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Identifying polyphenotype genes that simultaneously regulate important agronomic

traits (e.g., plant height, yield, and disease resistance) is critical for developing novel

high-quality crop varieties. Predicting the associations between genes and traits

requires the organization and analysis of multi-dimensional scientific data. The

existing methods for establishing the relationships between genomic data and

phenotypic data can only elucidate the associations between genes and individual

traits. However, there are relatively few methods for detecting elite polyphenotype

genes. In this study, a knowledgegraph for traits regulating-geneswasconstructedby

collecting data from the PubMed database and eight other databases related to the

staple food crops rice, maize, and wheat as well as the model plant Arabidopsis

thaliana.On thebasisof theknowledgegraph, amodel forpredicting traits regulating-

genes was constructed by combining the data attributes of the gene nodes and the

topological relationship attributes of the gene nodes. Additionally, a scoring method

for predicting the genes regulating specific traits was developed to screen for elite

polyphenotype genes. A total of 125,591 nodes and 547,224 semantic relationships

were included in the knowledge graph. The accuracy of the knowledge graph-based

model for predicting traits regulating-geneswas0.89, the precision ratewas0.91, the

recall ratewas0.96, and theF1 valuewas0.94.Moreover, 4,447polyphenotypegenes

for 31 trait combinations were identified, amongwhich the rice polyphenotype gene

IPA1andtheA. thalianapolyphenotypegeneCUC2wereverifiedviaa literaturesearch.

Furthermore, the wheat gene TraesCS5A02G275900 was revealed as a potential

polyphenotype gene that will need to be further characterized. Meanwhile, the result

ofvenndiagramanalysisbetweenthepolyphenotypegenedatasets (consistsofgenes

that are predicted by our model) and the transcriptome gene datasets (consists of

genes thatweredifferential expression in response todisease, droughtor salt) showed

approximately 70% and 54% polyphenotype genes were identified in the

transcriptome datasets of Arabidopsis and rice, respectively. The application of the

model driven by knowledge graph for predicting traits regulating-genes represents a

novel method for detecting elite polyphenotype genes.
KEYWORDS

polyphenotype gene, cross-species, traits regulating-genes, knowledge graph, crop
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1 Introduction

The development of the seed industry, which is critical for

ensuring food security and maintaining the supply of important

agricultural products, is largely dependent on high-quality crop

gene resources. In terms of crop breeding, there is often a trade-off

between traits. For example, there are negative correlations between

high yield and disease resistance as well as between high yield and

high quality. Thus, it may be difficult to simultaneously optimize

two elite traits, which is one of the bottlenecks in crop breeding

programs. Thus, mining for polyphenotype genes associated

with elite traits may eliminate the trade-off effect during

the development of new high-quality crop varieties. The

“Breeding 4.0” concept is highlight the integration of life science,

information science, and breeding science, which helps the

identification of elite polyphenotype genes on the basis of

hypothesis-driven passive exploration transition to data-driven

active knowledge discovery (Wallace et al., 2018). In addition, the

methods of genome-wide association study (Liu et al., 2023b),

quantitative trait locus analysis (Jiang et al., 2023), and bulk

segregant analysis (Yu et al., 2023) were conducted to establish

the associations between genes and individual traits, but they were

not conducive to mining for polyphenotype genes (Polderman et al.,

2015; Sonah et al., 2015).

The rapid development and application of high-throughput

sequencing technology has resulted in an exponential increase in

the amount of multi-dimensional scientific data relevant to

breeding. Moreover, several data platforms have emerged to

support crop breeding research, including the genome annotation

data platform Phytozome (Goodstein et al., 2012), the protein

sequence and functional analysis platform UniProt (Unified

Protein Database) (Consortium, 2007), the pathway annotation

data platform KEGG (Kyoto Encyclopedia of Genes and

Genomes) (Chen et al., 2017), the rice genomic variation and

functional annotation platform RiceVarMap (Rice Variation

Map) (Zhao et al., 2021), the wheat genome platform IWGSC

(International Wheat Genome Sequencing Consortium) (Appels

et al., 2018), and MaizeGDB (Maize Genetics and Genomics

Database) (Portwood et al., 2019). These data platforms are useful

for analyzing the molecular mechanism regulating traits, but

typically only in a single dimension. However, the characteristics

of multi-source heterogeneous data make it extremely difficult to

integrate multi-dimensional scientific data, which is problematic

when mining for elite polyphenotype genes. Hence, a new method

for integrating multi-dimensional scientific data for genes and

related traits is urgently needed to facilitate the mining and

application of elite polyphenotype genes.

Knowledge graphs are constructed to organize knowledge using

graphical representations for associated data and integrate diverse

scientific data from multiple sources. The intrinsic relevance of the

knowledge can be inferred by predicting relationships between

entities in the knowledge graph (Himmelstein et al., 2017).

Therefore, knowledge graphs have the ability to correlate and

integrate multi-dimensional scientific data, thus enabling more

effective exploration of subject knowledge discovery (Lan et al.,
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2021; Yang et al., 2022). Consideration of the data complex in life

sciences, recently, a larger number of studies have focused on the

application of knowledge graphs in medical sciences. Firstly,

knowledge graphs applied in analysis of disease genes. Alshahrani

et al. developed Semantic Disease Gene Embeddings (SmuDGE) to

rank disease-related genes, this model was constructed based on the

knowledge graph with using feature learning-embedding entity

vectors (Alshahrani and Hoehndorf, 2018). In addition, a disease

knowledge graph CADA (i.e., case annotations and disorder

annotations) was constructed by Peng et al., which prioritizes the

pathogenicity-related genes by combing the methods of network

representation learning and link predictions (Peng et al., 2021). To

mine the highly correlated cancer genes, Choi et al. proposed a

knowledge graph-embedding model (KGED) based on

convolutional neural networks, which used the gene-gene

relationships inferred by KGED to generate gene interaction

networks for specific cancer types (Choi and Lee, 2021). Secondly,

knowledge graphs also applied in the discovery of knowledge paths

in medical sciences. For instance, Dharmavaram et al. revealed the

hidden knowledge discovery by using a random walk algorithm,

which extracts contextual information from the knowledge graph

and generates knowledge paths closely related to the input

knowledge (Dharmavaram et al., 2019). Additionally, Pyysalo

et al. delved the knowledge discovery in pathogenic mechanisms

underlying tumor formation by combing the methods of machine

learning and natural language processing, to analyze the strength of

entity associations according to the knowledge discovery method

involving the co-occurrence of concepts (Pyysalo et al., 2019).

