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Predicting the potential
distribution of Dendrolimus
punctatus and its host Pinus
massoniana in China under
climate change conditions
Yijie Wang, Youjie Zhao*, Guangting Miao, Xiaotao Zhou,
Chunjiang Yu and Yong Cao*

College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, China
Introduction: Dendrolimus punctatus, a major pest endemic to the native Pinus

massoniana forests in China, displays major outbreak characteristics and causes

severe destructiveness. In the context of global climate change, this study aims to

investigate the effects of climatic variations on the distribution of D. punctatus

and its host, P. massoniana.

Methods: We predict their potential suitable distribution areas in the future,

thereby offering a theoretical basis for monitoring and controlling D. punctatus,

as well as conserving P. massoniana forest resources. By utilizing existing

distribution data on D. punctatus and P. massoniana, coupled with relevant

climatic variables, this study employs an optimized maximum entropy (MaxEnt)

model for predictions. With feature combinations set as linear and product (LP)

and the regularization multiplier at 0.1, the model strikes an optimal balance

between complexity and accuracy.

Results: The results indicate that the primary climatic factors influencing the

distribution of D. punctatus and P. massoniana include the minimum temperature

of the coldestmonth, annual temperature range, and annual precipitation. Under the

influence of climate change, the distribution areas of P. massoniana and its pests

exhibit a high degree of similarity, primarily concentrated in the region south of the

Qinling−Huaihe line in China. In various climate scenarios, the suitable habitat areas

for these two species may expand to varying degrees, exhibiting a tendency to shift

toward higher latitude regions. Particularly under the high emission scenario (SSP5-

8.5), D. punctatus is projected to expand northwards at the fastest rate.

Discussion: By 2050, its migration direction is expected to closely align with that

of P. massoniana, indicating that the pine forests will continue to be affected by

the pest. These findings provide crucial empirical references for region-specific

prevention of D. punctatus infestations and for the rational utilization and

management of P. massoniana resources.
KEYWORDS
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1 Introduction

The Dendrolimus punctatus, a member of the Lasiocampidae

family within the Lepidoptera order, is a widespread coniferous tree

leaf-eating pest in the forest ecosystems of southern China. It affects

an area of over one million acres and is one of the most broadly

distributed and severely damaging pests in the country (Chen, 2013;

Li et al., 2019; Zhang et al., 2020). As a longstanding pest in Chinese

forest ecosystems, its primary target is Pinus massoniana (Chai,

1995; Zhang et al., 2017; Niu and Fan, 2023), P. massoniana, a

native Chinese tree species, is distinguished by its robust

adaptability, rapid growth rate, and drought resistance. It stands

as one of the primary species used for afforestation on barren hills

and plays a crucial role in ecological construction projects (Liu et al.,

2015; Yang et al., 2016; Meng et al., 2018). However, during

outbreaks, D. punctatus can rapidly devastate pine forests, leading

to widespread death of P. massoniana within a matter of days. These

outbreaks cause ecological imbalances and substantial economic

losses. Consequently, they pose a severe threat to the safety of forest

ecosystems and the sustainability of forestry.

Global climate change, particularly alterations in temperature

and precipitation, is a pivotal factor affecting the geographical

distribution of species (Guo et al., 2014). The Intergovernmental

Panel on Climate Change (IPCC)’s Sixth Assessment Report

indicates that the global surface temperature from 2011 to 2020

was 1.1°C higher than the average from 1850 to 1900, with

projections of a continual rise in temperature over the coming

decades (Calvin et al., 2023). This warming trend is anticipated to

increase precipitation levels and lead to alterations in river basins

and adjustments in forest community structures (Shu et al., 2022;

Chen et al., 2023; Zhao et al., 2024). As a poikilothermic organism,

D. punctatus is highly sensitive to changes in environmental

temperature and precipitation. These factors are decisive in the

distribution and outbreak patterns of D. punctatus; temperature

influences its developmental rate, and precipitation contributes to

the survival of eggs and larvae (Lian et al., 2022). Future climate

changes may exacerbate the spread of forest pests and significantly

impact plant growth (Tang et al., 2021; Johnson and Haynes, 2023).

Therefore, in the context of global climate change, studying the

adaptability of D. punctatus and P. massoniana to future climatic

conditions and their distributional changes is crucial for developing

effective control strategies, protecting forest resources, and

maintaining ecological balance.

Species distribution models are mathematical models based on

species presence or abundance data, as well as environmental

factors, utilized to assess and predict the potential impact of

climate change on species (Guisan and Zimmermann, 2000).

Common species distribution models include bioclimatic

modeling (BIOCLIM), the genetic algorithm for rule-set

prediction, generalized linear models, random forests, and the

maximum entropy (MaxEnt) model (Phillips et al., 2006; Elith

and Leathwick, 2009; Belgiu and Drăgut,̧ 2016; Yang et al., 2020).

