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Introduction: NIR spectroscopy combined with chemometric algorithms has

been widely used for seed authenticity detection. However, the study of seed

genetic distance, an internal feature that affects the discriminative performance

of classification models, has rarely been reported.

Methods: Therefore, maize seed samples of different genotypes were selected to

investigate the effect of genetic distance on the authenticity of single seeds

detected by NIR spectroscopy. Firstly, the Support vector machine (SVM) model

was established using spectral information combined with a preprocessing

algorithm, and then the DNA of the samples was extracted to study the

correlation between genetic and relative spectral distances, the model

identification performance, and finally to compare the similarities and

differences between the results of genetic clustering and relative

spectral clustering.

Results: The results were as follows: the average accuracy of the models was

93.6% (inbred lines) and 93.7% (hybrids), respectively; Genetic distance and

correlation spectral distance exhibited positive correlation significantly (inbred

lines: r=0.177, p<0.05; hybrids: r=0.238, p<0.05), likewise genetic distance and

model accuracy also showed positive correlation (inbred lines: r=0.611, p<0.01;

hybrids: r=0.6158, p<0.01); Genetic clustering and spectral clustering results

were essentially uniform for 94.3% (inbred lines) and 93.9% (hybrids), respectively.

Discussion: This study reveals the relationship between the genetic and relative

spectral distances of seeds and the accuracy of the model, which provides

theoretical basis for the establishment of the standardized system for detecting

the authenticity of seeds by NIR spectroscopic techniques.
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1 Introduction

Since its domestication by humans 9,000 years ago, maize has

played an increasingly diverse role in global agricultural systems

and is an important food and feed crop in the world (Kennett et al.,

2020). The purity and authenticity of maize hybrids is not only

indication of seed identity, but also at least one of the most

important indicators of seed quality. Related studies have shown

that for every 1% reduction in seed purity, the yield of maize is

reduced by 180 kg/ha (Zhao and Wang, 2013). Authenticity of

maize inbred lines, on the other hand, is the critical factor in

determining the authenticity of progeny hybrids (Frascaroli

et al., 2007).

Currently popular detection methods, seed or seedling

morphology testing is simple to operate, but the scope of

application is narrow; field planting identification results are

intuitive but the cycle time is long; protein fingerprinting

technology experimental results are unstable; DNA fingerprinting

technology is authoritative and accurate because of its detection of

DNA molecular level differences; however, like protein

fingerprinting technology, the method must be damaged samples,

and requires a certain sample size, the required equipment,

personnel costs and technology costs are higher, in addition to

the testing process of the waste will also pollute the environment

(Ertiro et al., 2015). Therefore, it is necessary to explore a more

rapid, convenient, reliable and accurate technique for seed sample

authenticity detection (ElMasry et al., 2019).

Near-infrared (NIR) spectroscopy is the qualitative and

quantitative detection of hydrogen-containing groups (e.g. C-H,

N-H, O-H, etc.) by analyzing the information of octave and

combined frequency between them, which is widely used in the

identification of the purity of crop seed varieties due to the

advantages of non-destructive, rapid and high throughput

(Osborne and Fearn, 1986). The PLS-DA classification model was

able to achieve 80-100% accuracy in studies applying NIR

spectroscopy to differentiate wheat seeds of different ploidy

(Ziegler et al., 2016). In addition, previous studies have used

chemometric algorithms such as multiple scattering correction

(MSC), principal component analysis (PCA), and K-nearest

neighbor algorithm (KNN) to test the authenticity of 520 rice

samples of different quality grades and origins, and the

classification results exceeded 90% (Teye et al., 2019). However,

the former researchers mainly focused on factors including basic

statistics, selection of classification methods, and data processing

methods, while the effect of genetic differences between different

samples, i.e. genetic distances, on the identification performance of

the model has rarely been published, furthermore, there is as yet no

systematic study on the correlation between genetic distances and

relative spectral distances, and between the genetic clustering results

and the spectral clustering results.