Thirdly, knowledge graphs were applied to the proposition of new

research directions in medical sciences. Mohamed et al. constructed

a knowledge graph-embedding semantic model for predicting new

drug-target interactions, which exploited the existing drug-target

knowledge graph DrugBank (Mohamed et al., 2020). In addition,

Zhang et al. proposed a knowledge graph to support the discovery

of new Parkinson’s drug candidates, which integrates knowledge

from a local medical knowledge database and medical literature

(Zhang and Che, 2021). Furthermore, Yang et al. constructed a

stroke-related knowledge graph by applying biomedical text mining

methods, this model was target to the prediction of new directions

in stroke research or the reusing of related drugs (Yang et al., 2022).

However, few of studies were applied the knowledge graphs in

agricultural sciences. The Rothamsted Research Institute

constructed the domain knowledge graph which is named

KnetMiner, this model is focus on the knowledge system query of

gene regulatory networks (Hassani-Pak et al., 2021). In addition,

The French Agricultural Research Centre for International

Development (CIRAD) constructed the knowledge graph of

Agronomic Linked Data (AgroLD), which integrates multiple

plant datasets to support the development of scientific hypotheses

related to complex plant traits (Larmande et al., 2022). Hence, how

to develop gene mining model based on knowledge graph, especially

for mining elite polyphenotype genes remains largely unknown.

It is currently difficult to identify and determine the genomic

locations of unknown genes using existing bioinformatics

methods. Additionally, candidate genes must be individually
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verified via molecular biology experiments, which is often an

expensive and time-consuming process. Furthermore, the proven

methods for genome-wide association analyses, quantitative trait

locus mapping, and mixed pool group analyses can establish the

relationships between genes and single traits, but there are not

appropriate for identifying elite polyphenotype genes. Thus, in this

study, we constructed a model for predicting traits regulating-genes

using a knowledge graph that combined the data attribute

information of the gene nodes and the related topological

relationship attribute information. Our objective was to predict

traits regulating-genes on the basis of a multi-dimensional scientific

data analysis, ultimately leading to the identification of elite

polyphenotype genes.
2 Data and methods

2.1 Data sources

In our previous study, PubMed database was used as the

literature data source, and 8 other domain knowledge bases were

selected as data sources, including Phytozome, Ensemble (European

molecular biology laboratory’s European bioinformatics institute),

RGAP (rice genome annotation project), UniProt (universal protein

resource), STRING (search tool for recurring instances of

neighboring genes), Pfam (protein family), KEGG (Kyoto

encyclopedia of genes and genomes) and GO (gene ontology)

(Zhang et al., 2024).

All the transcriptome datasets were obtained from the PubMed

database according the phenotypes. To obtain transcriptome

datasets related to disease, we obtained 589 differentially

expressed genes (DEGs) resistance to Verticillium dahlia in

Arabidopsis (Scholz et al., 2018) and 4471 DEGs resistance to P

kururiensisin in rice (King et al., 2019). In addition, we obtained

14165 and 9751 DEGs in response to salt in Arabidopsis and rice,

respectively (Zhou et al., 2016; Crawford et al., 2020). And we also

obtained 3341 and 3003 DEGs in response to drought in

Arabidopsis and rice, respectively (Fu et al., 2017; Sura et al.,

2017). All those DEGs (|log(Fold change)|≥1) were selected by

comparison of the stress treatment groups and control groups in the

wild type.
2.2 Construction of a knowledge graph for
traits regulating-genes

Knowledge graph is a graph-based data structure consisting of

multiple triples (entity-object attribute-entity) with nodes and

edges, each node representing an “entity”, each edge representing

an “object attributes”. Entity object attributes can reveal the

semantic relationship between two entities.

In our previous studies, the knowledge graph for traits

regulating-genes describes the relational hierarchy of knowledge

organization between genes and traits. Its construction steps include

the construction of ontology semantic model and triplet extraction
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based on ontology semantic model. Firstly, taking trait, gene and

protein as the central entity, 13 entities are organized and associated

through 14 object attributes to form an ontology semantic model.

Secondly, based on the ontology semantic model, the corresponding

entities are extracted from the above multiple data source

knowledge base to form multiple triples. Finally, the constructed

multi-type triplets was stored in the Neo4j graph database to form

the knowledge graph for traits regulating-genes (Zhang et al., 2024).
2.3 Construction of a model for predicting
traits regulating-genes

In knowledge graph, knowledge mining method of link

prediction is that the likelihood of a “new link” between entities

may be predicted by calculating the closeness between two entities.

The study have shown that link prediction can be applied in

knowledge graph to realize the subject knowledge discovery (Peng

et al., 2021). Based on the knowledge mining principle of link

prediction, we constructed a model for predicting traits

regulating-genes.

Considering the unknown relationships between genes and

traits, this study adopted the knowledge mining method based on

predicted links to determine the similarity between the entities of

unknown genes (unknown relationships between the genes and

traits) and known genes (known relationships between the genes

and traits). Potential “new links” between unknown genes and traits

were predicted according to the traits regulated by known genes.

The characteristics of the multi-dimensional scientific data

associations between the genes and traits in the knowledge graph

were used to construct a model for predicting traits regulating-

genes. The model calculates the similarity between known gene and

unknown gene entities to predict the traits regulated by the

unknown genes.

