in long-

term historical data. Additionally, the correlation between these variables and

environmental factors in natural forests with complex terrain has rarely

been analyzed.

Methods: This study has developed an advanced approach based on TS (Theil-

Sen slope estimator) MK (Mann-Kendall test)-FVC (fractional vegetation cover) to

accurately evaluate and predict the time and spatial shifts in FVC within the

BNNR, utilizing the GEE (Google Earth Engine). The satellite data utilized in this

paper consisted of Landsat images spanning from 1986 to2020. By integrating TS

and MKmethodologies to monitor and assess the FVC trend, the Hurst index was

employed to forecast FVC. Furthermore, the association between FVC and

topographic factors was evaluated, the partial correlation between FVC and

climatic influences was analyzed at the pixel level (30×30m).

Results and discussion: Here are the results of this research: (1) Overall, the FVC

of the BNNR exhibits a growth trend, with the mean FVC value increasing from

59.40% in 1986 to 68.67% in 2020. (2) The results based on the TS-MK algorithm

showed that the percentage of the area of the study area with an increasing and

decreasing trend was 59.03% (significant increase of 28.04%) and 22.13%

(significant decrease of 6.42%), respectively. The coupling of the Hurst

exponent with the Theil-Sen slope estimator suggests that the majority of

regions within the BNNR are projected to sustain an upward trend in FVC in

the future. (3) Overlaying the outcomes of TS-MK with the terrain factors
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revealed that the FVC changes were notably influenced by elevation. The partial

correlation analysis between climate factors and vegetation changes indicated

that temperature exerts a significant influence on vegetation cover,

demonstrating a high spatial correlation.
KEYWORDS

Landsat time series, fractional vegetation cover, spatio-temporal change of vegetation,
topographic factors, climatic factors
1 Introduction

Vegetation is an indispensable portion of land ecosystems. It has a

critical function in carbon cycling, climate regulation and the

maintenance of ecosystem sustainability at both regional and global

scales (Duo et al., 2016; Fu et al., 2022b; Li et al., 2023). Nevertheless,

there are distinct regional variations in the vegetation response to

climate change, influenced by factors such as topography and

geomorphology (Palombo et al., 2014; Guo et al., 2016). In

environmentally sensitive regions, the impacts of climate change on

vegetation phenology are likely to be amplified, especially in

mountainous regions situated in geographic transition zones and at

high altitudes (Nemani et al., 2003; Hua et al., 2017). National nature

reserves are typically situated in mountainous regions characterized by

abundant vegetation cover, serving as natural buffer zones that mitigate

the impacts of climate variability and natural disasters (Xu et al., 2022).

Therefore, amidst global climate change, it is imperative to effectively

monitor vegetation within natural reserve areas in order to study how

plant phenology responds to fluctuations in climate (Roberts et al.,

2020; Zhang et al., 2021).

Earlier studies have utilized NDVI to track the vegetation cover

(Zhang et al., 2018). However, NDVI itself has the limitation that it is

easy to saturate in high-vegetation cover regions and is difficult to

identify the tree canopies in low vegetation cover regions. Nevertheless,

these issues can be addressed by calculating the fractional vegetation

cover (FVC) (Ma et al., 2021). FVC represents the proportion of the

vertically projected surfaces of plant stems, leaves, etc., to the total area

within a given region. It can be utilized to track the development of

vegetation cover (Marsett et al., 2006; Lehnert et al., 2015). Therefore,

FVC can serve as an effective indicator of the vegetation assessment,

reflecting the dynamic changes of vegetation affected by various

elements such as climate shift, land cover variation, and

environmental projects (Geng et al., 2022; Han et al., 2023). On the

other hand, long time series-based FVC allows for the analysis of

vegetation cover changes in the study area and require the integration

of multiple change monitoring methods (Zhu et al., 2021; Fu et al.,

2023). Currently, several change detection algorithms have been

applied to vegetation monitoring, such as LandTrendr algorithm

(Kennedy et al., 2010), continuous change detection and

classification (CCDC) algorithm (Zhu and Woodcock, 2014) and

BFAST algorithm (Verbesselt et al., 2010). However, commonly used
02
methods of FVC trend analysis include regression analysis and TS

(Theil-Sen slope estimator)-MK (Mann-Kendall analysis) analysis (Liu

et al., 2022; Fu et al., 2022b). The advantage of TS-MK is that the data

do not need to obey a certain distribution law, the data error has a

strong resistance to the data, for the significance level test has a more

reliable statistical theory basis, so that the results of the operation are

more scientific and credible (Zhang et al., 2022b). In addition, Hurst

index is widely used in studies of the future sustainability of vegetation

cover (Zhang and Jin, 2021; Zhu et al., 2021). Coupling the Hurst

exponent with the Theil-Sen slope estimator allows for a more accurate

representation of future trends in vegetation. Therefore, this paper

integrates the Mann-Kendall, Theil-Sen slope and Hurst index

methods to analyze the trend, significance, and future projection of

vegetation changes.

Field measurements and remote sensing techniques are available

for monitoring the spatial and temporal dynamics of vegetation.

However, field measurements encounter limitations such as the

inability to gather continuous observation data over extended periods,

high monitoring costs and difficulties in realizing large-area monitoring

(Han et al., 2023). Remote sensing technology has emerged as a

promising approach for monitoring vegetation growth, owing to its

ability to provide continuous spatial coverage and long-term data series

(Chu et al., 2019; Li and Yang, 2023). Normally, long time-series remote

sensing imagery and its derived products can be used to estimate FVC

that is beneficial for monitoring the vegetation changes in large river

basins, urban agglomerations, and grasslands (Xiao et al., 2017; Geng

et al., 2022). Traditional remote sensing analysis methodologies require

downloading and pre-processing a large number of images. Google

Earth Engine (GEE) has already carried out atmospheric correction,

geometric registration, radiometric calibration and other pre-processing

of commonly used images. It enables swift realization of image

acquisition, batch processing, calculation and analysis by means of

on-line programming, which can greatly improve the operational

efficiency (Hansen et al., 2013; Gorelick et al., 2017). With the GEE

cloud platform, the FVC of the study area can be uniformly and quickly

estimated, and the long time series dynamic monitoring of vegetation

can be realized (Fu et al., 2022b).