Therefore, in this experiment, different maize inbred lines and

hybrids were selected to study the relationship between genetic

distance and spectral distance among samples and the performance

of the model discrimination. Specifically, the experiments included:

1) using spectral data of samples to build a SVM discrimination
Frontiers in Plant Science 02
model combined with preprocessing; 2) using near-infrared spectral

data to calculate the relative spectral distance among samples and

carry out spectral clustering; 3) extracting DNA from samples,

calculating genetic distance, and performing genetic clustering; 4)

comparing and analyzing the results of the two clustering methods,

as well as the relationships between relative spectral distance,

genetic distance, and model discrimination performance

among samples.
2 Materials and methods

2.1 Preparation of seed samples

In this research, 35 inbred lines and 33 hybrids were selected

from the production base of maize seed in Zhangye City, Gansu

Province, which were harvested in 2018 (Table 1). All the genotypes

were the main inbred lines and hybrids in different maize planting

areas in China. There were 150 grains of each genotype, totalling

10200 samples, were chosen from seeds with full kernels and free of

pests and diseases. After moisture equilibration, the moisture

content of all samples was maintained at 10% to 11%.
2.2 Acquisition of NIR spectral information

Spectral data were acquired using a Micro NIR 1700ES near

infrared spectrometer manufactured by JDSU (Figure 1). The

spectral range was from 908.1 to 1677.2 nm, with the gap

between neighbouring bands being 6.1944 nm, totalling 125

wavelength points (Pu et al., 2021). The spectroscopic equipment

was warmed up for 45 min before use and a black and white

reference correction was made with a BaSO4 correction whiteboard:

the correction whiteboard was completely covered on the upper end

of the spectrometer; the tungsten lamp was switched off and the

dark correction was collected; the light was switched on and the

white correction was collected. The spectral data of single seeds

were collected in all experiments, and the embryonic part of the

seeds was placed on one side of the detector, and five spectra were

acquired for each sample, and the average value was taken as the

raw spectral data of the samples. The details of the parameters of the

spectral acquisition are as follows: the number of integrations is 200,

the spectral acquisition time is 2 s (Agelet and Hurburgh, 2014).
2.3 NIR spectral data analysis

Spectral data were analyzed using the software The

Unscrambler X version 10.5.1 (CAMO Analytics, Magnolia,

TX, USA).

2.3.1 Detection of spectral outliers
PCA is a commonly used technique for data dimensionality

reduction. The original data is mapped by a linear transformation to

a new coordinate system, where the coordinates are called principal
frontiersin.org
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TABLE 1 Number, name and abbreviation of 68 maize seed samples.