The MaxEnt model is considered one of the best-performing non-

ensemble methods in niche modeling. Compared with other

models, MaxEnt offers several advantages, such as the ability to

utilize continuous and categorical data, and accounts for
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interactions among different variables. Moreover, MaxEnt can

provide high accuracy even in scenarios where distribution data

are scarce or incomplete (Elith and Leathwick, 2009; Warren and

Seifert, 2011; Elith et al., 2015). Consequently, this model has

extensive applications in various fields such as biodiversity

conservation, the assessment of risks associated with invasive

species, endangered species protection, impact assessments of

climate change, and the prediction of quarantine pests (Cao et al.,

2020; Li et al., 2020; Wan et al., 2020; Shi et al., 2023).

In this study, we used the MaxEnt model to simulate the impact

of climate change on the suitable distribution of D. punctatus and P.

massoniana, aiming to provide a scientific basis for the protection of

P. massoniana forest resources and effective control of D. punctatus.

The specific objectives of the study include: (1) predicting the

potential distribution areas of these two species in China; (2)

analyzing the impact of major environmental factors on their

distribution; (3) forecasting and comparing the suitable habitats

and trends of change in 2050 and 2070 under different climate

scenarios; and (4) systematically analyzing the spatiotemporal

changes in their distribution centroids caused by climate change.
2 Data sources and preprocessing

2.1 Species occurrence data

Data for D. punctatus and P. massoniana were obtained from

the Center for Agriculture and Bioscience International (CABI:

https://www.cabi.org), the Global Biodiversity Information Facility

(GBIF: https://www.gbif.org/), the Chinese Virtual Herbarium

(CVH: https://www.cvh.ac.cn/), and relevant published literature.

To avoid autocorrelation among samples, we further processed

the distribution information of the target species. Initially, the Baidu

Maps coordinate picker system was used to acquire precise

longitudes and latitudes for collection points missing this

information. The distribution point data in degrees, minutes, and

seconds format were then converted into decimal (floating-point)

numbers. Finally, to reduce spatial autocorrelation between sample

points and decrease the errors in the model’s outcomes, we

established a 5 km × 5 km grid (corresponding to the 2.5 arc-

minute environmental data detailed in Section 2.2), retaining only

one sampling point per grid and eliminating duplicate and sea-

based points. The final number of sample points used for building

the species distribution model was 429 for D. punctatus and 236 for

P. massoniana (Figure 1).
2.2 Environmental data

We selected 19 bioclimatic variables (BIO01-BIO19, Table 1)

from the WorldClim database (version 2.1, spanning 1970–2000)

(http://www.worldclim.org/) as the current climate data, with a spatial

resolution of 2.5 arc minutes. To reduce multicollinearity among

variables and prevent model overfitting, it was necessary to filter these

19 environmental variables (Morales et al., 2017). Initially, we

imported the distribution data of the target species and the 19
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environmental factors into MaxEnt, utilizing default parameters for

pre-training, and a jackknife method to determine the contribution

rate of each environmental factor (Table 1). We subsequently

conducted a correlation analysis of the 19 environmental factors

using ArcGIS (Esri) (Figure 2). If two or more environmental

variables exhibited a high correlation (|r| > 0.8), we retained the

variable with a higher contribution to the model and excluded those

with a contribution rate of zero. Ultimately, six climatic variables were

selected for modeling the potential distribution of the pine caterpillar

and pine, namely, isothermality (BIO03), the minimum temperature

of the coldest month (BIO06), the annual temperature range (BIO07),

the mean temperature of the coldest quarter (BIO11), annual

precipitation (BIO12), and the precipitation of driest month (BIO14).

Three global circulation models (GCMs) from the Sixth

Coupled Model Intercomparison Project (CMIP6), namely, BCC-

CSM2-MR (Beijing Climate Center Climate System Model),

MIROC6 (Model for Interdisciplinary Research on Climate), and

CMCC-ESM2 (Centro Euro-Mediterraneo sui Cambiamenti

Climatici Earth System Model 2) were selected as the future

climate models. To mitigate the uncertainty associated with

reliance on a single GCM, we averaged the occurrence

probabilities of these three models. Based on this, we employed

the Shared Socioeconomic Pathways (SSPs) SSP1-2.6 and SSP5-8.5,

representing sustainable and business-as-usual development

scenarios (Riahi et al., 2017; Liu et al., 2021), respectively, applied

to the years 2041–2060 (2050s) and 2061–2080 (2070s). These

choices of models and SSPs aimed to explore the potential

distribution changes of the pine caterpillar and pine under

different future development pathways.
3 Research methods

3.1 Research framework

Aligned with our research objectives and the foundational

principles of the MaxEnt model, we developed a framework to

simulate the potential distribution of D. punctatus and P.
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massoniana and evaluate the spatiotemporal variations in their

future suitable habitats under the influence of climate change. The

framework is segmented into four key sections: (1) data collection; (2)

data preprocessing; (3) optimization of the MaxEnt model; and (4)

mapping of suitable habitats and analysis of the results (Figure 3). In

the first section, we compiled occurrence records forD. punctatus and

P. massoniana, along with current and future environmental

variables that influence their distribution. The second section

involved filtering the occurrence records to remove duplicates and

samples that did not fit within the range of environmental variables.