Geographic conditions at high altitudes are relatively complex, with

strong spatial heterogeneity in vegetation cover and climate. Therefore,

the influence of topographic and climatic factors on highland

vegetation has received widespread attention (Wei et al., 2022; Han
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et al., 2023; Xu and Wu, 2023). At the same time, compared with low-

altitude areas, high-altitude areas are often different from each other

and cannot be generalized. Even within the same geographic unit, there

are differences in the response of vegetation to climatic factors such as

temperature and precipitation (Deng et al., 2022b). However, current

vegetation monitoring at high altitudes tends to focus on the entire

plateau area, using coarse resolution (>500m) AVHRR or MODIS

remote sensing imagery to analyze spatial and temporal changes in

vegetation (Zhang and Jin, 2021; Han et al., 2023; Huang et al., 2023). It

was shown that the spatial resolution of remote sensing images may

affect the accuracy of FVC estimation, and suitable remote sensing

images need to be selected according to the study area (Zhang et al.,

2014; Wang et al., 2022). Landsat imagery has not only higher spatial

resolution but also longer time series, which is more suitable for

monitoring vegetation at high altitudes at medium regional scales

(Wang et al., 2022). Few studies have focused on the investigation of

coverage changes of vegetation in mountainous areas. Moreover, the

reactions of vegetation to climate variation and topography in complex

terrain regions were seldom analyzed. The Baima Snow Mountain

National Nature Reserve (BNNR) is located in the transition zone

between the Tibetan Plateau and the Yunnan-Guizhou Plateau. The

terrain is complex and diverse, with large elevation differences

(>3500 m) and a rich variety of vegetation types (Ning et al., 2012).

This geomorphological feature makes the vegetation in the BNNR

more sensitive to topographic and climatic factors. Therefore, the

BNNR is an ideal site for studying the effects of climate change on

vegetation growth. By conducting research in the area, it is possible to

better understand how topographic and climatic factors interact,

providing valuable references and recommendations for ecological

conservation. Therefore, in order to realize the monitoring variability

of vegetative cover in nature reserves and find relationships of the

variations to terrain and climate shifts, the purposes of this research

involve: (1) to quantitatively estimate of long time series FVC (1986-

2020) in the whole study area with complex terrain, and analyze the

spatial and temporal change of vegetative cover; (2) to develop a TS

(Theil-Sen slope estimator) MK (Mann-Kendall test) - FVC based

approach for accurately evaluating and predicting of the spatio-

temporal changes of vegetative coverage, and investigate the reaction

of vegetative cover to topography and climate in the BNNR.
2 Materials

2.1 Study area

The Baima Snow Mountain National Nature Reserve is situated in

Diqing Tibetan Autonomous Prefecture, Yunnan Province. Its northern

portion belongs to Deqin County, while its southern part lies within

Weixi County. The geographical coordinates of the BNNR are between

98°57′-99°25′E and 27°24′-28°36′N. Within the core of the Hengduan

Mountains is where the BNNR is situated, between the Jinsha River and

the Lancang River, the famous Three Parallel Rivers Region. The main

river flowing through the reserve is the Zhubaluo River, which

originates from the Baima Snow Mountain, with a drainage area of

1835km2. The BNNR has a prominent monsoon climate characterized

by distinct wet and dry seasons, and rainfall is mainly centered in July
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and August. Furthermore, the BNNR’s precipitation distribution is

spatially inhomogeneous. Due to topographic and climatic factors,

precipitation is much higher in the valley of the Zhubaluo River and

the south than in other areas. The BNNR is rich in biodiversity and is an

important habitat for the worldwide precious and threatened species

and national-level protected animal, the Yunnan snub-nosed monkey.

The perpendicular arrangement of vegetation in the region is obvious.

Perpendicular distribution of vegetation can be separated into river

valley shrubs and tussock, broadleaf forest, coniferous forest, and

meadow according to the altitude from 2500m to 5000m (Sun et al.,

2017; Su et al., 2022). Examining the features of the vegetation’s

temporal and spatial distribution as well as the impacts of

topography and climate on plants is crucial given the unique

topographic and climatic circumstances of the BNNR (see Figure 1).
2.2 Remote sensing data

Satellite images utilized in this study include Landsat 5 (1986-2012)

and Landsat 8 (2013-2020). The images were acquired from the USGS.

Landsat Surface Reflectance (SR) data for the years 1986–2020 were

obtained using the Google Earth Engine (GEE) platform (https://

code.earthengine.google.com/). The spatial resolution of the data is

30m, and it has been pre-processed including atmospheric correction

and geometric correction. Since most areas of the BNNR were covered

by clouds all year round, the remote sensing images need to be de-

clouded. The QA quality band of SR remote sensing images was

operated bit by bit to realize the filtering of pixel values. Masking of

clouds, cloud shadows and snow pixels of remote sensing images to

finally remove clouds and snow (Zhu and Woodcock, 2012).

By processing SRTM DEM data, derived data products including

altitude, slope, and aspect are generated. The spatial resolution of the

DEM data is 30 m. Based on the local conditions of the BNNR and

related literature (Wang et al., 2021b; Deng et al., 2022a), the topographic

data were reclassified (Figure 2). In order to examine the influence of

terrain on vegetative cover, FVC computations will be spatially overlaid

with altitude, slope, and aspect data in subsequent analyses.