No. Variety name Abbreviation No. Variety name Abbreviation

1 PA 540 INBRED LINE 2-PA540 36 Jinbei 518 HYBRID 2-JB518

2 PA 21 INBRED LINE 4-PA21 37 Longyuan 3 HYBRID 3-LY3H

3 K2934 INBRED LINE 5-K2934 38 Dongdan 7512 HYBRID 4-DD7512

4 MB4 INBRED LINE 7-MB4 39 Zhengda 21 HYBRID 5-ZD12

5 Zheng 58 INBRED LINE 10-ZHENG58 40 Wuke 606 HYBRID 7-WK606

6 Chang 7-2 INBRED LINE 12-C7-2 41 Huanong 866 HYBRID 9-HN866

7 Jing 92 INBRED LINE 13-J92 42 Jindan 60 HYBRID 10-JD60

8 Jing 724 INBRED LINE 14-J724 43 Kehe 24 HYBRID 11-KH24

9 PH4CV INBRED LINE 15-PH4CV 44 Kexing 216 HYBRID 14-KX216

10 PH6WC INBRED LINE 16-PH6WC 45 Shangyu 3899 HYBRID 15-SY3899

11 351-14-35 INBRED LINE 22-351-14-35 46 Longdan 339 HYBRID 16-LD339

12 352 INBRED LINE 23-352 47 Ganxin 217 HYBRID 17-GX217

13 353 INBRED LINE 24-353 48 Longdan 10 HYBRID 19-LD10H

14 354 INBRED LINE 25-354 49 Longdan 8 HYBRID 20-LD8H

15 161 INBRED LINE 26-161 50 Ganyu 23 HYBRID 21-GY23

16 1520 INBRED LINE 27-1520 51 Xiongyu 582 HYBRID 22-XY582

17 1895 INBRED LINE 28-1895 52 Hongyu 601 HYBRID 23-HY601

18 4097 INBRED LINE 29-4097 53 Longdan 9 HYBRID 24-LD9H

19 4158 INBRED LINE 30-4158 54 Zhongdi 175 HYBRID 25-ZD175

20 4428 INBRED LINE 31-4428 55 Wuke 609 HYBRID 26-WK609

21 4430 INBRED LINE 32-4430 56 Xiongyu 587 HYBRID 27-XY587

22 4405 INBRED LINE 33-4405 57 Longdan 4 HYBRID 28-LD4H

23 4412 INBRED LINE 34-4412 58 Longyan 588 HYBRID 29-LY588

24 4411 INBRED LINE 35-4411 59 Nongda 4967 HYBRID 30-ND4967

25 4407 INBRED LINE 36-4407 60 Nongda 80 HYBRID 31-ND80

26 4246 INBRED LINE 37-4246 61 Zheng 58-PH4CV HYBRID 35-Z58-PH4CV

27 4252 INBRED LINE 39-4252 62 Zhengdan 958 HYBRID 40-ZD958

28 4422 INBRED LINE 40-4422 63 Zheng 58-PH6WC HYBRID 43-Z58-PH6WC

29 4410 INBRED LINE 41-4410 64 Jingke25 HYBRID 47-JK25

30 EH INBRED LINE 44-EH 65 Jingdan 38 HYBRID 48-JD38

31 CC 15 INBRED LINE 45-CC15 66 MC 703 HYBRID 50-MC703

32 CC 14 INBRED LINE 47-CC14 67 Longdan 16 HYBRID 52-LD16

33 CC 13 INBRED LINE 48-CC13 68 Nongda 68 HYBRID 53-ND68

34 CC 16 INBRED LINE 49-CC16

35 CC 12 INBRED LINE 50-CC12
F
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components (Fabiyi et al., 2019). In the new coordinate system, the

features according to the variance of the data from the largest to the

smallest are located sequentially on different principal components.

Thus, PCA can be used to detect outliers in spectral data. The

acquired spectral data were utilized for PCA to detect spectral

outliers as well as to explore common patterns between spectra.
2.3.2 Spectral pre-processing
Savitzke-Golay Derivatives (SGD) and Standard Normal

Variate (SNV) were chosen for spectral preprocessing to improve

the signal-to-noise ratio of the spectra. SGD is based on the spectral

smoothing results, and the derivative values of the spectral curves

are calculated at different positions, highlighting spectral variations

and features (Zhang and Mouazen, 2023). SNV is used to improve

the comparability and interpretability of spectral data, making

spectral variations between different samples more obvious, and is

suitable for applications such as interpretation, classification and

prediction of spectral data (Lanjewar et al., 2023).
2.3.3 Establishment of authenticity
identification model

In this experiment, we chose to use the SVM algorithm to build

classification models. As a common supervised learning algorithm, the

support vector machine is a binary classification model that maps the

sample data into a high-dimensional space and then finds an optimal

hyperplane in that space, which in turn separates samples of different

categories. The choice of hyperplane is based on the principle of

maximizing the separation of two samples of different categories

(Devos et al., 2009). The Radial Basis Function (RBF) in this

algorithm is a common kernel function for nonlinear classification,

also known as Gaussian kernel function. It is calculated as follows:

K(x, x0) = exp ( − g jjx − x0 jj2)
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where x and x’ are the input vectors and g is a hyperparameter

controlling the decay rate of the function. ||x-x’||² denotes the

square of the Euclidean distance. Specifically, the radial basis

kernel function achieves classification of linearly indistinguishable

problems by measuring the similarity between the samples and

projecting the samples into a high-dimensional space centered on

the support vectors (Wu et al., 2019).

The preprocessed spectral data were divided into modelling set

and external test set according to 2:1.That is, 100 spectra of each

material were randomly selected as the modelling set, and the

remaining 50 spectra were used as the external test set, which

were sequentially combined with the spectral data of other

genotypes, and the optimal hyperplane needed to be found by

grid searching during the selection of the SVM modelling process,

and the model performance was cross-validated by the Leave-One-

Out method (Kavdir et al., 2009). Then, the penalty factor C and

kernel function parameter g are determined by calculating the

model training accuracy and cross-validation accuracy, and the

optimal parameter combination is sought (Alves and Poppi, 2013).

