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Artemisinin biosynthesis, unique to Artemisia annua, is suggested to have evolved

from the ancestral costunolide biosynthetic pathway commonly found in the

Asteraceae family. However, the evolutionary landscape of this process is not

fully understood. The first oxidase in artemisinin biosynthesis, CYP71AV1, also

known as amorpha-4,11-diene oxidase (AMO), has specialized from ancestral

germacrene A oxidases (GAOs). Unlike GAO, which exhibits catalytic promiscuity

toward amorpha-4,11-diene, the natural substrate of AMO, AMO has lost its

ancestral activity on germacrene A. Previous studies have suggested that the loss

of the GAO copy in A. annua is responsible for the abolishment of the costunolide

pathway. In the genome of A. annua, there are two copies of AMO, each of which

has been reported to be responsible for the different product profiles of high-

and low-artemisinin production chemotypes. Through analysis of their tissue-

specific expression and comparison of their sequences with those of other

GAOs, it was discovered that one copy of AMO (AMOHAP) exhibits a different

transcript compared to the reported artemisinin biosynthetic genes and shows

more sequence similarity to other GAOs in the catalytic regions. Furthermore, in

a subsequent in vitro enzymatic assay, the recombinant protein of AMOHAP

unequivocally demonstrated GAO activity. This result clearly indicates that

AMOHAP is a GAO rather than an AMO and that its promiscuous activity on

amorpha-4,11-diene has led to its misidentification as an AMO in previous

studies. In addition, the divergent expression pattern of AMOHAP compared to

that of the upstream germacrene A synthase may have contributed to the

abolishment of costunolide biosynthesis in A. annua. Our findings reveal a

complex evolutionary landscape in which the emergence of a new metabolic

pathway replaces an ancestral one.
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1 Introduction

Plant secondary metabolites, also known as plant specialized

metabolites, are often specific to certain lineages, making their

biosynthesis pathways highly evolvable compared to those of

primary metabolites. Nevertheless, our understanding of the

evolution of these biochemicals is still limited (Weng et al., 2012).

One such secondary metabolite is artemisinin, an endoperoxide

sesquiterpene lactone that is effective against chloroquine-resistant

strains of Plasmodium falciparum. Artemisinin is exclusively

produced by Artemisia annua L. (Asteraceae) (Chen and Xu,

2016; Ikram and Simonsen, 2017; Kung et al., 2017; Wang et al.,

2019). On the other hand, a group of structurally diverse

sesquiterpene lactones, including guaianolides, eudesmanolides,

and germacranolides, which feature an a-methylene g-lactone
moiety, are produced by other plants in the Asteraceae family.

These sesquiterpene lactones are collectively known as Asteraceae

sesquiterpene lactone (ASTL) (de Kraker et al., 2002). It has been

suggested that the biosynthesis of artemisinin is derived from the

ASTL pathway (Nguyen et al., 2010, 2019), providing an

opportunity to study the dynamics of metabolic pathway evolution.

The biosynthetic pathways of artemisinin begin with amorpha-

4,11-diene synthase (ADS), which converts farnesyl diphosphate (FPP)

into the amorphadiene skeleton (Bouwmeester et al., 1999; Chang et al.,

2000; Mercke et al., 2000; Huang and Fang, 2021). Subsequently, a

cytochrome P450-dependent monooxygenase known as CYP71AV1

performs a three-step oxidation of amorpha-4,11-diene, resulting in the

generation of minor products of artemisinic alcohol and artemisinic

aldehyde and a major product of artemisinic acid in yeast (Ro et al.,

2006). However, in an in vitro enzymatic assay using microsomes

containing CYP71AV1 and the substrate amorpha-4,11-diene, only a

major product of artemisinic alcohol was found, as well as a minor

product of artemisinic aldehyde sometimes (Teoh et al., 2006). This

enzyme is referred to as amorpha-4,11-diene oxidase (AMO)

(Figure 1). Notably, there are two additional enzymes also involved

in these oxidations in A. annua, namely, an alcohol dehydrogenase

(ADH1) that catalyzes the conversion of artemisinic alcohol to
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artemisinic aldehyde and an aldehyde dehydrogenase (ALDH1) that

transforms artemisinic aldehyde to artemisinic acid (Liao et al., 2022).