We also reduced redundancy in the environmental data by analyzing

the contributions and correlations of environmental variables. In the

third section, two critical parameters of the MaxEnt model were

optimized to enhance the accuracy of the predictions. Finally, in the

fourth section, using the processed data and the optimized MaxEnt

model, we simulated the potential distribution areas of both species

and predicted their future distributions. We then conducted an

analysis and discussion of the prediction results and key

environmental factors.
3.2 MaxEnt model

3.2.1 Model description
The MaxEnt model was employed to predict the potential

geographic distribution range of D. punctatus and P. massoniana.

This model adopts the principle of maximum entropy, which is a

statistical axiom asserting that the probability distribution with the

highest entropy represents the best estimate of an unknown

probability distribution when limited information is available

(Phillips et al., 2006). This principle suggests that a system, in the

absence of external constraints, will naturally gravitate toward a

state of maximum entropy. Under specific conditions, the state of

maximum entropy is most likely to resemble the system’s true state

(Jaynes, 1957). Two types of data are essential when applying

MaxEnt to species distribution modeling. The first type is the

known geographical distribution of the species, represented by

latitude and longitude data. The second type of data encompasses
BA

FIGURE 1

Occurrence records of D. punctatus and P. massoniana in China. (A) D. punctatus; (B) P. massoniana.
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the environmental variables within the predictive spatial range. In

deploying the maximum entropy principle for species distribution

prediction, we utilize environmental variables and species presence

data to establish constraints for the model. These constraints are

based on the congruence of two mathematical expectations: one

considers the mathematical expectation of each environmental

variable under an unknown probability distribution; and the

other focuses on the mathematical expectation of each

environmental variable within the species presence data under a

uniform distribution. The optimal prediction should adhere to these

constraints while possessing the maximum information entropy.
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The MaxEnt model is essentially a constrained optimization

algorithm. In this model, given an input x resulting in an output

y, and for a specific training dataset and feature functions fi(x, y),

where i = 1, 2,…, n, MaxEnt determines the optimal solution by

solving a series of equations. These equations aim to maximize the

information entropy of the overall system while fulfilling all known

constraints. The MaxEnt equation-solving process is described as

follows:

maxp∈cH Pð Þ =o
x,y

~P Xð ÞP(y ∣ x)logP(y ∣ x),

s:tEP(f i) = E~P(fi), i = 1, 2, 3…, n,

o
y

P(y ∣ x) = 1

where H(P) represents the conditional entropy; P(y|x) is the

assumption of the conditional probability distribution; ~P denotes

the empirical distribution; and Ep(fi) is the expected value of the

feature function relative to the empirical distribution. The equation

is solved using the Lagrangian multiplier method, which effectively

converts the original constrained optimization problem into an

unconstrained dual problem, thereby streamlining the optimization

process within the framework of the MaxEnt model.

3.2.2 Model optimization
Research indicates that using default parameters in MaxEnt

modeling can lead to excessive complexity and the poor portability

of the model (Morales et al., 2017; Wiltshire and Tanner, 2020). This

phenomenon is closely associated with two critical parameters in the

MaxEnt model: feature combination (FC) and the regularization

multiplier (RM) (Akaike, 1974; Zhu and Qiao, 2016). We utilized the

‘Kuenma’ package in R version 3.6.3 to optimize the RM and feature

categories in the MaxEnt model. During the modeling process, all

occurrence records were randomly divided into a training (75%) and

test (25%) set. We created 1160 candidate models, covering 40

different RM settings ranging from 0.1 to 4 (in increments of 0.1)

and 29 different combinations of feature categories. The selection of

candidate models was based on three criteria: (1) statistical

significance; (2) an omission rate less than 5%; and (3) a model

complexity (the minimum information criterion AICc value,

delta.AICc) less than 2 (Cobos et al., 2019). We first filtered out

statistically significant models and then retained those within the

models that met the omission rate criterion (E< 5%). Finally, we

selected the model that performed best in terms of significance,

omission rate, and complexity. Reliable models typically have a delta

AICc< 2, with delta AICc = 0 considered as the optimal model (Zhan

et al., 2022). Based on the AICc values, we identified the optimal

combination of FC and RM parameters (Table 2).
3.3 Model construction and validation

During construction of the model, 75% of the geographic

distribution data was used for model training, and the remaining

25% was used for model validation. To enhance reliability of the
TABLE 1 Description of climate variables and their pre-training
contributions used for simulating the potential distribution of
Dendrolimus punctatus and Pinus massoniana.