Meteorological data can be downloaded from the National Earth

System Science Data Center website (http://www.geodata.cn/). The

dataset includes the 1 km resolution monthly precipitation and average

temperature dataset between 1986 and 2020. This data was cropped,

resampled and algebraically manipulated to finally obtain the

temperature and precipitation data of BNNR (Peng et al., 2019).

Data on vegetative cover categories were downloaded from Data

Center for Environmental and Resources Sciences (https://

www.resdc.cn/). The dataset comprises 11 vegetation categories, of

which 7 are distributed within BNNR.
3 Methods

3.1 The long time series FVC calculation
based dimidiate pixel model

NDVI is normally seen as an effective index reflecting large-

scale vegetation coverage and growth status, and is among the most
frontiersin.org
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extensively applied vegetation indices (Schultz et al., 2016; Lu et al.,

2019; Vulova et al., 2023). In this research, Surface Reflectance (SR)

images of Landsat were used to calculate NDVI in accordance with

GEE cloud platform, and Maximum Value Composites (MVC)
Frontiers in Plant Science 04
were applied to composite the NDVI data spanning from 1985 and

2020 (Lanorte et al., 2014; Liu et al., 2022). Owing to the effects of

satellite sensor performance, cloud cover and atmospheric

conditions, NDVI time series dataset has serious noise (Goward
B CA

FIGURE 2

Spatial distribution of terrain factor classification results in BNNR; (A) altitude was divided into 6 categories; (B) slope was categorized into 6
categories; (C) aspect is categorized into 5 categories.
FIGURE 1

Overview of Baima Snow Mountain National Nature Reserve (BNNR); (A) location of the BNNR; (B) topography; (C) Landsat image (2020).
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et al., 1991). Therefore, it was imperative to correctly and effectively

remove noise and reconstruct NDVI time series dataset before

application. Previous research has demonstrated that S-G filtering

can effectively improve the data quality of vegetation index products

(Chen et al., 2004; Shao et al., 2016). In this paper, S-G filtering

method was for application in rebuild time series of NDVI data to

remove noise (see Figure 3) (Zhao and Zhang, 2018; Han

et al., 2020).

Further calculation of FVC based on NDVI can help alleviate

the issue of NDVI saturation in monitoring areas with high

vegetation cover and difficulty in identification in areas with low

vegetation cover. In many studies, there were three typical methods

to estimate vegetation cover using remote sensing data, such as the

Empirical method, the Spectral Mixture Analysis method and the

DPM (Jiapaer et al., 2011). The DPM is a fast and effective method

for calculating FVC because it is easy to operate and has performed

well (Shi et al., 2021b; Hill and Guerschman, 2022). The principle of

the DPM involves assuming that the reflectance (R) of a pixel

consists of two components: the part with vegetation cover (RV) and

the part without vegetation cover (RS). Subsequently, the spectral

information observed through the sensor is synthesized by the

linear weighting of these two components.

R = RV + Rs (1)

The proportion of the area of a pixel that has vegetation cover is

FVC, which is the vegetation cover percentage of the pixel.

Consequently, the proportion of the area that is not covered by

vegetation is (1-FVC). The reflectance of a pixel is Rveg if the pixel is

completely covered by vegetation and Rsoil if it is completely covered

by soil. The information contributed by the vegetated portion of the

hybrid pixel can be expressed as the product of the purely vegetated

reflectance, Rveg, and the area covered by vegetation in the image
Frontiers in Plant Science 05
element, FVC. And the information contributed by the non-

vegetated component can be expressed as the product of Rsoil and

(1-FVC).

RV = Rveɡ � FVC (2)

Rs = Rsoil � (1 − FVC) (3)

By solving Equations 1–3, the FVC can be calculated as

Equation 4:

FVC =
R−Rsoil

Rveɡ+Rsoil
(4)

In the inversion of FVC using NDVI, NDVI can be used instead

of R. This results in the formula for calculating FVC based on NDVI

(see Equation 5):

FVC =
NDVI−NDVIsoil

NDVIveɡ+NDVIsoil
(5)

Since the theoretical values of bare ground NDVIsoil and pure

vegetation cover NDVIveg should be close to 0 and 1, respectively.

The FVC was calculated by intercepting the upper and lower NDVI

thresholds with 5% confidence, and averaging the 5% areas with the

smallest and the largest NDVI values, respectively, to obtain the

NDVIsoil and NDVIveg.
3.2 FVC dynamic analysis method

3.2.1 Trend in FVC
With the objective of investigating the spatial distribution and

temporal variations of vegetative cover in the BNNR from 1986 to

2020. Tendency and stability characteristics of vegetation cover
FIGURE 3

Flow chart of assessing and predicting the spatio-temporal variability of vegetation cover based on an advanced TSMK-FVC approach using Google
Earth Engine in BNNR.
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have been investigated utilizing the Mann-Kendall test (MK) and

the Theil-Sen slope estimator (TS).

TS is considered suitable for investigating the slope tendency in

time series data (Sun et al., 2021). This method has advantages

including insensitivity to measurement error and group data as well

as high computational efficiency (Peng et al., 2015). MK is one of

the commonly used tools for nonparametric trend testing, which is

not necessary that the data samples follow a specific pattern, as well

as can be used to test the trend of data changes under long time

series (Yue et al., 2002; Luo et al., 2020). Combining TS and MK will

provide a strong anti-interference ability for data noise, and the

specific distribution of analysis data is not a prerequisite (Zhang

et al., 2022b). Thus, TS-MK was applied to investigate the trend of

the dynamic shifts in FVC of the BNNR. The formula of TS

equation is as follows (see Equation 6):

SFVC = median
FVCb−FVCa

b−a
(6)

Where 1< a< b< n, a and b represent the amounts of years in the

time series. FVCb and FVCa are the FVC values of time series a and

b, respectively. When the slope SFVC is greater than 0, it indicates a

growth tendency; when it is less than 0, it indicates a

downward tendency.