Since the D11(13) double bond in the above precursors is replaced by a

methyl group in artemisinin, artemisinic aldehyde D11(13) reductase
(DBR2) catalyzes the reduction of artemisinic aldehyde to

dihydroartemisinic aldehyde, which is subsequently oxidized to

dihydroartemisinic acid by ALDH1 (Liao et al., 2022). Finally, a

light-dependent non-enzymatic spontaneous autoxidation converts

dihydroartemisinic acid to artemisinin (Czechowski et al., 2018).

The biosynthesis of ASTL shares a conserved core pathway

involving germacrene A synthase (GAS) and germacrene A oxidase

(GAO), both of which collectively transform FPP to germacrene A

acid, a key intermediate of ASTL biosynthesis. GAO catalyzes a

similar three-step oxidation reaction to convert germacrene A to a

single product, germacrene A acid, in yeast (Figure 1) (Bennett et

al., 2002; Nguyen et al., 2010; Cankar et al., 2011; Ramirez et al.,

2013; Eljounaidi et al., 2014; Nguyen et al., 2019). Interestingly, the

GAOs from other plants of Asteraceae exhibit high homology with

AMO, and their corresponding proteins can utilize amorpha-4,11-

diene as a substrate to produce artemisinic acid as a single product

in yeast. Conversely, the AMO protein is inactive toward

germacrene A (Nguyen et al., 2010; Cankar et al., 2011; Nguyen

et al., 2019). Based on the fact that the activity of ADS is exclusively

found in A. annua, a prevalent theory postulates that AMO evolved

from GAO, gradually acquiring specificity for amorpha-4,11-diene

in A. annua (Nguyen et al., 2019). This theory provides an

explanation for the promiscuous activity of GAO toward

amorpha-4,11-diene and the loss of ancestral activity on

germacrene A during the specialization of AMO. Consequently,

the absence of a GAO copy in the genome of A. annua resulted in

the elimination of germacrene A acid and ASTL production, despite

the presence of germacrene A and functional GAS expression in

glandular secreting trichomes (GSTs) (Bertea et al., 2006) where

artemisinin is synthesized and accumulated.

In the A. annua genome, two copies of CYP71AV1 can be

found. One is a long version with a seven-amino acid extension at

the N-terminus of the protein sequences, which was initially
FIGURE 1

Biosynthetic pathways of artemisinin and costunolide.
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isolated and highly expressed in a low-artemisinin production

(LAP) chemotype. This long version is referred to as AMOLAP

(GenBank: PWA40082.1). The other copy is a shorter version that

was primarily cloned and dominantly expressed in a high-

artemisinin production (HAP) chemotype, which is named

AMOHAP (GenBank: PWA47004.1) (Ting et al., 2013; Shen

et al., 2018; Liao et al., 2022). When expressed in Nicotiana

benthamiana, AMOLAP demonstrated higher enzymatic activity

compared to AMOHAP in amorpha-4,11-diene (Ting et al., 2013).

This suggests that the differential high expression of these two

variants in LAP and HAP strains contributes to the different

metabolomic profiles of the two chemotypes (Czechowski et al.,

2018). However, in another high-artemisinin content chemotype

(HAN1), the transcript level of AMOLAP was higher than that of

AMOHAP, which contradicts the previous findings (Liao et al.,

2022). It is important to note that, in the above experiment, the

AMOLAP form of GAO was selected to examine its cross-activity

on germacrene A (Nguyen et al., 2010). However, the activity of

AMOHAP on germacrene A was not evaluated. Therefore, the real

function of AMOHAP remains to be elucidated.

In this study, we demonstrate that AMOHAP possesses the

ability to catalyze the conversion of germacrene A into germacrene

A alcohol, providing evidence that AMOHAP indeed functions as a

GAO rather than an AMO. Furthermore, the promoter regions of

AMOLAP and AMOHAP exhibit distinct cis-elements, indicating

divergent transcriptional regulation between these two genes.