Variable Climate variable Contribution of
D. punctatus (%)

Contribution of
P.

massoniana (%)

bio01 Annual
mean temperature 1.9 0.6

bio02 Mean diurnal range 1.1 1.1

bio03 Isothermality 0.6 3.6

bio04 Temperature
seasonality 5.5 3.0

bio05 Maximum
temperature of the
warmest month 4.6 0.8

bio06 Minimum
temperature of the
coldest month 1.2 1.7

bio07 Annual
temperature range 2.6 1.3

bio08 Mean temperature of
the wettest quarter 0.6 0.5

bio09 Mean temperature of
the driest quarter 0.2 0.3

bio10 Mean temperature of
the warmest quarter 1.6 1.5

bio11 Mean temperature of
the coldest quarter 1 0.4

bio12 Annual precipitation 4.2 10.8

bio13 Precipitation of the
wettest month 0.5 0.2

bio14 Precipitation of the
driest month 70 72.2

bio15 Precipitation
seasonality 1.8 0.6

bio16 Precipitation of the
wettest quarter 0.3 0.2

bio17 Precipitation of the
driest quarter 0.5 0.4

Bio18 Precipitation of the
warmest quarter 0.2 0.1

Bio19 Precipitation of the
coldest quarter 1.5 0.7
Selected climate variables are highlighted in bold and gray.
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results, we established 10 replicates and employed bootstrapping as

the sampling method. The Logistic function was used as the output

format, and the final results represent the average of the 10

replicates. We subsequently adopted the jackknife method to

assess the relative importance of each climatic factor within the

suitable areas for D. punctatus and P. massoniana, thus identifying

the key limiting factors affecting the distribution of these two

species (Phillips et al., 2006). The accuracy of the model was

evaluated by determining the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve. The AUC value is

not influenced by specific thresholds, hence is widely used to assess

the accuracy of predictive models. The AUC ranges from 0 to 1 and

is directly proportional to the accuracy of a model. In general, AUC

values less than 0.7 indicate poor model performance; values

between 0.7 and 0.8 denote moderate performance; values

between 0.8 and 0.9 indicate good performance; and values

greater than 0.9 suggest excellent performance. The closer the

AUC value is to 1, the better the predictive performance of the

model (Zhao et al., 2021).
3.4 Variations in the spatial pattern of the
suitable distribution area

The MaxEnt model outputs the probability of species presence

(p) in each grid cell in ASCII format, with values ranging from 0 to

1. We visualized the model’s output in ArcGIS and employed the

reclassification tool to categorize suitability levels, calculating the
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corresponding area for each category. Based on the suitability index,

the suitable areas were divided into four levels: unsuitable (p< 0.1),

low suitability (0.1< p< 0.3), moderate suitability (0.3< p< 0.5), and

high suitability (p > 0.5) (Yan et al., 2021).

We defined the suitable areas (assigned a value of 1) for D.

punctatus and P. massoniana as spatial units with p > 0.1 and areas

with p< 0.1 as unsuitable (assigned a value of 0) (Zhao et al., 2021).

Based on this principle, we established potential distribution

matrices for these species under current and future climate

change scenarios, where 0 indicates absence and 1 indicates

presence. This approach allowed us to analyze the spatial pattern

changes in suitable distribution areas under future climate

scenarios. Changes in areas for 2050 and 2070 were calculated

based on current and projected distributions for 2050. Moreover,

we defined four types of changes: newly suitable areas (matrix value

changing from 0 to 1); lost suitable areas (from 1 to 0); retained

suitable areas (1 remaining constant); and consistently unsuitable

areas (0 remaining constant).

To further analyze the dynamics of species distribution, we

simplified the distribution of D. punctatus and P. massoniana to a

single centroid point and created a vector file to describe the

magnitude and direction of changes in the suitable areas over

time. By tracking the centroid changes under different climate

scenarios, we could explore the dynamics of species distribution.

Furthermore, we calculated the cosine similarity of the changes in

the distribution centroids of D. punctatus and P. massoniana under

the same scenarios to determine whether the migration directions of

these two species were similar.
FIGURE 2

Correlation analysis results of the environmental variables. Red indicates a positive correlation, blue indicates a negative correlation, and highly
correlated environmental variables (|r| > 0.8) are highlighted with yellow dots.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1362020
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1362020
B
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D

A

FIGURE 3

Research framework: (A) data collection, (B) data preprocessing, (C) optimization of the MaxEnt model, and (D) habitat suitability mapping and
analysis of the results.
TABLE 2 Performance of the MaxEnt model under the optimal parameters.