The calculation formula of Manna-Kendall test is shown in

Equations 7–10:

S = o
n−1

j
o
n

i=j+1
sɡn(FVCj − FVCi) (7)

sɡn(FVCj − FVCi) =

1  FVCj − FVCi > 0

0  FVCj − FVCi = 0

−1  FVCj − FVCi < 0

 

8>><
>>: (8)

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p (S > 0)

0 (S = 0)

S+1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p (S < 0)

8>>><
>>>:

(9)

Var(S) =
n(n − 1)(2n + 5)

18
(10)

Where S is the correlation coefficient of the Mann-Kendall test;

Z is the significance index, and its value range is (-∞, +∞), which

follows the standard normal distribution. Z-value greater than 0

represents a significant increasing tendency, while a Z-value less

than 0 represents a significant decreasing trend.

3.2.2 FVC trend prediction
The Hurst exponent was employed in this research to forecast the

FVC trend in the BNNR going forward. Hurst originally introduced the

Hurst exponent, which is a way to determine if continuous time series

data exhibit long-term correlation (Bashir et al., 2020). This exponent

was established using R/S analysis on the basis of long-term

hydrological observations (Zhang and Jin, 2021). The Hurst index is

generally in the range from 0 to 1. When 0< H< 0.5, the future
Frontiers in Plant Science 06
tendency of FVC will be reversed; whenH=0.5, the development trend

of FVC is unpredictable; whenH is greater than 0.5 and less than 1, the

future time series of FVC remains in agreement with what has

happened previously (Tong et al., 2018; Liu et al., 2022). The

selection of the time window for the Hurst exponent requires

consideration of the study object and the cloudiness of the study

area (Zhu et al., 2021; Fu et al., 2022b). Since the dominant tree species

in the study area are all evergreen and have high cloudiness in the

growing season. Therefore, to achieve year-by-year time series FVC

estimation in the study area, FVC with a time window of the non-

growing season was used for Hurst exponent calculation. The Hurst

exponent is calculated as shown in Equations 11–15.

Define the FVC time series as FVC(t), The mean of this time

series is:

FVC(t ) =
1
t o

t

t=1
FVC(t), t = 1, 2, 3⋯, n (11)

The cumulative deviation is:

U(t, t ) =o
t

t=1
(FVC(t) − FVC(t ))  , 1 ≤ t ≤ t (12)

The range R(t) is:

R(t ) = maxU (t,t ) −minU (t,t ) (13)

The standard deviation sequence is:

S(t ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t o

t

t=1
(FVC(t) − FVC(t ))

2

s
(14)

Calculate the Hurst exponent:

R(t )=S(t ) = (at )H (15)

where H represents the Hurst exponent in the range greater

than 0 and less than 1.

Afterwards, the Hurst exponent and TS results were overlaid to get

coupled data on the changes’ tendency and consistency, and the results

were classified as: (1) decrease to increase; (2) consistent decrease; (3)

increase to decrease; (4) consistent increase (see Table 1).
3.3 Relevance analysis of FVC with
climatic elements

Pixel-by-pixel calculation of the relevance among FVC data and

climatic elements for the BNNR from 1986 to 2020. The correlation
TABLE 1 Future trend categories of FVC combining Hurst exponent
and TS.

Continuation/
FVC trends

FVC
decrease trend

FVC
increase trend

Consistent trends
(0.5< H< 1)

Consistent decrease Consistent increase

Inconsistent trends
(0< H< 0.5)

Decrease to increase Increase to decrease
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coefficients were calculated using the Equation 16:

Rab =
on

i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(yi − �y)2

q (16)

where Rxy is the correlation coefficient of factor x and factor y.

When multiple factors are correlated with FVC simultaneously,

the use of partial correlation analysis allows individual variables to

be analyzed separately for their degree of correlation with FVC

(Yuan et al., 2019). The equation of partial correlation analysis is

shown below (see Equation 17):

Rxy,z =
Rxy−RxzRyzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − R2
xz)(1 − R2

yz)
q (17)

Where Rxy,z denotes the partial correlation coefficient of the x

and y variables fixed factor z after. Rxy, Rxz, and Ryz are the

correlation coefficients of their variables, respectively. Where the

values of the coefficients range from -1 to 1.
4 Results

4.1 Temporal and spatial properties of FVC

4.1.1 Characterization of spatial distribution
of FVC

According to the FVC classification standards and pertinent

studies (Liu et al., 2022; He et al., 2023), FVC values were

categorized into five classes and corresponded to different

landscapes (see Table 2). Figure 4A illustrates the spatial

distribution of FVC in the BNNR between 1986 and 2020. Areas

of higher FVC are situated primarily at the BNNR’s eastern and

southern regions. The northern and west-central snow-covered

areas of the study area have lower FVC. Compared to 1986, the

Class V FVC coverage area in 2000 and 2020 showed significant

growth, primarily located in the BNNR ’s central and

southern regions.

4.1.2 Characterization of FVC variation over time
The mean FVC value in the research region has exhibited a

tendency to increase in a wavering manner over these thirty-five

years (see Figure 5A). The average FVC increases from 59.40% in
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1986 to 68.67% in 2020, an increase of 0.26% per decade.