Therefore, these findings strongly imply that the inability of A.

annua to produce ASTL is primarily attributed to the altered

transcriptional regulation of GAO rather than the loss of

GAO function.
2 Materials and methods

2.1 Chemicals

Farnesyl pyrophosphate ammonium salt, hexane, and NADPH

were purchased from Sigma-Aldrich (St. Louis, MO, USA). The

RNA isolation kit (DP441) was obtained from Tiangen (Beijing,

China). Isopropyl b-D-thiogalactopyranoside (IPTG) was

purchased from Coolaber (Beijing, China). The TransScript®
One-Step gDNA Removal and cDNA Synthesis SuperMix

(AT311) was obtained from TransGen Biotech (Shanghai, China).
2.2 Sequence alignment and
phylogenetic analysis

The sequences of GAOs in Asteraceae were obtained from the

National Center for Biotechnology Information (NCBI). Sequence

alignment was performed using Jalview software. The phylogenetic

tree was constructed using the maximum likelihood method,

implemented in the MEGA X program. Amino acid alignment

was conducted using ClustalW. Bootstrap values, representing the

statistical support for the tree topology, were expressed as

percentages based on 1,000 replicates.
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2.3 RNA extraction and cDNA synthesis

The total RNAs of A. annua and Saussurea costus were extracted

from the leaves using an RNA isolation kit. A total of 1.5 mg of the total
RNAs was treated with DNase I (1 U/ml; Fermentas, Waltham, MA,

USA) and used for complementary DNA (cDNA) synthesis with oligo

(dT) primer using a TransScript® One-Step gDNA Removal and

cDNA Synthesis SuperMix.
2.4 Protein expression

The open reading frame (ORF) sequences for ADS and GAS were

PCR amplified from the cDNAs of A. annua as templates. The primers

used for amplification can be found in Supplementary Table 1.

Subsequently, the PCR products were ligated into the BamHI and

SacI sites of the pET-32a vector utilizing a homologous recombination

system (Paisiwen, Shanghai, China). After successful recombination,

the resulting recombinant plasmids were transformed into Escherichia

coli strain BL21 (DE3) cells for expression. The transformed cells were

then grown on Luria–Bertani (LB) medium plates containing 100 mg/
mL ampicillin. Four single colonies were selected and inoculated in 3

mL of LBmedium containing 100 mg/mL ampicillin. The cultures were

incubated for approximately 14 h at 37°C, followed by growth at 1:100

dilution to 600-nm optical density (OD600) of 0.8–1.0. Induction of

protein expression was achieved by adding 0.25mM IPTG at 16°C. The

recombinant proteins were subsequently purified with Ni-NTA resin

(Qiagen, Hilden, Germany) and their concentrations determined using

the Bradford method with bovine serum albumin (BSA) as the

standard. To verify protein expression, sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE) was performed

using 12% Tris–Gly Protein Gels with 3-(N-morpholino)

propanesulfonic acid (MOPS) running buffer. The resulting gel was

stained with Coomassie Brilliant Blue, and the protein bands were

visualized. Supplementary Figure S1 displays the Coomassie Brilliant

Blue staining results of the purified proteins.The ORF sequences for

AMOHAP, AMOLAP, and LsGAO (i.e., the GAO in Lactuca sativa)

were synthesized and cloned into the BamHI and EcoRI sites of

YeDP60 by Qingke (Beijing, China). The ORF sequence for ScGAO

(i.e., the GAO in S. costus) was amplified by PCR from the cDNAs of S.