Species Type RM FC delta AICc

D. punctatus
Default 1 LQPH 127.313

Optimization 0.1 LP 0

P. massoniana
Default 1 LQPH 30.6034

Optimization 0.1 QP 0
F
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4 Results

4.1 Model accuracy evaluation

The MaxEnt model employs the ROC curve to assess the accuracy

of the analytical results. The ROC curve is a tool for evaluating the

performance of classification models, plotting the false positive rate on

the x-axis against the true positive rate on the y-axis. The area between

the curve and the x-axis, denoted as the AUC, is used to quantify the

overall performance of the model. The average AUC values (obtained

through 10 replicate runs of the distribution models) for D. punctatus

and P. massoniana were 0.931 and 0.923, respectively, indicating that

both models exhibit excellent performance, and their predictive

accuracy is reliable. Furthermore, the high AUC values indicate the

efficiency of the models in differentiating between suitable and

unsuitable areas, thereby providing robust scientific support for

our research.
4.2 Environmental variable analysis

We determined the key environmental variables influencing the

species distribution by analyzing the percentage contributions of

various environmental variables within the predictive model. Six

environmental variables were selected for analysis (Figure 4).

Among these variables, the minimum temperature of the coldest

month (bio06), annual temperature range (bio07), and annual

precipitation (bio12) collectively contributed to 81.4% and 84.6%

of the overall impact of D. punctatus and P. massoniana,

respectively. This highlights the significance of these variables as

the three main environmental driving factors in the distribution of

D. punctatus and P. massoniana. The remaining contribution,

accounting for less than 20%, was jointly provided by

isothermality (bio03), the mean temperature of the coldest

quarter (bio11), and the precipitation of the driest month (bio14).
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4.3 Current distribution of D. punctatus
and P. massoniana

Figure 5 reveals that D. punctatus and P. massoniana are

primarily distributed in regions south of 35°N latitude in China,

consistent with existing literature. The distribution areas of both

species exhibit significant similarity, with their northern boundaries

aligning with the Qinling Mountains and the Huai River, and their

southern boundaries extending to Hainan Island. The total area of

their distribution is approximately 193.98 × 104 km2 for D.

punctatus and 191.43 × 104 km2 for P. massoniana, respectively.

The high-suitability areas for D. punctatus are mainly concentrated

in Hunan and Jiangxi Provinces, followed by Chongqing, Hubei,

Henan, Anhui, Jiangsu, Zhejiang, Fujian, and Guangdong Provinces

and Guangxi Zhuang Autonomous Region. In contrast, the high-

suitability areas for P. massoniana are more extensive, stretching

eastward to the coastal regions of China, covering the central part of

Guangdong Province and the southwestern region of Guangxi

Zhuang Autonomous Region, as well as the eastern part of

Guizhou Province.
4.4 Projected distribution of D. punctatus
and P. massoniana under future
climate scenarios

The impact of climate change on the distribution of D.

punctatus and P. massoniana may increase the risk of pest

outbreaks. Figure 6 presents the projected distribution of suitable

habitats for these species under different future climate scenarios.

Predictions indicate that the distribution range of both species will

continue to expand in the coming decades. Particularly under the

future SSP1-2.6 scenario (Figures 6A, C), the suitable habitat of D.

punctatus is expected to expand north-eastward to northern

Shandong, with the suitable habitat area reaching 224.68 × 104
FIGURE 4

Percentage contributions of environmental variables used in the final MaxEnt model. On the left is D. punctatus and on the right is P. massoniana.
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km2 in 2050 and 235.75 × 104 km2 in 2070. Under the SSP5-8.5

scenario (Figures 6B, D), the north-eastward expansion trend of D.

punctatus is even more pronounced, with the suitable habitat area

estimated at 240.02 × 104 km2 in 2050 and 267.78 × 104 km2 in

2070. Moreover, under both climate scenarios, the high-suitability

area for D. punctatus markedly increases, suggesting that future

climatic conditions may be more conducive to the survival of this

species and could increase the risk of outbreaks. In contrast, the

northward expansion of P. massoniana is slower (Figures 6E–H),

but the high-suitability area for this species continues to increase

under both climate scenarios, indicating that southern regions of

China will become more suitable for the growth of P. massoniana.

However, the suitable habitat of D. punctatus almost entirely

overlaps with the suitable area for P. massoniana, suggesting that

P. massoniana may continue to suffer from the pest in the future.
5 Discussion

5.1 Impact of environmental variables on
the distribution of D. punctatus and
P. massoniana

Environmental variables are widely acknowledged as key factors

affecting species distribution patterns. These variables impact the

growth, development, and interspecies interactions of species (Raza

et al., 2015). Future climate change is anticipated to markedly affect

the distribution of D. punctatus and P. massoniana. In our study,

the primary environmental variables influencing the distribution of

D. punctatus and P. massoniana are identified as the minimum

temperature of the coldest month (bio06), annual temperature

range (bio07), and annual precipitation (bio12). Among these

factors, those related to temperature contribute more significantly,

indicating a higher sensitivity of D. punctatus and P. massoniana to

temperature variations. Concurrently, annual precipitation is also

instrumental in the spatial distribution modeling of these two

species. This finding aligns with conclusions drawn from

physiological and ecological studies of D. punctatus and P.

massoniana (Zeng et al., 2010; Lei and Wang, 2024). The
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development of D. punctatus requires a certain amount of

accumulated temperature. In the distribution areas of this species,

from north to south, the number of generations completed per year

increases with the rise in average annual temperature. Precipitation

influences the occurrence of pest outbreaks by altering air humidity

and through the washing effect on the larvae of D. punctatus. P.

massoniana, preferring a light-abundant and deep-rooted

environment, thrives in warm and moist climates and is typically

found in regions with distinct seasons and concurrent periods of

heat and rainfall (Fei et al., 2014; Wang et al., 2016; Yan et al., 2019).