The formula for assessing the similarity between two gene

entities in the model consists of three parts (Figure 1). First, the

number of co-connected entities between genes represents the co-

occurrence frequency of unknown genes and known genes. Second,

the number of co-connected entity categories between genes

represents the structural characteristics shared by unknown genes

and known genes at different molecular levels. Third, the similarity

score between the proteins obtained by calculating protein sequence

similarity. The similarity score represents the genes similarity in

conserved functions. Therefore, we predicted the traits regulating-

genes using the following formula for calculating the similarity

score:

S(g1,  g2) = C(k) ·D(k) · S(p1,  p2 Þ:
where S(g1, g2) indicates the degree of similarity between two

gene entities; g1 is a known trait regulating-gene; g2 is an unknown

trait regulating- gene; S(p1, p2) indicates the degree of similarity

between two protein entities; p1 and p2 respectively are the proteins

encoded by g1 and g2; N(x) represents a collection of nodes

adjacent to the node gene x; k=N(g1)∩N(g2); C(k) is the number
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of entities in the node collection k; and D(k) is the number of entity

categories for the node collection k. In the formula, C(k) and D(k)

represent topological relationship attributes of the gene nodes in the

knowledge graph, whereas S(p1, p2) represents data attribute of the

gene nodes in the knowledge graph.
2.4 Determination of the threshold for the
model for predicting traits
regulating-genes

The model for predicting traits regulating-genes was used to

quantify the similarity between unknown genes and known genes. A

high similarity score indicates that the unknown gene is closely

related to a known gene. Moreover, the genes may regulate the same

trait. We assumed that when the similarity score exceeded a certain

threshold, the unknown gene and the known gene regulate the same

trait. To determine the threshold, the gene-trait association datasets

published from 1988 to 2023 were selected to make the gene-gene

association datasets, which to calculate the similarity to all known

trait regulating- genes. Based on the time when genes were first

discovered, gene-gene association datasets were divided into

training sets and validation sets in a ratio about 8:2. The gene-

gene association datasets compiled from 1988 to 2017 of a total of

728 served as the training set, whereas the gene-gene association

datasets compiled from 2018 to 2023 of a total of 157 served as the

validation set. The threshold was determined by training the

datasets, with the F1 value used as the threshold filtering index.

More specifically, the similarity score corresponding to the

maximum F1 value was set as the threshold (Powers, 2020).
2.5 Evaluation of the utility of the model
for predicting traits regulating-genes

On the basis of the selected threshold, the time-slicing method

was used to predict the regulatory genes for traits in the test set.

Four commonly used evaluation indices (i.e., accuracy, precision,

recall, and F1 value) were used to evaluate the screening results in
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the validation set to verify the utility of the model. The formulae for

the selected indices were as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
;

Precision =
TP

TP + FP
;

Recall =
TP

TP + FN
  and

F1 − score =
2� Precision� Recall
Precision + Recall

;

where True Positive (TP) is an outcome where the model

correctly predicts the positive class; True Negative (TN) is an

outcome where the model correctly predicts the negative class;

False Positive (FP) is an outcome where the model incorrectly

predicts the positive class; False Negative (FN) is an outcome where

the model incorrectly predicts the negative class.
2.6 Mining for polyphenotype genes
affecting the target traits

The model for predicting traits regulating-genes was used to

examine the similarity between the unknown genes and the known

genes regulating the target traits. The known genes that satisfied the

threshold were selected to predict the traits regulated by the

unknown genes. Finally, the associations between the unknown

genes and multiple traits were established to identify the

polyphenotype genes regulating the target traits. Increases in the

similarity score reflected increases in the likelihood the unknown

gene and known gene regulate the same trait. Considering the

differences in the distribution of the similarity scores, we propose a

comprehensive ranking method of elite polyphenotype genes. We

comprehensively ranked the elite polyphenotype genes by ranking

the unknown gene similarity scores for each regulated trait and then

ranking the polyphenotype genes by counting their average ranking

in each regulated trait. The following formula was used for this

ranking:

Ssum =o
n

i=1

R(gi)
n

:

where i represents the traits; n represents the number of traits;

and R(gi) represents the similarity score ranking for the gene for the

i trait.
3 Results

3.1 Knowledge graph for traits
regulating-genes

Data for the model plant Arabidopsis thaliana and the staple

crops rice, maize, and wheat were used to construct a knowledge
FIGURE 1

Schematic diagram of the model for predicting traits regulating-
genes. Different colored lines represent different relationships
between entities.
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graph comprising 13 entities, 16 data attributes, and 14 object

attributes, with a total of 125,591 nodes and 547,224 semantic

relationships. Specific details regarding the triplet semantic

relationships are provided in Table 1.
3.2 Prediction of genes regulating-traits

To predict the genes regulating specific traits, we obtained 885

gene-trait association datasets published from 1988 to 2023 and

divided them into training set and validation set. In the training set,

F1 value used as the threshold filtering index. When F1 peaked, the

corresponding gene node similarity score was 502.36 (Figure 2).
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On the basis of the model for predicting traits regulating-genes

proposed in this study, the rice gene LOC_Os05g12260 (Figure 3)

was revealed to be associated with drought resistance traits in 2014

(Kim et al., 2014). This model was also used to calculate the

similarity between the gene entities LOC_Os05g12260 and

LOC_Os02g15640. There were 13 coincident nodes between the

two gene entities. Additionally, there were four coincident node

categories. The similarity score for the proteins (Q6I5C3 and

Q6EN42, respectively) encoded by LOC_Os05g12260 and

LOC_Os02g15640 was 79.191. The similarity score for the two

gene entities (3,801.17; i.e., 12 × 4 × 79.191) exceeded the gene

similarity threshold (502.36). We speculated that LOC_Os02g15640

is likely associated with drought resistance. A previous study

indicated that the overexpression of this gene significantly

improves the drought and cold tolerance of rice (Tian et al.,

2015). Accordingly, the findings of the current study reflect the

utility of the model for predicting traits regulating-genes.
3.3 Mining the elite polyphenotype genes

To identify elite polyphenotype genes, the knowledge mining

method for predicting links was used to establish the implicit

associations between gene entities and multiple trait entities on the

basis of the model for predicting traits regulating-genes. A total of 4,447

polyphenotype genes for 31 trait combinations were mined (Table 2),

including 1,925 functional known genes (Supplementary Table 1) and

2,522 functional unknown genes (Supplementary Table 2).