costus using the primers listed in Supplementary Table S1. The PCR

products were inserted into the BamHI and EcoRI sites of the YeDP60

vector using a homologous recombination system. The recombinant

YeDP60s were expressed in Saccharomyces cerevisiaeWAT11 cells that

harbored the Arabidopsis thaliana P450 reductase gene, ATR1. Yeast

growth, induction, and purification of the microsomal proteins were

performed according to previous methods (Pompon et al., 1996; Luo

et al., 2001).
2.5 Enzymatic assay

A reaction system that contains sesquiterpene synthase and

cytochrome P450 monooxygenase was used. The reaction buffer

(500 mL) contained 25 mM HEPES (pH 7.0), 5 mM magnesium

chloride, and 5 mM dithiothreitol. In addition, the reaction mixture
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included the purified recombinant sesquiterpene enzyme (10 mg) and
10 mg of the crude extract of microsome proteins. To initiate the

reaction, 5 mL FPP (1 mg/mL) and 5 mL NADPH (100 mM) were

sequentially added. The reaction was then incubated at 30°C for 3 h

and layered with hexane (500 mL). As controls, microsomes from

yeast containing empty vectors were used. Following the reaction, the

mixture was quenched by adding hexane and vortexed for 10 s.

Subsequently, it was centrifuged at 12,000 × g for 10 min at 4°C. The

hexane layer was subjected to GC-MS analysis.
2.6 Gas chromatography–mass
spectrometry analysis

For GC-MS analysis, we utilized an Agilent 6890 Series GC System

with an Agilent 5973 Network Mass Selective Detector and an Agilent

HP-5MS column. The HP-5MS column had a composition of 5%

phenyl methyl siloxane and dimensions of 30.0 m length, 250.00 mm
diameter, and 0.25 mm film thickness. To ensure accurate analysis, we

employed a splitless injection technique and utilized helium gas as the

carrier gas at a flow rate of 1 mL/min. The enzymatic products

underwent analysis using the following temperature program: an

initial temperature of 60°C with a 5-min hold, followed by a gradual

increase to 270°C at a rate of 10°C/min, and, finally, a rapid ramp to

300°C at a rate of 50°C/min with a 5-min hold.
3 Results

3.1 Expression patterns of AMOHAP,
AMOLAP, GAS, and other artemisinin
biosynthesis genes

The relative tissue-specific expression levels of the artemisinin

biosynthetic genes, including ADS (GenBank: PWA56512.1),

AMOHAP (GenBank: PWA47004.1), AMOLAP (GenBank:

PWA40082.1), ADH1 (GenBank: A0A2U1Q018.1), ALDH1

(GenBank: PWA96689.1), DBR2 (GenBank: PWA95605.1), and the

ASTL gene GAS (GenBank: PWA48097.1) were investigated through

the analysis of available transcriptomic sequencing data (Shen et al.,

2018). As depicted in Figure 2, except AMOHAP, all artemisinin
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biosynthesis genes exhibited predominant expression in the trichome,

bud, and young leaf, a pattern also observed for GAS. However, the

transcript of AMOHAP was found to be low in all tissues.
3.2 Sequence analysis of AMOHAP
and AMOLAP

To investigate the phylogenetic relationship of AMOHAP,

AMOLAP, and other GAOs, the amino acid sequence of

AMOHAP was compared with those of AMOLAP and two GAOs

from other Asteraceae species, namely, the GAO in Lactuca sativa

(LsGAO) and the GAO in S. costus (ScGAO). The sequence

alignments of these four proteins revealed that AMOHAP shares a

higher sequence similarity with GAOs compared to AMOLAP. In the

predicted substrate recognition region, there were 11 amino acids that

differed between AMOHAP and AMOLAP (Nguyen et al., 2019).

Notably, 9 of these 11 amino acids of AMOHAP matched those of

LsGAO and ScGAO, while only two amino acids of AMOLAP were

identical to LsGAO and ScGAO (Figure 3). This suggests that the

catalytic pocket of AMOHAP retains more features of GAO.