The distribution area of D. punctatus lies within China’s subtropical

monsoon and tropical monsoon climate zones, characterized by hot

summers, mild winters, minimum average temperatures above 0°C

in the coldest months, and annual rainfall ranging from 1000 to

2000 mm. This region predominantly features P. massoniana as its

representative vegetation. Suitable climatic conditions and extensive

P. massoniana forests provide favorable conditions for outbreaks of

D. punctatus. In addition to temperature and precipitation,

environmental factors such as elevation, solar radiation intensity,

predation competition, and extent of vegetation cover significantly

influence the distribution of insects and plants (Li et al., 2023). For

example, during the hatching period of the D. punctatus, larvae

often disperse with the wind, with their direction of spread being

influenced by the wind direction. The dispersal process is affected

by wind force, wind speed, and topography (Chen, 1990). Soil pH

values can impact the distribution of P. massoniana, a species that

prefers acidic soils and is intolerant to saline conditions.

Appropriate climatic and soil environments are essential for the

formation of P. massoniana forests. Changes in P. massoniana

forests can also affect the distribution patterns of the D. punctatus.

However, integrating all influencing factors into a single model to

simulate the potential distribution of species is a challenging task.

Moreover, introducing too many variables may lead to increased

multicollinearity issues, diminishing the impact of key variables.

Nonetheless, the predictions of future suitable habitat migration

changes in this study are consistent with the growth habits of D.

punctatus and P. massoniana, and thus our results are a valuable

reference for potential suitability forecasts of these two species

under the context of climate change.
BA

FIGURE 5

Current distribution of D. punctatus and P. massoniana in China. (A) D. punctatus; (B) P. massoniana.
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5.2 Changes in the distribution areas of D.
punctatus and P. massoniana under future
climate scenarios

Under all future climate scenarios, the total distribution areas of

D. punctatus and P. massoniana are projected to increase to varying

degrees compared to the present, generally showing a trend of

northward expansion (Figures 7, 8). By 2070, under the SSP5-8.5

scenario, predictions indicate that the suitable habitat areas for these
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two species will reach their maximum. Numerous studies have

highlighted that climate change may cause significant shifts in

species distribution patterns. Under the SSP1-2.6 scenario, by 2050,

the new areas for D. punctatus are expected to include central

Shandong, Henan, parts of Yunnan, and some areas of Liaoning

(Figure 8A). By 2070, although the suitable area for D. punctatus

continues to expand northward, the increase is relatively modest, and

the suitable areas in the Yunnan region will have decreased slightly

compared to 2050 (Figure 8C). Under the SSP5-8.5 scenario, the
B
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FIGURE 6

Suitable habitat maps for D. punctatus and P. massoniana under two different future scenarios. (A) D. punctatus SSP1-2.6-2050; (B) D. punctatus
SSP5-8.5-2050; (C) D. punctatus SSP1-2.6-2070; (D) D. punctatus SSP5-8.5-2070; (E) P. massoniana SSP1-2.6-2050; (F) P. massoniana SSP5-8.5-
2050; (G) P. massoniana SSP1-2.6-2070; (H) P. massoniana SSP5-8.5-2070.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1362020
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1362020
changes in suitable habitat for D. punctatus are more significant,

expanding overall toward the northeastern region, covering areas

from southern Gansu through Shaanxi, Shanxi, Hebei, Beijing, and

Tianjin, and extending to Liaoning and parts of Jilin (Figures 8B, D).

In future periods, the expansion area of the suitable distribution of D.

punctatus generally exceeds its contraction area, indicating that future

climatic conditions will be more favorable for the survival of this

species. In contrast, the changes in suitable habitat for P. massoniana

are relatively small but also exhibit a trend of northward expansion

(Figure 8). In both future climate scenarios, the changes in suitable

habitat for P. massoniana are broadly consistent, showing a trend of

northward expansion by 2050 (Figures 8E, F), with the expansion

area mainly including Henan and Shandong, as well as central Shanxi

and parts of Gansu in the SSP5-8.5 scenario. By 2070, the suitable

habitat for P. massoniana remains relatively stable under both climate

scenarios, with only a small part of the area experiencing expansion

(Figures 8G, H). In these future climate scenarios, the stable areas of

suitable habitat for D. punctatus and P. massoniana are essentially

consistent, implying that P. massoniana will continue to face pest

risks in the future.
5.3 Changes in the habitat centroids of D.
p unctatus and P. massoniana under future
climate scenarios