To further illustrate this model, we selected functional known

genes and functional unknown genes as examples respectively. For

instance, we identified the functional known gene CUC2

(AT5G53950) which is an elite polyphenotype gene (Figure 4A).
TABLE 1 Statistics of triples in knowledge graph for traits regulating-genes.

head entity; relation; tail entity head entity triples tail entity data source

(protein; associates with; trait) 1060 1235 6 PubMed

(protein; homologous to; protein) 1060 191221 75863 UniProt

(protein; interacts with; protein) 351 1150 351 STRING

(protein; corresponding to; gene) 76427 76427 28761 Phytozome; RAPdb

(protein; identify with; gene symbol) 18761 18761 12613 UniProt

(protein; involves in; signal pathway) 3345 3486 235 UniProt

(protein; located in; subcellular localization) 24317 41099 1885 UniProt

(protein; has protein domain; domain) 2211 2424 322 UniProt

(protein; belongs to; protein family) 41422 57582 642 Pfam

(gene; located in; cellular component) 20673 32897 389 Ensembl plants; GO

(gene; performs; molecular function) 25990 63750 1176 Ensembl plants; GO

(gene; involves in; biological process) 21794 46905 2105 Ensembl plants; GO

(gene; involves in; metabolic pathway) 4765 4777 604 Ensembl plants; KEGG

(gene; encodes the enzyme type; enzyme) 5094 5510 423 Ensembl plants; KEGG
UniProt, Universal Protein Resource; KEGG, Kyoto Encyclopedia of Genes and Genomes; Ensemble, European Molecular Biology Laboratory’s European Bioinformatics Institute; RAPdb, Rice
Genome Annotation Project; GO, Gene Ontology.
FIGURE 2

Select threshold of the model for traits regulating-genes. The
abscissa is the gene similarity score, the ordinate is the F1 value, and
the model has the best effect when the F1 value reaches the peak,
and the corresponding abscissa similarity score is the threshold.
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In A. thaliana, AT5G39610 is associated with salt resistance (Zhao

et al., 2022), AT3G49530 is associated with drought resistance (Kim

et al., 2012), and AT5G08790 is associated with disease resistance

(Viswanath et al., 2023). In rice, LOC_OS04G38720 influences plant

height and grain weight (Chen et al., 2015; Jiang et al., 2018). The

similarity scores between AT5G53950 and the above-mentioned

four genes (1,156.86, 671.88, 653.84, and 645.00, respectively) were

higher than the threshold (502.36), implying AT5G53950 may

regulate salt resistance, drought resistance, disease resistance,

plant height, and grain weight. Recent studies confirmed that the

A. thaliana gene AT5G53950 contributes to drought resistance

(Meng et al., 2023), salt resistance (Li et al., 2023), grain weight

(Liu et al., 2023a), and disease resistance (Su et al., 2023), providing

further evidence of the utility of our model for predicting traits

regulating-genes.

Among the functional unknown genes, TraesCS5A02G275900

was selected as a representative example (Figure 4B). The A.

thaliana gene AT5G39610 is associated with salt resistance (Zhao

et al., 2022). In rice, LOC_Os11g03370 is associated with drought

resistance and salt resistance (Zheng et al., 2009), whereas

LOC_Os12g03050 is associated with disease resistance

(Chromosomes and Consortia, 2005) and LOC_Os04g38720 is

correlated with plant height and grain weight (Chen et al., 2015;

Jiang et al., 2018). The similarity scores between the wheat gene

TraesCS5A02G275900 and the above-mentioned four genes were

689.52, 602.25, 580.00, and 675.00, respectively, which exceeded the

threshold (502.36). Hence, TraesCS5A02G275900 may regulate salt
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resistance, drought resistance, disease resistance, plant height, and

grain weight, but the possibility TraesCS5A02G275900 is an elite

polyphenotype gene remains to be experimentally verified.
3.4 Identification of ideal polyphenotype
genes for target traits

In response to the demand for mining suitable polyphenotype

genes affecting target traits, we comprehensively ranked the elite

polyphenotype genes according to the similarities between

unknown and known genes. Specifically, the similarity scores

of the unknown genes for each regulated trait were ranked, after

which the polyphenotype genes were comprehensively ranked in

terms of the target traits. For example, during the cultivation of new

high-quality crop varieties, dwarfism-related traits suitable for

mechanized harvesting as well as high yields and disease

resistance are ideal. Thus, we selected the top 10 genes (10

functional known genes and two functional unknown genes) for

the regulated traits (Table 3).

Among the selected genes, the functional known gene IPA1

(LOC_Os08g39890) (Table 3) may be an ideal polyphenotype gene

that likely regulates plant height, grain weight, and disease

resistance. This gene reportedly encodes a plant-specific SBP-box

domain-containing transcription factor that functions as a major

regulator of the rice plant type (Jiao et al., 2010). The ipa1-1D and

ipa1-2D alleles can increase the number of panicles, decrease the
FIGURE 3

Prediction of LOC_Os02g15640’s regulatory traits. The different-colored circles and arrow lines in the legend in the upper right corner represent
different entity types and relationship types, respectively, and the numbers in parentheses indicate the number of nodes and relationships of different
types. For example, the red circle represents the “trait” node, and the number is 1; The light blue circle represents the “protein” node, which has a
quantity of 2; The orange circle represents the “gene” node, which has several 2. Taking the relationship type as an example, the brown arrow line
represents the “homologous to” relationship type, and the number is 1; The light blue arrow line represents the exercise “(performs)” relationship
type, with a quantity of 4; The number of co-connected coincident nodes between the gene entity LOC_Os05g12260 and the gene entity
LOC_Os02g15640 was 12, the number of coincident node classes was 4, and the corresponding proteins were Q6I5C3 and Q6EN42, and the
similarity between them was 79.191.
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number of ineffective tillers, thicken stems, enhance root system

development, and ultimately significantly increase the yield; thus,

they have been widely used for breeding elite rice varieties (Wang

et al., 2018). In addition, IPA1 also plays an important regulatory

role influencing disease resistance and environmental adaptations
Frontiers in Plant Science 07
(Liu et al., 2019; Chen et al., 2023). Hence, our prediction results

were supported by the published literature, which further illustrates

the reliability of our model for predicting traits regulating-genes.

