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imaging combined with firefly
algorithm optimized
deep learning
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University, Guangzhou, China, 2College of Software Engineering, Guangdong University of Science
and Technology, Dongguan, China
The identification of sweet corn seed vitality is an essential criterion for selecting

high-quality varieties. In this research, a combination of hyperspectral imaging

technique and diverse deep learning algorithms has been utilized to identify

different vitality grades of sweet corn seeds. First, the hyperspectral data of 496

seeds, including four viability-grade seeds, are extracted and preprocessed.

Then, support vector machine (SVM) and extreme learning machine (ELM) are

used to construct the classification models. Finally, the one-dimensional

convolutional neural networks (1DCNN), one-dimensional long short-term

memory (1DLSTM), the CNN combined with the LSTM (CNN-LSTM), and the

proposed firefly algorithm (FA) optimized CNN-LSTM (FA-CNN-LSTM) are

utilized to distinguish spectral images of sweet corn seeds viability grade. The

findings from the experimental analysis indicate that the deep learning models

exhibit a significant advantage over traditional machine learning approaches in

the discrimination of seed vitality levels, boasting a classification accuracy

exceeding 94.26% in test datasets and achieving an accuracy improvement of

at least 3% compared to the best-performingmachine learningmodel. Moreover,

the performance of the FA-CNN-LSTM model proposed in this study

demonstrated a slight superiority over the other three models. Besides, the

FA-CNN-LSTM achieved a classification accuracy of 97.23%, representing a

significant improvement of 2.97% compared to the lowest-performing CNN

and a 1.49% enhancement over the CNN-LSTM. In summary, this study reveals

the potential of integrating deep learning with hyperspectral imaging as a

promising alternative for discriminating sweet corn seed vitality grade,

showcasing its value in agricultural research and cultivar breeding.
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1 Introduction

Corn, as a primary source of food and fuel, is widely cultivated

worldwide (Erenstein et al., 2022). Sweet corn seeds have become

increasingly popular as a new genetically improved variety due to

their delicious taste and exceptionally high nutritional value. Due to

being genetically modified varieties, their seed germination rate is

not very high (Wang B. et al., 2022). However, seed vitality is a

crucial factor in determining seed germination rate. Therefore,

identifying the vitality of sweet corn seeds is very meaningful

(Wang Z. et al., 2022).

Traditional seed vitality testing methods such as germination

and tetrameter tests can visually distinguish seed vitality levels but

come with drawbacks, including long experimental periods, high

costs, and significant damage to the seeds. Nevertheless, various

innovative physical testing techniques, such as X-ray analysis,

nuclear magnetic resonance spectroscopy, Fourier spectroscopy,

and Raman spectroscopy, have also been employed to a certain

degree. However, they face challenges including low efficiency,

complex operation, and limitations in batch testing (Musaev

et al., 2021). Hyperspectral imaging technology, a rapid and non-

invasive assessment tool, has found extensive application in

evaluating the quality and characteristics of fruits, vegetables, and

crops (Khan et al., 2022). Compared to conventional RGB image

detection methods, hyperspectral imaging technology proficiently

scrutinizes the intrinsic composition and surface texture attributes

of the target under examination, which has been proved in tomato

ripeness detection, analysis of pesticide residues on tea leaves’

surfaces, and assessment of the extent of physical mold

contamination, among other aspects. Furthermore, this

technology has been used to detect the moisture content,

nutritional components, and diseases in sweet corn seeds.

However, there is currently limited research on the identification

of sweet corn seed vitality grades using the hyperspectral technique.

Hyperspectral imaging systems can capture spectral data by

measuring the reflected light at various wavelengths from the

surfaces of objects, concurrently collecting relevant image

information, enabling precise detection and discrimination of the

objects being tested. Hence, the application of hyperspectral

imaging for assessing the vitality levels of sweet corn seeds

represents a viable and practicable approach (Lu et al., 2020).