We conducted a phylogenetic analysis of GAOs in 10 different

plant species, including Tanacetum parthenium (Tp), Tanacetum

cinerariifolium (Tc), Helianthus annuus (Ha), Xanthium

strumarium (Xs), Lactuca sativa (Ls), S. costus (Sc), Cichorium

intybus (Ci), Cichorium endivia (Ce), and Barnadesia spinosa (Bs),

comparing them with AMOHAP and AMOLAP proteins. The

analysis revealed a close evolutionary relationship between

AMOHAP and AMOLAP (Figure 4). Since these two proteins are

conserved in all ecotypes of A. annua, we propose a tentative

hypothesis: AMOHAP functions as a GAO, while AMOLAP has

evolved new specialized functions derived from GAO.
3.3 AMOHAP could catalyze the
hydroxylation of germacrene A to
germacrene A alcohol

To validate the function of AMOHAP, we conducted tests to

measure its enzyme activity toward amorpha-4,11-diene and

germacrene A. Initially, the ADS expressed by E. coli and eukaryotic
FIGURE 2

Relative tissue-specific expression levels of the artemisinin biosynthetic genes.
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microsomes expressing AMOHAP and AMOLAP were subjected to an

enzymatic reaction using FPP as the substrate. The results revealed the

presence of amorpha-4,11-diene (6) in both reactions when the

AMOLAP and AMOHAP proteins were added. However, artemisinic

alcohol (7) was only detected when AMOLAP was included (Figure 5),

confirming the findings of a previous in vitro microsome assay (Teoh

et al., 2006). These findings suggest that AMOLAP possesses AMO

activity, while AMOHAP exhibits negligible activities toward amorpha-

4,11-diene under the current reaction condition.

Subsequently, the enzyme activity of AMOHAP was examined on

germacrene A. The GAS protein expressed by E. coli was added to the

enzymatic system to convert FPP to germacrene A, which served as a

substrate for the microsomes containing AMOHAP and AMOLAP, as

well as the ScGAO and LsGAO that were used as positive controls. The
Frontiers in Plant Science 05
results indicated that germacrene A (1) and germacrene A alcohol (2)

were detected in the presence of GAS and the ScGAO- and LsGAO-

containing microsomes (Figure 6), confirming the effectiveness of the

enzymatic assay in catalyzing the conversion of germacrene A to

germacrene A alcohol. Similarly, when the AMOHAP-containing

microsome was present in the parallel assay, the same result was

obtained, while no germacrene A alcohol was detected when the

AMOLAP-containing microsomes were added. These results clearly

demonstrated that AMOHAP possesses the activity of GAO required

for converting germacrene A into germacrene A alcohol.
3.4 Promoter variations of AMOHAP
and AMOLAP

The enzymatic activities of AMOHAP and AMOLAP have been

confirmed as GAO and AMO, respectively. However, GAO activity

was not detected in A. annua, possibly due to the low expression level

of AMOHAP. To explore the reason for the disparity in expression

between AMOHAP and AMOLAP, we examined the promoter

regions of these two genes. Analysis of the cis-acting regulatory

elements in the promoter regions revealed significant sequence

variations, including a greater abundance of light- and abscisic

acid-responsive elements in the AMOLAP promoter compared to

AMOHAP. Notably, MeJA- and-auxin responsive elements were

exclusively present in the AMOLAP promoter, consistent with

previous findings that treatment with MeJA can stimulate

artemisinin production (Figure 7). These differences could have

contributed to the distinct expression of these two genes.
4 Discussion

Costunolide, the most basic sesquiterpene lactone found in

Asteraceae, is widely distributed among various species within this

family. The biosynthesis of costunolide starts from FPP and is

subsequently catalyzed by GAS and GAO (Nguyen et al., 2010). On
FIGURE 4

Phylogenetic analysis of AMOHAP, AMOLAP, and the germacrene A
oxidases (GAOs) in Asteraceae. The genes used in this study are
highlighted in red.
FIGURE 3

Alignment of the deduced amino acid sequences of AMOLAP, AMOHAP, LsGAO (the germacrene A oxidase in Lactuca sativa), and ScGAO (the
germacrene A oxidase in Saussurea costus). The sequences were obtained from NCBI: LsGAO (ADF32078.1) and ScGAO (ADF43081.1). Red boxes
denote the predicted catalytic pocket, red circles mark the residues conserved in AMOHAP and GAO, but different from AMOLAP, and green circles
indicate the residues conserved in AMOLAP and GAO, but different from AMOHAP.
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B