We also predicted that the functional unknown genes

Zm00001d018260 and TraesCS6D02G245300 are associated with

plant height, grain weight, and disease resistance.

We also mined for the polyphenotype genes that simultaneously

regulate salt resistance, plant height, grain weight, drought

resistance, and disease resistance. The top 10 genes associated

with these traits consisted of seven functional known genes and

four functional unknown genes. Of the genes predicted to affect salt

resistance, plant height, grain weight, drought resistance, and

disease resistance, AT5G53950 was ranked first (Table 4). Recent

research revealed that this gene is important for regulating leaf

development and salt resistance (Li et al., 2023), while also

contributing to the response to drought stress via the ubiquitin

pathway (Meng et al., 2023). Another recent study confirmed that

this gene modulates fruit yield and quality by regulating shoot

apical meristem inflorescence development and fruit ripening (Liu

et al., 2023a). Moreover, this gene belongs to the EIL family, which

can effectively protect against disease-related plant decay and is

widely used to enhance crop disease resistance (Su et al., 2023).

Hence, according to published research, this gene is indeed related

to salt resistance, drought resistance, disease resistance, and grain

weight. In addition, this gene may also regulate plant height, which

is a potential subject discovery.
3.5 Verification of the polyphenotype gene
mining results

To confirm the utility of the knowledge graph-based model for

predicting traits regulating-genes, a time-slicing method was used to

examine the published literature to screen the validation set for gene

pairs with a similarity score greater than or equal to the threshold

(502.36). Several indices (accuracy, precision, recall, and F1 value)

were used to evaluate the prediction results. For the test set, the model

accuracy was 0.89, the precision rate was 0.91, the recall rate was 0.96,

and the F1 value was 0.94. These results reflect the utility of the

knowledge graph-based model for predicting traits regulating-genes.

Moreover, the rice polyphenotype gene IPA1 (LOC_Os08g39890) and

the A. thaliana polyphenotype gene CUC2 (AT5G53950) were also

verified by published research findings. However, the wheat gene

TraesCS5A02G275900 is a potential polyphenotype gene that has not

been reported. These results are indicative of the reliability of the

method used for identifying elite polyphenotype genes. In addition, to

verify the reliability of polyphenotype genes predicted in our model,

we performed Venn diagram analysis between the polyphenotype

gene datasets (consists of genes that are predicted to have multiple

phenotypes by our model) and the transcriptome gene datasets

(consists of genes that were differential expression in response

to disease, drought or salt). For example, by using our model,

we identified 489 and 297 polyphenotype genes associated

with both disease and salt tolerance in Arabidopsis and rice,

respectively. Venn diagram analysis suggested that 292 and 116
TABLE 2 The number of polyphenotype genes related to different
combination traits.

Traits Numbers

salt_resistance, drought_resistance 962

disease_resistance, salt_resistance 800

disease_resistance, drought_resistance 378

disease_resistance, plant_height_reduce 168

salt_resistance, plant_height_reduce 156

disease_resistance, insect_resistance 142

disease_resistance, grain_weight_increase 108

salt_resistance, insect_resistance 98

grain_weight_increase, plant_height_reduce 43

plant_height_reduce, insect_resistance 6

grain_weight_increase, insect_resistance 2

insect_resistance, drought_resistance 2

plant_height_reduce, drought_resistance 1

grain_weight_increase, salt_resistance 12

disease_resistance, salt_resistance, drought_resistance 1173

disease_resistance, salt_resistance, plant_height_reduce 78

disease_resistance, grain_weight_increase, plant_height_reduce 74

salt_resistance, insect_resistance, drought_resistance 39

disease_resistance, salt_resistance, insect_resistance 27

grain_weight_increase, salt_resistance, plant_height_reduce 19

disease_resistance, plant_height_reduce, insect_resistance 8

disease_resistance, grain_weight_increase, insect_resistance 3

grain_weight_increase, salt_resistance, drought_resistance 2

disease_resistance, grain_weight_increase, drought_resistance 1

disease_resistance, insect_resistance, drought_resistance 1

disease_resistance, grain_weight_increase,
salt_resistance, drought_resistance

52

disease_resistance, salt_resistance,
insect_resistance, drought_resistance

41

disease_resistance, salt_resistance,
plant_height_reduce, drought_resistance

11

disease_resistance, grain_weight_increase,
salt_resistance, plant_height_reduce

6

disease_resistance, grain_weight_increase,
plant_height_reduce, insect_resistance

1

grain_weight_increase, disease_resistance, drought_resistance,
plant_height_reduce, salt_resistance
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polyphenotype genes were associated with a single phenotype

(disease or salt) in transcriptome datasets of Arabidopsis and

rice, respectively (Figures 5A, B). In addition, 31 and 20

polyphenotype genes were associated with both disease and salt in

transcriptome datasets of Arabidopsis and rice, respectively

(Figures 5A, B). Our results suggested that approximately 66%

and 46% of polyphenotype genes were verified by transcriptome

data in Arabidopsis and rice, respectively. Furthermore, our

model predicted 314 and 170 polyphenotype genes associated with

disease, salt and drought in Arabidopsis and rice, respectively. We

found that approximately 70% and 54% polyphenotype genes were

identified in the transcriptome datasets of Arabidopsis and rice,

respectively (Figures 5C, D). Taking together, most of the

polyphenotype genes were verified in transcriptome analysis, our

model provides a new method for researchers to narrow down

candidate genes.
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4 Discussion