Finally, the performance of the recognition model is evaluated

based on the accuracy of the external test set.

2.3.4 Cluster analysis of spectral data
Based on the pre-processed spectral data, the Euclidean distance

between the samples was calculated by using the dist function in R

language and selecting the “Euclidean” method (Li et al., 2015).

Then the Euclidean distance matrix was imported into Power

Marker V3.25 software to obtain the Neighbor-Joining clustering

results of the spectral data, and the clustering diagram was drawn

with MEGA7 software.
2.4 DNA analysis of seed samples

The DNA of the samples was extracted by CTAB method

(Wang et al., 2011). The 40 pairs of SSR primers used in this
FIGURE 1

Instruments scheme of transmission mode.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1361328
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1361328
study are all primers published in the Chinese industry standard for

maize variety identification. These primers have good

polymorphism and are evenly distributed on the 10 chromosomes

of maize. The specific primer names, sequences, and fragment

lengths are referred to in published literature, and 40 pairs of

cores SSR fluorescent primers were shown in Table 2. SSR-PCR

system: The total volume of the reaction solution is 20 mL, including
10 mL of 2×Taq Plus Master Mix, 7.75 mL of ddH2O, 0.25 mL of

primers, and 2 mL of DNA sample. PCR program: pre-denaturation

at 95°C for 5 min; denaturation at 94°C for 40 s, annealing at 60°C

for 35 s, extension at 72°C for 45 s, 35 cycles; extension at 72°C for

10 min; PCR products are stored at 4°C.

PCR product detection: A method of electrophoresis

detection of 10-fold PCR products was used. 2 mL of 10-fold

PCR mixed products and 10 mL of formamide containing 1%

GS3730-500 molecular weight internal standard was added to

individual wells of a 96-well electrophoresis plate. The above

mixed samples were placed in a PCR instrument for

denaturation at 95°C for 5min, stored at 4°C for 10 min,

centrifuged at 2000 rpm for 30 s, and then electrophoresed on

an ABI 3730XL DNA analyzer using fluorescence capillary

electrophoresis (Wang et al., 2017). The electrophoresis time
Frontiers in Plant Science 05
was 30 min and the raw data were collected by Data Collection

software, and the data were genotyped and analyzed using SSR

Analyzer (V1.2.4) fingerprint analyzer.

Genetic clustering was analyzed with reference to previous

studies (Liu et al., 2021). SSR genotype data were analyzed using

Power Marker V3.25 software, and genetic distances between

samples were calculated based on Saitou and Nei's (1987) method

to obtain the Neighbor-Joining clustering results of SSR markers,

which were combined with MEGA7 software to draw the clustering

diagram (Nei and Li, 1979).
3 Results and analysis

3.1 Genetic clustering of maize
seed samples

The SSR genotype data was clustered by using the

Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) method, and a clustering diagram was plotted using

the MEGA7 software. Thirty-five inbreds and 33 hybrids were

clustered and analyzed and the results are shown in Figure 2. 35
TABLE 2 Name, repeat unit, fragment range and chromosome location of 40 pairs of cores SSR primers.

No. Primer name Repeat unit Fragment range(bp) Chromosome location

P01 bnlg439w1 (TC) 321~369 1.03

P02 umc1335y5 (AG) 233~257 1.06

P03 umc2007y4 (TC) 233~300 2.04

P04 bnlg1940k7 (CT) 324~388 2.08

P05 umc2105k3 (AG) 280~350 3.00

P06 phi053k2 (GTAT) 333~363 3.05

P07 phi072k4 (TGTT) 408~432 4.01

P08 bhlg2291k4 (AG) 362~421 4.06

P09 umc1705w1 (CT) 254~349 5.03

P10 bnlg2305k4 (GA) 240~312 5.07

P11 bnlg161k8 (AG) 154~216 6.00

P12 bnlg1702k1 (CT) 260~347 6.05

P13 umc1545y2 (AAGA) 180~249 7.00

P14 umc1125y3 (CTCG) 149~175 7.04

P15 bnlg240k1 (GA) 220~239 8.06

P16 phi080k15 (GGAGA) 202~238 8.08

P17 phi065k9 (GTGAA)(GTGCA) 391~415 9.03

P18 umc1492y13 (GCA) 270~290 9.04

P19 umc1432y6 (TC) 211~259 10.02

P20 umc1506k12 (TTTG) 163~196 10.05

P21 umc1147y4 (CA) 149~172 1.07

(Continued)
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TABLE 2 Continued