Throughout this 35-year period, the average annual FVC

experienced two significant declines, with the turnaround

occurring in 1994 and 2001. The decline in FVC may be

attributed to climate-related disasters, and the implementation of

ecological policies, such as the return of grazing land to forests, has

to some extent contributed to the recovery of vegetation. The

highest mean FVC of 72.53% occurred in 2018. The lowest mean

FVC was 59.41% in 1986.

Further statistics were made on the changing trend of FVC of

different classes in BNNR between 1986 and 2020. Among these

classes, FVC for class I, II, III, and IV tended to decline, decreasing

by 6.19%, 3.64%, 3.93%, and 5.00%, respectively. The corresponding

class V showed an obvious upward trend, rising from 39.28% in

1986 to 58.03% (see Figures 4B, 5B). The improving trend in fast

FVC in the BNNR is dominated by the continued growth of high-

class FVC.

A total of seven vegetation types (alpine vegetation, coniferous

forest, broadleaf forest, meadow, shrub, tussock, and cultivated

vegetation) were distributed in the BNNR. The more widely

distributed vegetation types are coniferous forest and shrub,

accounting for 32.51% and 31.79% of the BNNR, respectively.

The FVC of all vegetation types exhibited an upward trend to

varying degrees during these 35 years, with the more significant

increases mainly in tussock (15.86% increase), cultivated vegetation

(14.97% increase), shrub (11.32% increase), and coniferous forest

(10.94% increase) (see Figure 5C).
4.2 FVC change trend and prediction

4.2.1 FVC change trend
The results of TS analysis can be classified into three categories

based on the slope of FVC changes: SFVC< -0.0005, -0.0005< SFVC<

0.0005, and SFVC > 0.0005, indicating decreasing, no change, and

increasing trends in FVC, respectively (see Table 3). As illustrated in

Figure 6A, the area of the BNNR with an upward trend is

1651.57km2 and the area with a downward trend is 619.13km2,

which account for 59.03% and 22.13% of the area, individually.

Among the area proportion of each trend, 61.48km2 and

118.23km2 of FVC were significantly reduced and very
TABLE 2 FVC is categorized into five categories and landscapes.

Vegetation
coverage value

Categories Landscape

FVC< 30% class I Bare land, snow-covered
land, etc.

30% ≤ FVC< 45% class II Valley scrub,
grassland, etc.

45% ≤ FVC< 60% class III Grassland, cropland, etc.

60% ≤ FVC< 75% class IV Shrubland, etc.

75%< FVC class V Woodland, etc.
TABLE 3 TS (SFVC) and MK (Z-value) were combined to investigate the
tendency of FVC and the findings were classified into five groups.

SFVC Z-value category
area/
km2

SFVC< -0.0005
2.58< |Z|

Extremely
significant decrease

109.38

1.96< |Z| ≤ 2.58 Significant decrease 63.01

-0.0005<
SFVC<0.0005

|Z|< 1.96 No significant change
1901.94

SFVC > 0.0005

1.96< |Z| ≤ 2.58 Significantly increase 284.53

2.58< |Z|
Extremely
significant increase

439.16
fron
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significantly decreased, accounting for 2.20% and 4.23% of the

BNNR (see Figure 6B). The area where the decrease of FVC

occurred is mainly on both sides of the Zhubaluo River and in

the southeastern part near the boundary of the reserve. All of these

regions have relatively high levels of human activity. However, there

are more areas showing significant vegetation recovery than

significant vegetation decline. The areas of significant and

extremely significant increase of FVC were 286.24km2 and

498.44km2, accounting for 10.23% and 17.81% of the BNNR (see

Figure 6B). The regions of vegetation restoration are predominantly

situated around the snowy mountains in the north and in the

southwestern part of the research region. In addition, in the eastern

part of the BNNR, regions of vegetation recovery and deterioration

are patchy.
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4.2.2 FVC change trend prediction
The overall trend of vegetation change in the BNNR appears to

be persistent, as indicated by the Hurst index research. Specifically,

the area with a Hurst index greater than 0.5 accounted for 76.7% of

the total area of the study area, while the percentage of the area less

than 0.5 was 4.0% (see Figure 7A). The results of the TS analysis

were integrated with the Hurst index to investigate the degree of

sustainability of the FVC. The results of the research are depicted in

Figure 7B), where the area transitioning from FVC reduction to

growth and sustained growth are 24.17km2 and 1551.06km2,

respectively. Conversely, the area transitioning from FVC

improvement to degradation and sustained degradation are

82.71km2 and 487.13km2, respectively. Since the vegetation in

most areas will continue the past trend, the distribution of FVC
B

A

FIGURE 4

Modifications in the space distribution of FVC throughout the BNNR; (A) space distribution of FVC by class in the research region from 1986 to
2020; (B) sankey diagram of FVC proportion shift of different classes in the research region from 1986 to 2020.
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growth and decline in the future BNNR will basically coincide with

the past trend.
4.3 FVC influence factor analysis

4.3.1 Terrain effects of FVC
Based on the actual situation of the BNNR and related

literature, its altitude, slope, and aspect were reclassified to

explore the influence of topographic effect on FVC. The area

proportion of FVC classes varies significantly with the elevation

(see Figure 8A). The proportion of class I fluctuated greatly at

different elevations. In the elevation range from 2500m to 3500m,

the proportion of class V increases with the elevation, while the

proportion of class I and class II decreases in this elevation range.
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However, in the area with elevation greater than 3500 m, the

proportion of class I area increases with the elevation, especially

in the area above 4500m, reaching up to 82%. But the proportion of

class IV and class V in this area is even less than 1%. The variation

trend of FVC also has an obvious terrain response at different

elevations (see Figure 8D). Both vegetation deterioration (P< 0.05)

and recovery (P< 0.05) are primarily located at altitudes intervals

below 4500 m, and reach the maximum value between 2500 m and

3000 m. The proportion of regions with vegetation deterioration

(P< 0.05) and recovery (P< 0.05) in FVC was 13% and 39%,

respectively, at altitudes from 2500m to 3000m. It can be seen

that the elevation zones with higher vegetation cover are also the

places with the most drastic changes in vegetation cover. In

addition, at elevations greater than 3000 m, the percentage of area

with significant changes in vegetation decreases with elevation.
B

C

A

FIGURE 5

Temporal variation in FVC in the BNNR; (A) Interannual change in the mean FVC from 1986 to 2020; (B) changes in FVC by class in the BNNR from
1986 to 2020; (C) variations in mean FVC for various vegetation categories from 1986 to 2020.
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Ultimately, at elevations greater than 4500m, vegetation is

largely unchanged.