In this study, we constructed a knowledge graph for traits

regulating-genes, this knowledge graph described the knowledge

organization system for multi-dimensional scientific data

association of cross-species genes and traits. In addition, based on

the knowledge graph, we generate a new model for identification of

elite polyphenotype genes. Furthermore, we tested this model by

using gene-trait association datasets from 4 species, including

Arabidopsis, wheat, rice, and maize. Our results suggested that

the model is applicable for detecting ideal functional known and

functional unknown polyphenotype genes. The existing methods

for genome-wide association analysis (Garcia et al., 2019),

quantitative trait locus mapping (Jiang et al., 2023), and mixed

pool group analyses (Liu et al., 2023b) establish the association

between genomic data and phenotypic data. These methods only
FIGURE 4

Mining polyphenotype gene. (A) Mining of functional known genes AT5G53950; (B) Mining of functional unknown genes TraesCS5A02G275900. The
differently colored circles and arrow lines in the legend represent different entity types and relationship types respectively, the numbers in
parentheses indicate the number of nodes and relationships of different types. Taking (A) as an example, the red circle represents the “trait” node,
and the number is 5. The light blue circle represents the “protein” node, which is in number 5. The orange circle represents the “gene” node, which
has several 5. The brown arrow line represents the “homologous to” relationship type, and the number is 10.
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can localize candidate genes in one segment and clarify the

associations between genes and individual traits, but they are less

than ideal for identifying elite polyphenotype genes. Hence, our

study proposed a new method to identify elite polyphenotype genes

for the development of new crop varieties with enhanced yield and

superior quality.

In fact, knowledge graphs have been applied in crop sciences in

previous studies. The Rothamsted Research institute constructed

KnetMiner, which is a gene network discovery platform for

agricultural researchers to explore and clarify the complex crop

traits in different plant species (Hassani-Pak et al., 2021). In

addition, the CIRAD (French Agricultural Research Centre for

International Development) use the Semantic Web technology to

develop a knowledge graph named AgroLD, which integrates
Frontiers in Plant Science 09
scientific data on different plant species to provide new scientific

hypotheses about functional genes (Larmande et al., 2022).

However, both of them only analyze the correlation between

genes and individual traits, so it is difficult to realize the mining

of polyphenotype genes. In our study, we constructed a knowledge

graph for traits regulating-genes comprising 13 entities, 16 entity

data attributes, and 14 entity object attributes, with a total of

125,591 nodes and 547,224 semantic relationships across 4 species

(Arabidopsis, wheat, rice, and maize). The key in our knowledge

graph is the establishment of homologous protein object attributes,

the association and fusion of scientific data in cross-species is

realized. In addition, our knowledge graph provides data support

to illustrate the relationships among the multi-dimensional

scientific data in cross-species genes and traits (Figure 4). Our
TABLE 3 Top10 polyphenotype genes related to plant height, grain weight, and disease resistance.

Gene_ID R_PH R_GW R_DiR R_M R_C V_T

LOC_Os08g39890 1 1 1 1.0 1 known

Zm00001d031451 8 5 4 5.7 2 known

Zm00001d052890 10 6 5 7.0 3 known

Zm00001d017742 1 2 24 9.0 4 known

LOC_Os02g47280 2 1 29 10.7 5 known

AT2G22840 15 15 6 12.0 6 known

Zm00001d018260 7 4 30 13.7 7 unknown

TraesCS6D02G245300 16 11 27 18.0 8 unknown

LOC_Os04g51190 24 13 18 18.3 9 known

AT1G27370 21 18 16 18.3 9 known

AT2G36400 11 7 38 18.7 10 known

AT4G37740 31 8 17 18.7 10 known
fron
R_PH, rank in plant height; R_GW, rank in grain weight; R_DiR, rank in disease resistance; R_M, mean rank in plant height, grain weight, and disease resistance; R_C, comprehensive rank
according to R_M; V_T, verified trait, The term “known” indicates that this gene has been verified with at least one of the three traits in the literature, while the term “unknown” indicates that this
gene has not been verified in the literature.
TABLE 4 Top10 polyphenotype genes related to salt resistance, plant height, grain weight, drought resistance, and disease resistance.

Gene_ID R_SR R_PH R_GW R_DR R_DiR R_M R_C V_T

AT5G53950 4 7 5 6 8 6.0 1 known

AT3G29035 1 13 8 4 4 6.0 2 known

TraesCS5A02G275900 10 4 4 9 10 7.4 2 unknown

TraesCS2D02G324700 11 1 2 18 12 8.8 3 known

LOC_Os04g38720 12 3 10 10 11 9.2 4 known

AT3G15510 7 16 14 5 5 9.4 5 known

AT1G01720 3 15 26 2 2 9.6 6 known

TraesCS2A02G338300 13 1 3 19 15 10.2 7 unknown

AT1G77450 2 30 19 1 1 10.6 8 known

TraesCS4D02G071200 14 9 7 12 13 11.0 9 unknown

TraesCS4A02G242700 15 8 6 14 16 11.8 10 unknown
R_SR, rank in salt resistance, R_PH, rank in plant height; R_GW, rank in grain weight; R_DR, rank in drought resistance; R_DiR, rank in disease resistance; R_M, mean rank in plant height, grain
weight, and disease resistance; R_C, comprehensive rank according to R_M; V_T, verified trait, The term “known” indicates that this gene has been verified with at least one of the five traits in the
literature, while the term “unknown” indicates that this gene has not been verified in the literature.
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knowledge graph for traits regulating-genes can provide hypotheses

about the association between genes and multiple traits based on

multi-dimensional scientific data. Our study drives the mining of

elite polyphenotype genes from hypothesis-driven passive

exploration to data-driven active knowledge discovery.

Meanwhile, there are some methods about gene mining. For

example, whole genome association analyses to locate gene loci

related to plant height (Guo et al., 2022), yield (Li et al., 2021), and

disease resistance (Tsai et al., 2020). They only localize the relevant

gene loci into a segment containing many candidate genes. In our

study, we developed a model for predicting traits regulating-genes.

