AUTHOR=Wang Yijie , Zhao Youjie , Miao Guangting , Zhou Xiaotao , Yu Chunjiang , Cao Yong TITLE=Predicting the potential distribution of Dendrolimus punctatus and its host Pinus massoniana in China under climate change conditions JOURNAL=Frontiers in Plant Science VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1362020 DOI=10.3389/fpls.2024.1362020 ISSN=1664-462X ABSTRACT=Introduction

Dendrolimus punctatus, a major pest endemic to the native Pinus massoniana forests in China, displays major outbreak characteristics and causes severe destructiveness. In the context of global climate change, this study aims to investigate the effects of climatic variations on the distribution of D. punctatus and its host, P. massoniana.

Methods

We predict their potential suitable distribution areas in the future, thereby offering a theoretical basis for monitoring and controlling D. punctatus, as well as conserving P. massoniana forest resources. By utilizing existing distribution data on D. punctatus and P. massoniana, coupled with relevant climatic variables, this study employs an optimized maximum entropy (MaxEnt) model for predictions. With feature combinations set as linear and product (LP) and the regularization multiplier at 0.1, the model strikes an optimal balance between complexity and accuracy.

Results

The results indicate that the primary climatic factors influencing the distribution of D. punctatus and P. massoniana include the minimum temperature of the coldest month, annual temperature range, and annual precipitation. Under the influence of climate change, the distribution areas of P. massoniana and its pests exhibit a high degree of similarity, primarily concentrated in the region south of the Qinling−Huaihe line in China. In various climate scenarios, the suitable habitat areas for these two species may expand to varying degrees, exhibiting a tendency to shift toward higher latitude regions. Particularly under the high emission scenario (SSP5-8.5), D. punctatus is projected to expand northwards at the fastest rate.

Discussion

By 2050, its migration direction is expected to closely align with that of P. massoniana, indicating that the pine forests will continue to be affected by the pest. These findings provide crucial empirical references for region-specific prevention of D. punctatus infestations and for the rational utilization and management of P. massoniana resources.