C

A

FIGURE 5

In vitro activity of AMOLAP and AMOHAP using amorpha-4,11-diene as the substrate. (A) GC-MS traces of the products of recombinant amorpha-
4,11-diene synthase (ADS) and AMOLAP- and AMOHAP-containing microsomes. (B) Mass spectra of amorpha-4,11-diene. (C) Mass spectra of
artemisinic alcohol.
B

C

A

FIGURE 6

In vitro activity of AMOHAP and AMOLAP using germacrene A as the substrate. (A) GC-MS traces of the products of recombinant amorpha-4,11-
diene synthase (ADS) and AMOLAP- and AMOHAP-containing microsomes. (B) Mass spectra of germacrene A. (C) Mass spectra of germacrene
A alcohol.
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the other hand, A. annua does not produce costunolide, but contains

artemisinin, which is synthesized through the catalytic activities of ADS

and AMO (Figure 1). It is worth mentioning that GAO exhibits

promiscuous activity as it can utilize amorpha-4,11-diene as a

substrate to generate artemisinic alcohol, artemisinic aldehyde, and

artemisinic acid in yeast. Conversely, AMO shows no activity toward

germacrene A, suggesting its functional specialization and loss of

ancestral activity (Nguyen et al., 2010; Huang et al., 2021). Previous

studies have proposed the existence of two copies of the CYP71AV1 gene

(i.e., AMOHAP and AMOLAP) in the genome of A. annua. Both copies

have the ability to produce artemisinic alcohol, artemisinic aldehyde, and

artemisinic acid when transiently expressed in N. benthamiana (Ting

et al., 2013; Shen et al., 2018; Liao et al., 2022). However, the enzymatic

activity of AMOHAP on germacrene A has not been analyzed to date.

To elucidate the true function of AMOHAP, we conducted an in vitro

enzymatic assay using both AMOHAP andAMOLAP on germacrene A.

Our findings revealed that only AMOHAP, but not AMOLAP, was

capable of producing germacrene A alcohol. This result strongly suggests

that AMOHAP is indeed a GAO rather than an AMO, and its activity

toward amorpha-4,11-diene is a promiscuous activity shared by other

GAO enzymes. Therefore, we propose renaming AMOHAP asA. annua

GAO to accurately reflect its function.

The emergence of a newmetabolic pathway can sometimes result in

the loss of the ancestral pathway, as is evident in the case of the

artemisinin/costunolide pathways in A. annua. Germacrene A and

functional GAS were found to be present in A. annua, with the

expression of GAS being particularly enriched in the trichome, bud,

and young leaf, which is consistent with the expression pattern of the

artemisinin biosynthetic genes. This observation further supports the

idea that costunolide has been replaced by artemisinin in A. annua.

Therefore, the absence of costunolide biosynthesis in A. annua may be

attributed to the lack of GAO activity, which is a result of the loss of the

GAO copy proposed in a previous study (Nguyen et al., 2019). Our

findings provide direct evidence that a change in regulation, specifically

the reduction in GAO expression, leads to the abolishment of

costunolide biosynthesis. Importantly, a natural loss-of-function event

is an essential part of the evolutionary landscape; however, previous

investigations have primarily focused on the loss of protein-coding

genes (Olson, 1999; Sharma et al., 2018; Hecker et al., 2019; Xu andGuo,

2020). Our study highlights that variations in the non-coding upstream

region can also result in a reduction of gene expression and loss

of function.
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Clearly, the real innovation in the emergence of the artemisinin

pathway is the advent of ADS activity, which is exclusively found in A.

annua. Interestingly, the production of amorpha-4,11-diene is a

relatively simple innovation. Previous studies conducted by ourselves

and others have demonstrated that a single residue switch in a-
bisabolol synthase (Fang et al., 2017) and (E)-b-farnesene synthase

(Salmon et al., 2015) from A. annua can generate amorphadiene

analogs, such as amorpha-4,7(11)-diene, which only differs from

amorpha-4,11-diene in terms of the double bond position. Therefore,

the potential ability of sesquiterpene synthase to produce

amorphadiene and the promiscuous activity of GAO toward

amorphadiene serve as the evolutionary start points for the advent of

the artemisinin metabolic pathway in A. annua.
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