This model can give the probability score of trait regulating-genes

on the basis of a multi-dimensional scientific data analysis

(Figure 3). For example, by combining elite traits (e.g., plant

height, grain weight, and disease resistance) as search terms, a

comprehensive score of the probability of the genes regulating

specific traits can be calculated using multi-dimensional scientific
Frontiers in Plant Science 10
data for cross-species genes and traits, with the top candidate

polyphenotype genes identified according to the scores. The key

in our model is that combines the entity semantic association

characteristics and graph structure characteristics about multi-

dimensional scientific data between genes and traits. That is to

say, in order to achieve the recommendation of polyphenotype

genes, our model integrates the data attribute information of gene

nodes and the topological relationship information of gene nodes.

Consequently, our model can provide an evidence-based approach

with specific probability score to rank candidate genes for target

traits, which can to narrow down the candidate genes associated

with multiple phenotypes. Compared with transcriptome or other

traditional methods for gene mining, our model provided more

possibilities and effectiveness in mining polyphenotype genes.

To sum up, our study provides an important model for the

mining and recommendation of elite polyphenotype genes for

target traits in crops. Of course, researchers need perform further
A B

DC

FIGURE 5

Venn diagram analysis of polyphenotype genes and differentially expressed genes (DEGs) in response to different phenotypes. (A) Venn diagram
analysis of the polyphenotype genes and transcriptome genes related to disease and salt in Arabidopsis. (B) Venn diagram analysis of polyphenotype
genes and transcriptome genes related to disease and salt in rice. (C) Venn diagram analysis of polyphenotype genes and transcriptome genes
related to disease, salt and drought in Arabidopsis. (D) Venn diagram analysis of polyphenotype genes and transcriptome genes related to disease,
salt, and drought in rice. The orange boxes represent polyphenotype genes associated with a single phenotype in transcriptome datasets, the blue
boxes represent polyphenotype genes associated with two phenotypes in transcriptome datasets, and the red boxes represent polyphenotype genes
associated with three phenotypes in transcriptome datasets.
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molecular biology experiments and transgenic experiments to verify

the mining results of polyphenotype genes. In addition, the

underlying principle of our model to mine polyphenotype genes

based on the knowledge graph for integrating scientific data related

to genes across species. With the deepening of research on plant

functional genes, we also need to increase the gene-related scientific

data volume and update newly published data, to make our model

more broadly applicable.
5 Conclusion

In this study, a model for predicting traits regulating-genes was

constructed using a knowledge graph for traits regulating-genes. The

accuracy of the model for predicting traits regulating-genes was 0.89,

the precision rate was 0.91, the recall rate was 0.96, and the F1 value

was 0.94, implying the traits regulating-genes were relatively

accurately predicted on the basis of a multi-dimensional scientific

data analysis. The comprehensive ranking of polyphenotype genes

based on the model mined elite polyphenotype genes for different trait

combinations. This study provides important data for future

investigations of the molecular mechanisms regulating crop traits,

with implications for crop breeding and research. Furthermore, our

model represents a new tool for identifying elite polyphenotype genes.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

DZ: Data curation, Formal analysis, Investigation, Methodology,

Resources, Writing – original draft, Writing – review & editing. RZ:
Frontiers in Plant Science 11
Funding acquisition, Project administration, Supervision, Writing –

review & editing. GX: Supervision, Writing – review & editing. YK:

Project administration, Supervision, Writing – review & editing.

WM: Data curation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. We are very

grateful for financial support of the National Science and

Technology Major Project (2021ZD0113705).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1361716/

full#supplementary-material
References
Alshahrani, M., and Hoehndorf, R. (2018). Semantic Disease Gene Embeddings
(SmuDGE): Phenotype-based disease gene prioritization without phenotypes.
Bioinformatics. 34, i901–i907. doi: 10.1093/bioinformatics/bty559

Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., et al. (2018).
Shifting the limits in wheat research and breeding using a fully annotated reference
genome. Science. 361:(6403), eaar7191. doi: 10.1126/science.aar7191

Chen, X., Lu, S., Wang, Y., Zhang, X., Lv, B., Luo, L., et al. (2015). OsNAC2 encoding
a NAC transcription factor that affects plant height through mediating the gibberellic
acid pathway in rice. Plant J. 82, 302–314. doi: 10.1111/tpj.12819

Chen, F., Zhang, H., Li, H., Lian, L., Wei, Y., Lin, Y., et al. (2023). IPA1 improves
drought tolerance by activating SNAC1 in rice. BMC Plant Biol. 23, 1–12. doi: 10.1186/
s12870-023-04062-9

Chen, L., Zhang, Y. H., Wang, S. P., Zhang, Y. H., Huang, T., and Cai, Y. D. (2017).
Prediction and analysis of essential genes using the enrichments of gene ontology and
KEGG pathways. PloS One 12, 1–22. doi: 10.1371/journal.pone.0184129

Choi, W., and Lee, H. (2021). Identifying disease-gene associations using
a convolutional neural network-based model by embedding a biological
knowledge graph with entity descriptions. PloS One 16, 1–27. doi: 10.1371/
journal.pone.0258626
Chromosomes, T. R., and Consortia, S. (2005). The sequence of rice chromosomes 11
and 12, rich in disease resistance genes and recent gene duplications. BMC Biol. 3, 1–18.
doi: 10.1186/1741-7007-3-20

Consortium, T. U. (2007). The universal protein resource (UniProt). Nucleic Acids
Res. 35, 193–197. doi: 10.1093/nar/gkl929

Crawford, T., Karamat, F., Lehotai, N., Rentoft, M., Blomberg, J., Strand, Å., et al.
(2020). Specific functions for Mediator complex subunits from different modules in the
transcriptional response of Arabidopsis thaliana to abiotic stress. Sci. Rep. 10, 50–73.
doi: 10.1038/s41598-020-61758-w

Dharmavaram, S., Shaik, A., and Jin, W. (2019). “Mining biomedical data for hidden
relationship discovery,” in 7th IEEE International Conference on Healthcare Informatics
(ICHI). Xi'an, China, 1-10. doi: 10.1109/ICHI.2019.8904747