No. Primer name Repeat unit Fragment range(bp) Chromosome location

P22 bnlg167y17 (CT) 173~255 1.10

P23 phi96100y1 (AGGT) 231~287 2.00

P24 umc1536k9 (GT)(TA) 216~238 2.07

P25 bnlg1520k1 (CT)(AC)(GA)(TA) 164~202 2.09

P26 umc1489y3 (GCG) 231~265 3.07

P27 bnlg490y4 (TA) 245~331 4.04

P28 umc1999y3 (TGC) 167~208 4.09

P29 umc2115k3 (GCCAT) 265~295 5.02

P30 umc1429y7 (AGC) 125~143 5.03

P31 bnlg249k2 (AG) 259~313 6.01

P32 phi299852y2 (CTG) 200~254 6.07

P33 umc2160k3 (AG) 198~244 7.01

P34 umc1936k4 (TG) 153~176 7.03

P35 bnlg2235y5 (TG) 174~198 8.02

P36 phi233376y1 (CCG) 180~222 8.09

P37 umc2084w2 (CTAG) 184~214 9.01

P38 umc1231k4 (GA) 239~283 9.05

P39 phi041y6 (CAGC) 296~334 10.00

P40 umc2163w3 (AG) 280~352 10.04
F
rontiers in Plant Sc
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FIGURE 2

Genetic clustering plots between maize seed samples of different genotypes, with results based on genetic distances between samples, combined
with the unweighted Pair-Group Method using Arithmetic averages. HB, hybrids; IHL, inbred lines.
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inbreds were clustered into four groups with a minimum genetic

distance of 0.0250 and a maximum genetic distance of 0.9000. 33

hybrids were also clustered into four groups with a minimum

genetic distance of 0.0500 and a maximum genetic distance

of 0.8947.
3.2 NIR spectral characterization and
spectral pre-processing

Single kernel detection, combined with diffuse reflectance, was used

to collect spectral information from the embryo surface position of the

maize samples, and the spectral features are detailed in Figure 3.
Frontiers in Plant Science 07
Subsequently, the spectral information was subjected to principal

component analysis, using mean-centered data. The results indicate

that no outliers were found in any of the datasets. As shown in Figure 4,

the graph demonstrates the first 2 PC score plots. From the figure, it is

easy to find that the different genotypes of maize seeds show the trend

of clustering, which suggests that the NIR spectral information contains

information related to the genotypes of the samples. However, PCA

analysis of inbred lines and hybrids cannot effectively distinguish

different genotypes of samples based on spectra.

The spectral data were preprocessed using SGD and SNV. It can

be seen from Figure 3 that the spectral peak changes of the

pretreated near-infrared spectra are clearer, especially the baseline

shift has been significantly corrected.
A B

D E F

G IH

C

FIGURE 3

Average spectra of single grain samples of maize seeds of different genotypes acquired with Micro NIR 1700ES near infrared spectrometer
(900~1700 nm) (A: inbred lines, D: hybrids, G: hybrids and inbred lines), spectra of SGD pretreatment (B: inbred lines, E: hybrids, H: hybrids and
inbred lines), and SGD+SNV pretreatment spectra (C: inbred lines, F: hybrids, I: hybrids and inbred lines), with different colored lines reflecting the
average spectra of maize seed samples of different genotypes, and the red and black lines in (G–I) represent the average spectra of inbred lines and
hybrids, respectively.
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3.3 NIR spectral clustering of maize seeds

Spectral clustering analysis was carried out using the preprocessed

spectral data. In Figure 5, 35 inbred samples were clustered into four

groups, while 33 hybrid samples were also clustered into four groups.

Subsequent comparison of the genetic clustering results with the

spectral clustering results revealed that among the inbreds, 33

samples, or 94.3 per cent of the total, had the same clustering.