The proportion of area in class V increases with slope gradient

from 46% for flat slopes to 66% for steep slopes when the slope is less

than 35° (see Figure 8B). Concurrently, class IV, class III, and class II
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decreased by 6%, 7% and 5% respectively from flat slope to steep slope.

The FVC significantly reduced proportion increases with the slope

increasing, from 4% for flat slopes (<5°) to 10% for dangerous slopes

(>46°) (see Figure 8E). The proportion of significant increase reaches its

peak value in the slope range of 26°~45°. However, the difference in
BA

FIGURE 6

Spatial distribution of FVC 1986-2020 tendency in the BNNR; (A) the findings of TS analysis; (B) tendency in FVC 1986-2020 in the BNNR
combining TS and MK.
BA

FIGURE 7

Projections of future trends in FVC in the BNNR combined the Hurst exponent with TS; (A) results of the Hurst exponent; (B) future change trend
distribution of FVC.
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FVC between different slopes is relatively small compared to the

difference in FVC between different altitudes and aspects.

The percentage of class V FVC in the BNNR is relatively higher on

the shady slopes and semi-sunny slopes compared to other aspects (see

Figure 8C). Additionally, the percentage of significant increases is higher

for shady and semi-sunny slopes than for other slope orientations, while

the percentage of significant decreases is relatively high for sunny and

semi-sunny slopes (see Figure 8F). Specifically, shady slopes accounted

for less than 2% of the area of significant FVC reductions, while sunny

slopes accounted for 12% of the area of significant reductions.

Conversely, the ratio of each grade of FVC does not differ much on

the flats, and fewer areas with significant vegetative changes.

In summary, the distribution and changes in vegetative cover in the

BNNR are likely more influenced by elevation compared to slope and

aspect. Therefore, the vegetation in the BNNR with an altitude of

2500m to 3500m and located on the sunny slopes needs more attention.

4.3.2 Climate effects on FVC
The annual mean temperature of the BNNR stands at 4.2°C,

displaying a fluctuating upward trend over the 35-year period. There’s

a notable difference of 1.6°C between the highest (5.0°C in 2009) and

lowest (3.4°C in 1992) annual mean temperatures (see Figure 9).

Moreover, the average annual precipitation is recorded at 733.5 mm,

with a slowly declining trend but significant inter-annual fluctuations.

The disparity between the highest precipitation year (939.4mm in 1998)

and the lowest year (538.9 mm in 2014) is nearly 400 mm. Overall,

temperature decreases from east to northwest in the BNNR, primarily

influenced by topography. The lowest mean annual temperatures occur

in the snow-covered mountainous areas at high elevations, while the

highest mean annual temperatures are observed in the valleys at lower

elevations. The spatial distribution of annual precipitation varies widely,

with areas of higher precipitation distributed only in the southern part

of the BNNR and along the banks of the Zhubaluo River.
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For the majority of the BNNR (62.65%), there was a positive

correlation between FVC and temperature; of this, 27.90% of the

region demonstrated a significant positive association (p<0.05) (see

Figures 10A, C). The percentage of area where FVC is negatively

correlated with annual mean temperature is 27.36%, with 7.63% of the

negatively linked area is explained by a significant negative correlation.

The southwestern and west-central sections of the BNNR are primarily

home to the places where FVC and temperature have a major positive

tie, while the negative correlation regions are primarily situated in the

valley area of the BNNR’s northern part, on both sides of the Zhubaluo

River in the central part, and in the southeastern part. Combined with

the topography, it can be found that the negative correlation area is

mostly distributed in the area of low elevation. The correlation between

FVC and precipitation is indicated in Figures 10B, D), the area with

positive correlation is 52.64% of the BNNR, while the negative

correlation is 37.36%. Among them, significant positive correlation

and significant negative correlation made up 7.79% and 3.11% of

positive and negative correlations, respectively. The southern part of

the BNNR is home to the majority of the regions where FVC and

precipitation have a substantial positive association. The regions of

negative correlation are located primarily in the northeastern portion.

The findings revealed that the correlation between FVC and temperature

is stronger in the BNNR compared to annual precipitation. The findings

of the significance test confirm this view as well.
5 Discussion

5.1 FVC trend analysis

The lower FVC areas in the BNNR are concentrated in the

snow-covered areas of the North and Midwest, as well as in the

valleys. This finding is more in accordance with the local climate,
B C

D E F

A

FIGURE 8

Proportion of each class FVC and FVC change trend in terrain factors; (A) proportion of FVC classes at various altitudes, (B) slopes, (C) and aspects;
(D) proportion of FVC change trend at various altitudes, (E) slopes, (F) and aspects.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1363690
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1363690
the northwest part of the BNNR belongs to the Tibetan Plateau

climate type, and the northeast part of the Jinsha River coast is

owned by the arid river valley climate. These climatic influences

render these areas more suitable for scrub and meadows,

contributing to the lower FVC levels observed in the northern

part of the BNNR (Chai et al., 2002). Conversely, regions around the

towns of Xiaruo in the east-central part and Tacheng in the south,

characterized by lower elevations and relatively higher moisture

levels compared to the northern part, are more conducive to plant

survival, resulting in higher vegetation cover.