Fu, J., Wu, H., Ma, S., Xiang, D., Liu, R., and Xiong, L. (2017). OsJAZ1 attenuates
drought resistance by regulating JA and ABA signaling in rice. Front. Plant Science. 8.
doi: 10.3389/fpls.2017.02108

Garcia, M., Eckermann, P., Haefele, S., Satija, S., Sznajder, B., Timmins, A., et al.
(2019). Genome-wide association mapping of grain yield in a diverse collection of
spring wheat (Triticum aestivum L.) evaluated in southern Australia. PloS One 14, 1–19.
doi: 10.1371/journal.pone.0211730
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1361716/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1361716/full#supplementary-material
https://doi.org/10.1093/bioinformatics/bty559
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1111/tpj.12819
https://doi.org/10.1186/s12870-023-04062-9
https://doi.org/10.1186/s12870-023-04062-9
https://doi.org/10.1371/journal.pone.0184129
https://doi.org/10.1371/journal.pone.0258626
https://doi.org/10.1371/journal.pone.0258626
https://doi.org/10.1186/1741-7007-3-20
https://doi.org/10.1093/nar/gkl929
https://doi.org/10.1038/s41598-020-61758-w
https://doi.org/10.1109/ICHI.2019.8904747
https://doi.org/10.3389/fpls.2017.02108
https://doi.org/10.1371/journal.pone.0211730
https://doi.org/10.3389/fpls.2024.1361716
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1361716
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al.
(2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids
Res. 40, 1178–1186. doi: 10.1093/nar/gkr944

Guo, B., Jin, X., Chen, J., Xu, H., Zhang, M., Lu, X., et al. (2022). ATP-dependent
DNA helicase (TaDHL), a novel reduced-height (Rht) gene in wheat. Genes. 13, 1–10.
doi: 10.3390/genes13060979

Hassani-Pak, K., Singh, A., Brandizi, M., Hearnshaw, J., Parsons, J. D., Amberkar, S.,
et al. (2021). KnetMiner: a comprehensive approach for supporting evidence-based
gene discovery and complex trait analysis across species. Plant Biotechnol. J. 19, 1670–
1678. doi: 10.1111/pbi.13583

Himmelstein, D. S., Lizee, A., Hessler, C., Brueggeman, L., Chen, S. L., Hadley, D.,
et al. (2017). Systematic integration of biomedical knowledge prioritizes drugs for
repurposing. Elife. 6, 1–35. doi: 10.7554/eLife.26726

Jiang, D., Chen, W., Dong, J., Li, J., Yang, F., Wu, Z., et al. (2018). Overexpression of
miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. J. Exp.
Botany. 69, 1533–1543. doi: 10.1093/jxb/ery017

Jiang, T., Zhang, C., Zhang, Z., Wen, M., and Qiu, H. (2023). QTL mapping of maize
(Zea mays L.) kernel traits under low-phosphorus stress. Physiol. Mol. Biol. Plants. 29,
435–445. doi: 10.1007/s12298-023-01300-0

Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., et al. (2010). Regulation of
OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 1–5.
doi: 10.1038/ng.591

Kim, H., Lee, K., Hwang, H., Bhatnagar, N., Kim, D. Y., Yoon, I. S., et al. (2014).
Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and
modulates gene expression. J. Exp. Botany. 65, 453–464. doi: 10.1093/jxb/ert397

Kim, M. J., Park, M. J., Seo, P. J., Song, J. S., Kim, H. J., and Park, C. M. (2012).
Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role
of SnRK2.8 in the drought-stress response. Biochem. J. 448, 353–363. doi: 10.1042/
BJ20120244

King, E., Wallner, A., Rimbault, I., BarraChina, C., Klonowska, A., Moulin, L., et al.
(2019). Monitoring of rice transcriptional responses to contrasted colonizing patterns
of phytobeneficial burkholderia s.l. Reveals a temporal shift in JA systemic response.
Front. Plant Science. 10. doi: 10.3389/fpls.2019.01141

Lan, Y., He, S., Liu, K., Zeng, X., Liu, S., and Zhao, J. (2021). Path-based knowledge
reasoning with textual semantic information for medical knowledge graph completion.
BMC Med. Inf. Decision Making. 21, 1–10. doi: 10.1186/s12911-021-01622-7

Larmande, P., Tagny Ngompe, G., Venkatesan, A., and Ruiz, M. (2022). AgroLD: a
knowledge graph database for plant functional genomics. Methods Mol. Biol. 2443,
527–540. doi: 10.1007/978-1-0716-2067-0_28

Li, Y., Tang, J., Liu, W., Yan, W., Sun, Y., Che, J., et al. (2021). The genetic
architecture of grain yield in spring wheat based on genome-wide association study.
Front. Genet. 12. doi: 10.3389/fgene.2021.728472

Li, M., Xu, L., Zhang, L., Li, X., Cao, C., Chen, L., et al. (2023). Overexpression of
Mtr-miR319a contributes to leaf curl and salt stress adaptation in Arabidopsis thaliana
and Medicago truncatula. Int. J. Mol. Sci. 24, 1–14. doi: 10.3390/ijms24010429

Liu, J., Qiao, Y., Li, C., and Hou, B. (2023a). The NAC transcription factors play core
roles in flowering and ripening fundamental to fruit yield and quality. Front. Plant
Science. 14. doi: 10.3389/fpls.2023.1095967

Liu, Y., Shen, K., Yin, C., Xu, X., Yu, X., Ye, B., et al. (2023b). Genetic basis of
geographical differentiation and breeding selection for wheat plant architecture traits.
Genome Biol. 24, 1–25. doi: 10.1186/s13059-023-02932-x

Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., et al. (2019). Inducible
overexpression of ideal plant architecture1 improves both yield and disease resistance
in rice. Nat. Plants. 5, 389–400. doi: 10.1038/s41477-019-0383-2

Meng, X., Liu, S., Zhang, C., He, J., Ma, D., Wang, X., et al. (2023). The unique sweet
potato NAC transcription factor IbNAC3 modulates combined salt and drought
stresses. Plant Physiol. 191, 747–771. doi: 10.1093/plphys/kiac508
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