Among the hybrids, 31 samples had the same clustering, accounting

for 93.9% of the total. It can be seen that to a certain extent the NIR

spectra can reflect the genetic relationship between maize seeds of

different genotypes.
Frontiers in Plant Science 08
3.4 Correlation analysis of relative spectral
distances and genetic distances

The Mantel function was used to correlate the two dissimilarity

matrices, relative spectral distance and genetic distance (Wynn et al.,

2016). This was done specifically with the mantel function in the R

language vegan package. Permutation was done with free permutation

and Permutation defaulted to 999. The results of the Mantel test, as

shown in Table 3, showed that the twomatrices of relative spectral and

genetic distances were significantly and positively correlated among

the 35 inbred lines (Mantel test; r=0.177, p<0.05), and 33 hybrids

showed the similar situation (Mantel test; r=0.238, p<0.05).
A B

FIGURE 4

Score plots using the first two components of all NIR spectra (mean centers). Principal component analysis was performed on the spectral data of
inbred lines (A) and hybrids (B). In the figure, each point of the same color and shape represents the distribution of different inbred lines (A) or hybrid
(B) (5 spectral data were randomly selected for each genotype sample) in the first two principal component spaces. PCA analysis of inbred lines and
hybrids cannot effectively distinguish different genotypes based on spectra.
FIGURE 5

Spectral clustering plots between maize seed samples of different genotypes. results were based on the relative spectral distances between samples
combined with the unweighted Pair-Group Method using Arithmetic averages. HB: hybrids; IHL: inbred lines.
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3.5 Establishment of authenticity
identification model

Figure 6 shows the discriminative performance of the model.

The average accuracy of the models was 93.6%, and the accuracy of

all models was distributed between 62% and 100% for 35 maize

inbred lines with 595 discriminant models. A total of 528

discriminatory models were established for 33 maize hybrids, and

the average accuracy of the models was 93.7%, with the accuracy of

all models ranging from 76% to 100%.
3.6 Relationship between genetic distance
and model discriminatory performance

In order to resolve the effect of genetic distance on model

accuracy, simple linear correlation analyses were performed on the

above two sets of data, and the bivariate Pearson’s test showed

positive correlation between genetic distance and model accuracy in

the inbred samples (r=0.611, p<0.01), and the hybrid samples as

well (r=0.6158, p<0.01), as shown in Figure 7.

The accuracy of the model increases gradually with the genetic

distance in Figure 7. When the genetic distance is more than 0.4, the

average accuracies of the inbred and hybrid discrimination models

are 94.9% and 94.6%, respectively; when the genetic distance is

more than 0.6, the average accuracies of the models increase to

95.9% and 95.8%, respectively. This reveals that there is positive

correlation between the performance of the NIR spectral

discrimination model and the genetic distance of the samples,
Frontiers in Plant Science 09
with the nearer the genetic distance, the lower the accuracy of

the model.
4 Discussion

Firstly, in this work, the spectral data of single kernel of maize

samples were acquired by portable near-infrared spectrometer

(900~1700nm), combined with SGD and SNV data preprocessing

algorithms to establish SVM classification model, and the average

accuracy of inbred and hybrid samples were 93.6% and 93.7%,

respectively, which proved the feasibility of this technology in the

field of seed authenticity detection (McVey et al., 2021). NIR

spectroscopy has medium energy and strong transmission ability,

and mainly responds to the vibrational information of atomic groups

such as C-H, N-H, O-H, and so on (Bec et al., 2021). While the

nutritional qualities such as crude protein, crude fat, crude starch and

lysine content ranged from 8.18% to 12.64%, 3.41% to 4.77%, 71.44% to

77.67% and 0.238% to 0.42% with coefficients of variation of 0.10%,

0.08%, 0.02% and 0.12% among different samples, respectively. This

variation is reflected in the NIR spectral information, which in turn

leads to excellent model performance.

Secondly, the clustering analysis of the hybrid samples indicates

that there are differences in the content of biological

macromolecules among different groups. These differences may

be caused by the genetic characteristics of the samples, because the

influence of genetic characteristics on seed chemical components

accounts for about 18% of the variation (Ferreira et al., 2014). We

therefore analyzed the biomolecule content of the hybrids and

found differences in crude protein, crude starch, crude fat and
TABLE 3 Results of Mantel test for genetic distance and relative spectral distance among maize seed samples of different genotypes.