Climate change is likely to cause significant changes in species

distribution patterns, prompting their northward migration

(Chen et al., 2022). Long-term climate observations indicate that,

with the global warming trend, China’s annual average temperature

is expected to rise by approximately 2.6°C, particularly under the

high greenhouse gas emission scenario SSP5-8.5, where the
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temperature increase will be more pronounced. Concurrently, the

annual average precipitation is projected to increase by 5.2%,

particularly in North China and the Northwest region (Fu and

Jiang, 2011). These changes are anticipated to further promote the

northward migration of many species. Under current climatic

conditions, the centroids of suitable areas for D. punctatus and P.

massoniana are situated in Hunan Province (Figure 9). Model

predictions for the SSP1-2.6 scenario suggest that from the

present to 2050, the centroid of the suitable habitat for D.

punctatus will move 59.37 km to the northwest, and from 2050 to

2070, it will further move 31.52 km to the northeast., respectively,

resulting in a total northward shift of 90.48 km. Under the SSP5-8.5

scenario, from the present to 2050, the centroid of the suitable

habitat for D. punctatus is projected to move 84.85 km northwest,

and from 2050 to 2070, it is expected to shift 76.54 km northeast,

totaling a northward movement of 156.43 km. The suitable habitat

centroid of P. massoniana also shifts northward, although the extent

of migration is smaller, moving northward by 37.20 km and

73.09 km under the two future climate scenarios by 2070. This

may be associated with the ecological characteristics of P.

massoniana, whose needle-like leaves effectively prevent water

evaporation, thus reducing its sensitivity to temperature changes.

These results indicate that the suitable areas for D. punctatus and P.

massoniana are expected to expand and migrate toward higher

latitude regions with increasing temperature and precipitation,

aligning with their preference for warm and humid environments.

Global warming facilitates the spread of insects limited by low

temperatures to higher latitude areas. Future trends of surface

warming in China intensifying toward higher latitudes and the

Tibetan Plateau, coupled with increased winter precipitation in the

north, provide favorable conditions for the northward expansion of

D. punctatus. Under different future climate scenarios, the
frontiersin.o
FIGURE 7

Suitable habitat areas of D. punctatus and P. massoniana under different climate scenarios.
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movement directions and ranges of D. punctatus and P. massoniana

show similarities, indicating that P. massoniana may face greater

pest risks in the future.

Therefore, in the context of climate change, it is vital to

effectively manage D. punctatus in various suitable habitats and to

protect P. massoniana resources. Strengthening pest detection and

adopting more proactive management practices are essential.

Enhanced pest control measures in high-suitability areas for D.

punctatus are critical, whereas in low-suitability areas, considering

ecosystem conservation, reducing the use of chemical agents in
Frontiers in Plant Science 11
favor of natural control methods is recommended. For P.

massoniana, trunk injection technology can potentially be

employed as an effective method to control pest infestations.
5.4 Similarity in centroid shift changes
between D. punctatus and P. massoniana

In this study, we employed the statistical method of cosine

similarity to assess the similarity in the direction of centroid
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FIGURE 8

Geographic distribution changes of D. punctatus and P. massoniana under different future climate scenarios. (A) D. punctatus SSP1-2.6-2050; (B) D.
punctatus SSP5-8.5-2050; (C) D. punctatus SSP1-2.6-2070; (D) D. punctatus SSP5-8.5-2070; (E) P. massoniana SSP1-2.6-2050; (F) P. massoniana
SSP5-8.5-2050; (G) P. massoniana SSP1-2.6-2070; (H) P. massoniana SSP5-8.5-2070.
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migration for D. punctatus and P. massoniana under different

future climate scenarios and at two time points. Cosine similarity

measures the similarity between two vectors by calculating the

cosine of the angle between them. A cosine similarity value of 1

indicates that the two vectors are in the same direction, while a

value of −1 indicates they are in opposite directions. Under the

scenarios SSP1-2.6 and SSP5-8.5, from the present to 2050, the shift

in distribution centroids for D. punctatus and P. massoniana

showed a high degree of similarity, with a similarity index of 0.99.

This indicates that the migration directions of the two species are

almost identical. Furthermore, under the SSP5-8.5 scenario by 2050,

their distribution centroids of D. punctatus and P. massoniana are

closest, at a mere distance of 25.18 km. These findings reveal a

critical insight: the period from the present to 2050 could be a high-

risk phase for P. massoniana forests due to D. punctatus infestation,

making this interval crucial for the control and management of D.

punctatus in pine forests. This discovery holds significant

implications for formulating future pest control strategies and

management measures. The similarity in the shift directions of

the distribution centroids for the two species between 2050 and

2070 under both scenarios also remains high, at 0.97 and 0.85,

respectively. However, if proactive control measures against D.

punctatus are implemented in the first phase, pest issues may be

mitigated in the latter half of the century.