Over the previous 35 years, there has been an overall upward

trend in the BNNR’s average annual FVC. However, the growth rate

has been relatively slow, at about 2.65% per decade. This finding is

consistent with the results of other researches in the south-eastern

part of the QTP and the Three Parallel Rivers region (Li et al., 2016;

Wang et al., 2021b). This trend is primarily beneficial due to the

active response of the local government in implementing major

ecological protection projects such as the Natural Forest Protection
Frontiers in Plant Science 12
Project, and the Yangtze River Basin Forest Protection Project and

so on (Yang, 2017; Li et al., 2021; Deng et al., 2022b). These

initiatives have led to a reduction in anthropogenic disturbances

while promoting afforestation and vegetation recovery efforts in the

BNNR. The spatial distribution results of FVC trends indicate that

the recovery and decline of vegetation are patchily distributed along

the banks of the Zhubaluo River. The low altitude of the area, the

predominant vegetation category of cultivated vegetation, as well as

the frequency of agricultural activities make the vegetation changes

along the river banks relatively complex (Liu et al., 2014; Wang

et al., 2021a).

The Hurst exponent prediction results indicate a continued

upward trend in FVC within the BNNR. However, based on the

spatial distribution of tendency projections, it can be seen that the

ecosystems in the eastern and southern fringes of the protected

areas are relatively fragile. These regions are still subject to pressure

from vegetation degradation, influenced by both natural processes

and human activities.
B

C D

A

FIGURE 9

Temporal variation and distribution in space of temperature and precipitation; (A) temperature and (B) annual precipitation in the BNNR between
1986 and 2020; (C) differences in the space distribution of average temperature (D) precipitation.
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5.2 Topography and climate impact
analysis on FVC

5.2.1 Effect of topography on vegetation cover
The vertical distribution of vegetative cover in the BNNR shows

that the region below 3300m is cool coniferous forest, warm

coniferous forest and river valley scrub; from 3300m to 4000m is

cool coniferous forest, and above 4000m is scrub meadow (Fan and

Bai, 2021; Shi et al., 2021a). Different categories of vegetation are

strongly affected by the scale of the terrain, and therefore trends also
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vary (Li et al., 2016). In the altitude range from 2500m to 4000m,

the distribution of class IV and class V is predominant, and the sum

of the two is more than 70%. And the percentage of significant

increase in FVC was also relatively high in this elevation interval.

The possible reason for this is that the soil here is dominated by

mountain brown loam with high soil fertility. Therefore, this

elevation range has a relatively high vegetation cover ability.

Conversely, the relatively low-altitude areas below 2500m and

above 4500m in the reserve have low vegetation cover, with

grassland and scrub dominating the vegetation. The lower areas,
B

C D

A

FIGURE 10

Partial correlation coefficient among FVC and climatic factors; (A) partial correlation among FVC and temperature (B) as well as precipitation;
(C) significance test of partial correlation among FVC and annual mean temperature (D) as well as precipitation.
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below 2500 m, are characterized by dry, hot river valleys with

minimal precipitation and high evaporation, making them

unsuitable for forests but conducive to shrubs and grasses (Chai

et al., 2002; Zhang et al., 2019). Areas above 4500 m are

characterized by year-round snow and ice cover, slow

accumulation of organic matter, and a shortened growing season

for vegetation as the altitude rises (Li et al., 2016). Vegetation

degradation is primarily observed at altitudes of 2500 m to 3500 m.

According to the relevant data, the areas suitable for agriculture and

animal husbandry in the study region are mainly located at low

altitude (Wang et al., 2023). This suggests that the incidence of

vegetation degradation in some low elevation regions may be

related to anthropogenic factors.

The research results revealed that the FVC of the BNNR peaked

at slopes ranging from 26° to 45°, with minimal differences in FVC

among different slope categories. This may be related to the fact that

gently sloping areas are subject to more frequent anthropogenic

disturbances, but such disturbances are decreasing as the slope

increases. Moreover, the percentage of area significantly reduced of

FVC increases with slope, but the change is small. Slope has a

relatively limited effect on the distribution and tendency of FVC,

and the difference in FVC between different slopes in the BNNR is

small. This phenomenon may be due to the fact that with the

increase gradually of slope, soil water and nutrients will be more

easily lost, so that the percentage of vegetation decline in the higher

slope area will be slightly increased (Zhang et al., 2013). Relevant

studies show that vegetative coverage in the TPRR is highest at a

slope of 35° (Wang et al., 2021b), and have concluded that

vegetation in this region is less affected by slope (Huang et al.,

2023), which is in agreement with the findings of this research.

In the BNNR, vegetative cover is lower on sunny and semi-

shady slopes compared to other slopes. Vegetation degradation

predominantly takes place on sunny and semi-shady slopes.

Revegetation occurs mainly on shady and semi- sunny slopes.

This may be due to differences in radiation, temperature and

water evapotranspiration on different slopes (Zhang et al., 2022a),

leading to differences in vegetation distribution and growth.

Combined with the fact that the main tree species in the BNNR

are trees of the Abies and Picea (Shi et al., 2021a), which are better

adapted to a cooler and colder climate, the shady slopes are more

suitable for growth.

In summary, the variances and shifts in vegetative cover

distribution within the BNNR are likely more influenced by

elevation than by other factors.