Sample
name

Upper quantiles of permutations (null
model) (90%;95%; 97.5%;99%)

Permutation
Number

of permutations
Mantel

statistic r
Significance

IBL
0.0799;0.1008;
0.1225;0.1425

Free 999 0.8907 0.035

HB
0.110;0.135;
0.159;0.200

Free 999 0.8614 0.045
HB, Hybrid; IBL, Inbred Line.
A B

FIGURE 6

Acc statistics of authenticity discrimination models for maize seed samples of different genotypes (A: inbred lines, B: hybrids).
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lysine content between the four groups of samples from the spectral

clustering results, as shown in Figure 8. Previous studies on the

identification of 25 maize materials through chemical composition

and SSR markers showed that Mantel test results indicated
Frontiers in Plant Science 10
a significant positive correlation between seed chemical

composition and SSR molecular marker genetic distance (Sofy

et al., 2020).

Thirdly, this study found that as the genetic distance increased, the

relative spectral distance also increased, along with the accuracy of the

model. The researchers found some kind of possible connection

between the genetic and relative spectral distances between the

samples and the performance of the model, and suggested that the

discriminatory performance of the model improved as the genetic

distance increased (Liu et al., 2015). However, the above survey

involved only five maize inbred materials, while 35 inbreds and 33

hybrids were selected for comparative validation in this work;

moreover, portable spectrometers as well as single grain detection

aremore suitable for online application scenarios of massive quantities

and meet the actual needs of production (Pu et al., 2021).

Finally, 5.72% and 6.06% of the two clustering outcomes in the

inbreds and hybrids, respectively, differed in this study, which may be

mainly due to the effect of the performance of the spectroscopic

instruments themselves (Agelet and Hurburgh, 2014). Some of the

characteristic bands reflecting the inclusions of the samples may be

missing in the wavelength range of 900~1700 nm, i.e., in the long-

wave NIR spectral region of 1700~2500 nm, 1923 nm and 2009 nm

carry information on the combined frequency of the O-H group in

water and starch, whereas 2125 nm and 2173 nm carry information on

the diploid frequency of the N-H group in proteins (Ozaki et al., 2007).

This work assessed the applicability of portable near-infrared

spectroscopy to identify the authenticity of single maize seeds. The
A B

DC

FIGURE 7

Results of simple linear correlation analysis of genetic distance between samples and accuracy rate of the model. Where (A, C) are linear regression
fitting curves for inbred lines and hybrids, respectively, and (B, D) are bivariate Pearson test results for inbred lines and hybrids (p<0.01), respectively.
(GD, genetic distance; ACC, accuracy rate).
FIGURE 8

Biomolecule content of hybrid samples in different spectral
clustering groupings. Different letters in the figure indicate
significant differences in the same indicator at the p<0.05 level. (CP,
crude protein; CS, crude starch; CF, crude fat; Lys, lysine).
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seed samples selected covered both inbred lines and hybrids, which

ensures that the technique can be used as a rapid and non-

destructive tool for multiple scenarios of maize seed detection in

the field, in warehouses, and online by a diverse group of people

such as breeders, producers, and inspectors.
5 Conclusion

The application of NIR spectroscopy to detect the authenticity

of crop seeds is not only affected by instrument parameters,

preprocessing algorithms, modelling approaches, etc., but the seed

genetic distance, as an indicator reflecting the genetic background

among the samples, also affects the discrimination performance of

the identification model. In this work, a portable near-infrared

spectrometer was applied to systematically study for the first time

the relationship between genetic distance, relative spectral distance

and model performance. In addition, the genetic clustering results

performed consistently with the spectral clustering results. NIR

spectroscopy can well reflect the genetic relationship between corn

seeds. The calculation of relative spectral distance is faster than

molecular marker detection methods, and it has lower requirements

for operators than establishing classification models. Therefore, in

the future, it can be achieved to quickly identify the genetic

background of single seeds using spectral information of the

samples, effectively shortening the time limit of crop breeding.

This discovery brings good news to breeders and seed producers. In

summary, NIR spectroscopy is of great value to modern crop

breeding, variety identity, and purity sorting as an assistant

means of genetic breeding.
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