In this study, we focused on analyzing the potential distribution

changes of D. punctatus and P. massoniana under future climate

change scenarios. However, the model does not encompass all key

factors that could influence the distribution of these two species, such

as geographical barriers, natural enemies, human activities, and land
Frontiers in Plant Science 12
use. Despite this, currently, no comprehensive model exists that can

integrate all these factors for species distribution prediction (Guan

et al., 2022). The future suitable habitats predicted in this study for the

two species align with their growth habits, providing a valuable

reference for understanding the habitat changes and migration

directions of D. punctatus and P. massoniana in the context of

climate change. Future research should consider a broader range of

influencing factors to develop more comprehensive species

distribution prediction models, which would enable more accurate

predictions of the distribution of these two species.
5.5 Management and
control recommendations

The impact of climate change on ecosystems has become

increasingly evident, leading to the northward spread of forest

pests including Monochamus alternatus in China and the general

trend of the potato pest Schrankia costaestrigalismoving toward the

northeast and higher latitudes (Xu et al., 2020; Xian et al., 2023). In

our study, the increases in two primary factors of climate change—

temperature and precipitation—are key in influencing the spread of

D. punctatus. As global climate change intensifies, global warming

has significantly accelerated the northward expansion of D.

punctatus. This phenomenon is concerning in that, in the not-

too-distant future, D. punctatusmay continue to migrate northward

in search of new habitats, posing a greater threat to tree species in

the northern regions. In addition, our research found that D.

punctatus and P. massoniana (its primary host) share similar
BA

FIGURE 9

Spatial changes of the geometric centroids of suitable habitat areas by 2050 and 2070 under two different climate change scenarios: (A) D.
punctatus; (B) P. massoniana.
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geographic distributions and migration trends. This finding

suggests that in the future, with the further intensification of

climate change, P. massoniana may face more severe pest risks.

Therefore, our study underscores the importance of monitoring and

managing these pest migration trends to mitigate their potential

impact on ecosystems.

This study outlines three pivotal strategies for managing D.

punctatus and conserving P. massoniana: (1) Given the projected

suitable habitats in the current climate change scenario, enhancing

surveillance and early warning systems for D. punctatus is critical. This

encompasses promptly identifying and managing pest outbreaks to

ensure swift and effective containment; (2) Considering the anticipated

distribution patterns of D. punctatus, particularly in newly affected

regions in northern China, reinforcing preventative measures is

imperative. Forestry practices, in establishment and regeneration,

should aim to modify habitats to create conditions less conducive to

the proliferation of D. punctatus. This holistic approach is vital for

curbing the spread ofD. punctatus andmitigating its detrimental effects

on ecosystems; (3) In P. massoniana forests already experiencing D.

punctatus infestation, introducing broadleaf species and creating mixed

coniferous-broadleaf forests are recommended. This strategy curbs the

likelihood of extensive, high-density D. punctatus outbreaks and

bolsters the overall resilience and stability of forest ecosystems.

Additionally, utilizing the natural predators of D. punctatus (e.g.,

Trichogramma) for biological control is advisable. Cultivating and

periodically releasing Trichogrammatid in suitable regions could

serve as an effective natural control mechanism, preventing

widespread D. punctatus infestations and thus safeguarding P.

massoniana resources.
6 Conclusion

This study analyzed the distribution patterns of D. punctatus and

its host P. massoniana based on occurrence records and current and

future climate data. The MaxEnt model, parameterized through

optimization, was employed to predict the distribution of both

species under current and future conditions. The results indicate

that under current climate conditions, D. punctatus and P.

massoniana are primarily distributed in the region south of China’s

Qinling–Huaihe line. The main environmental variables influencing

the distribution of both species are related to temperature and

precipitation, including the lowest temperature of the coldest

month, the annual temperature range, and annual precipitation.

Under future climate conditions, the suitable habitat area for D.

punctatus is expected to increase and shift toward higher latitudes. In

the SSP5-8.5 climate scenario, characterized by increased greenhouse

gas emissions and intensified global warming, D. punctatus is

projected to expand further toward higher latitudes. The similarity

in the migration direction between the two species is remarkably

high, reaching 0.99 in the SSP5-8.5 scenario by 2050. Meanwhile, the

distance between the distribution centroids of D. punctatus and P.

massoniana is only 25.18 km during this period, signifying a critical

phase for preventing and managing D. punctatus infestations in P.

massoniana forests. Although the future suitable habitat and

migration direction of P. massoniana are highly similar to those of
Frontiers in Plant Science 13
D. punctatus, the changes are relatively slow, indicating that P.

massoniana will continue to be affected by D. punctatus

infestations in the long term. This study on the distribution of D.

punctatus and P. massoniana provides valuable theoretical insights

for the future prevention of D. punctatus infestations and the

conservation of P. massoniana resources.
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