5.2.2 Impact of climate factors on
vegetation cover

The QTP has long been acknowledged as a region experiencing

more pronounced impacts from climate warming (Rangwala and

Miller, 2012). Precipitation and temperature are the two primary

climate elements that impact the growth of vegetative cover. In the

BNNR, which is situated in the eastern section of the QTP, we

found association between FVC and temperature was stronger than

that of precipitation. This conclusion was further verified in the
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results of the significance test. Furthermore, this is in agreement

with previous findings in the region that temperature is the leading

element controlling or influencing vegetation cover increase in the

region (Wang et al., 2021a; Guo et al., 2023). Owing to the relatively

complicated terrain of the area, there are more pronounced spatial

variations in the distribution of precipitation and temperature

(Zhang et al., 2018; Guo et al., 2023), resulting in different

correlations between FVC and climate elements in different areas.

The relationship between temperature and elevation elements tends

to have a more pronounced linear negative correlation, leading to

possible differences in the response of vegetation dynamics to

temperature. Wang et al. on the Tibetan Plateau showed that the

correlation between vegetation and temperature varied at different

altitudes, especially at altitudes above 2400 m, where temperature,

instead of precipitation, played a major role in regulating the

vegetation ecosystem (Wang et al., 2020).

Additionally, to some degree, the rise in temperature might

encourage the development of plants (Wei et al., 2022). Several

studies have shown that in the summer, temperature and tree radial

growth are favorably connected (Kang et al., 2021). The growth of

dominant tree species such as Abies george and Picea asperata in the

BNNR was positively correlated with temperature (Shi et al., 2021a).

This may also be one of the reasons for the relatively strong

correlation between temperature and vegetation cover. However,

it has also been suggested that raised temperature would lead to an

increase in plant respiration rate (Hua et al., 2019). Rising

temperatures will accelerate snowmelt, potentially yielding diverse

effects on vegetation. On the one hand, early snowmelt and longer

growing seasons will increase vegetation productivity, but on the

other hand, early snowmelt may also lead to low temperatures in the

early spring and reduced snowmelt in the summer leading to

droughts and a decrease in vegetation productivity, which is

mainly related to seasonal and geographic variations (Wang et al.,

2013). Vegetation phenology is closely related to climate. It has been

suggested that climate warming leads to a longer growing season for

vegetation, which promotes plant growth and biomass

accumulation (Wheeler et al., 2017). As there is a strong link

between vegetation cover and biomass (Qin et al., 2022).

Therefore, changes in vegetation phenology as a result of climate

warming have had a relatively positive effect on vegetation cover.

Regarding the regional distribution of positive correlations with

precipitation, the southern part of the BNNR exhibits a vegetation

cover more susceptible to precipitation, possibly linked to variations

in the distribution of vegetation categories. In the past, temperature

has been more influential on vegetation than rainfall. However, as

temperature continues to rise and annual precipitation tends to

reduce, the association of vegetative growth with precipitation may

become stronger in the future. In the context of global warming, the

frequency and magnitude of climate extremes have increased.

Hazards such as droughts, temperature extremes, and floods can

cause varying degrees of vegetation degradation (Manoranjan et al.,

2024). Therefore, the mechanism of vegetation response to global

warming in high-altitude mountainous areas needs to be

further investigated.
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5.3 Limitations and deficiencies

This study focuses on analyzing the long time-series variation

patterns of vegetation. Vegetation phenology is also a key indicator

for evaluating climate impacts on vegetation, carbon cycling, and

interannual changes in ecosystem productivity (Wu et al., 2021; Fu

et al., 2022a). This requires high-quality images of the growing season

and data on the distribution of vegetation types. However, Landsat

imagery capturing the vegetation growing season in the study area is

significantly impacted by clouds and cloud shadows. This challenge

may necessitate the integration of other imagery sources to generate

higher-quality growing season imagery. Additionally, there is

currently a temporary absence of vegetation type data in the study

area. This gap could be addressed in the future with the generation of

spatial distribution data on vegetation types in protected areas using

more advanced equipment and methods.
6 Conclusion

The spatial and temporal variations, as well as the developmental

tendencies of FVC, were investigated using the TS and MK methods,

while the prediction of FVC was analyzed through the Hurst exponent.

Topographic effects of FVC and its trends were also analyzed.

Furthermore, to examine the correlation between FVC and climatic

elements at the pixel level, a partial correlation coefficient was applied.

This research primarily yielded the following key findings: FVC of the

BNNR exhibited an upward trend from 1986 to 2020, with the mean

FVC value growing from 59.40% in 1986 to 68.67% in 2020. The

proportion of class I, II, III and IV decreased, while the proportion of

class V FVC increased significantly. The spatially distributed differences

of FVC in the BNNR are very obvious. Higher FVC regions are mostly

situated at the east-central and southern portions of the BNNR. Snow-

covered regions and valleys in the northern and west-central portions

of the BNNR have lower FVC. FVC trends in the BNNR reveal two

distinct patterns: a declining trend that accounted for 22.13% (a

significant decrease of 6.42%) and a growing trend that accounted

for 59.03% (a significant rise of 28.04%) of the area, respectively. Hurst

exponent analysis indicated that most regions in the BNNR will

continue to have an increased trend of FVC in the future.

Topographic factors significantly influence the shift in FVC trends

and spatial distribution. The vegetation coverage is higher in the height

range from 2500m to 4000m, and the percentage of significant increase

in FVC is also higher in this region. The area of significant vegetation

change decreases with elevation. Slope has a limited effect on FVC

distribution and trend, with minimal differences observed between

different slopes. FVC tends to be lower on sunny and semi-shady slopes

compared to other slopes, with vegetation degradation predominantly

occurring in these areas. The following are the primary ways that

climate variables affect the vegetation in this area: the FVC of the

BNNR was positively correlated with precipitation and temperature,

making up 52.64% and 62.65% of the total area, correspondingly. The

temperature factor has a relatively strong ability to influence the

vegetation cover with high spatial correlation.
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