Integrating conventional machine learning algorithms with

hyperspectral imaging technology is a widely adopted

nondestructive detection method. Wang et al. (2018) introduced

the utilization of near-infrared hyperspectral imaging technology as

a reasonable and precise method for identifying haploid maize

kernels. In their study, two representative maize varieties were used

as the experimental object, and the spectral features of hyperspectral

imaging were utilized to investigate the impact of embryo

orientation on the haploid identification model. The results

showed that the correct acceptance rates for both haploid and

diploid test sets were 99%, with error acceptance rates below 1%,

indicating a high level of accuracy. Yang et al. (2023) proposed a

corn seed variety identification method that relies on random

subspace ensemble learning in conjunction with hyperspectral

imaging technology. Firstly, spectral information from the maize
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endosperm region was collected, and several preprocessing methods

were applied to analyze the spectral data. Finally, a corn seed

classification detection model was constructed using MSC-IRIV-

RSEL. The experimental findings demonstrated that the suggested

approach attained a classification accuracy of 95.56%. Liu et al.

(2020) presented the application of near-infrared (930-2500nm)

hyperspectral imaging technology for the assessment of starch

content in individual corn seeds. The PLSR and LMA were

employed to predict the starch content. The outcomes revealed

that LMA demonstrated a correlation coefficient of 0.96 and a root

mean square error 0.98 on the prediction dataset. Zhang et al.

(2022) have devised an incremental learning model to discriminate

corn seed varieties. They collected hyperspectral image data from

five different maize varieties, conducted preprocessing, and applied

various classification models. The relevant conclusions indicated

that their proposed method outperformed other classification

algorithms, achieving an accuracy rate close to 100%. Wang et al.

(2021)conducted a classification study on the maturity of corn seeds

using Near-Infrared Hyperspectral Imaging (NIR-HSI) technology.

Initially, hyperspectral images of corn seeds, obtained from both the

embryo and endosperm sides, were collected within the spectral

range of 1000 to 2300 nanometers. Subsequently, the classification

model was constructed using PLS-DA, DT, and AdaBoost. The

results showed that the PLS-DA algorithm achieved classification

accuracies of 98.7%. As a result, the amalgamation of conventional

machine-learning algorithms with spectral information has yielded

favorable outcomes in identifying corn varieties and other

related factors.

Due to the greater economic significance of sweet corn seeds,

their vitality has garnered growing and extensive attention.

However, the classification and identification of the vitality of

sweet corn seeds using hyperspectral imaging technology were

rarely reported. Apart from the commonly employed machine

learning algorithms, several renowned deep learning models have

been devised to analyze hyperspectral data (Yao et al., 2023a). These

models are recognized for their notable advantages in extracting

profound insights from images (Saha and Manickavasagan, 2021).

A series of deep learning models have been put forth across various

domains, including Recurrent Neural Networks (RNNs), Long

Short-Term Memory (LSTM), Convolutional Neural Networks

(CNN), and others. Some one-dimensional deep learning models

have already found application in seed vitality detection have

already found application in seed vitality detection (Li et al.,

2019). Zhang et al. (2021) introduced an innovative approach by

integrating deep learning techniques with the near-infrared

hyperspectral technique (874-1734nm) to distinguish between

different coated corn seeds. The spectral reflection values were

obtained from this imaging method as the primary input for

training one-dimensional CNN and LSTM models. The outcomes

of their experiments revealed remarkable results, with all models

consistently achieving a classification accuracy surpassing 90%. Bi

et al. (2022) introduced an innovative approach known as the swim

transformer to enhance the recognition of corn seeds. Their model

integrated feature attention mechanisms and multi-scale feature

extraction techniques, substantially enhancing its performance. The

numerical analysis of the results demonstrated excellent
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classification performance on both the test and training datasets. Xu

et al. (2022) have introduced a rapid, nondestructive, and efficient

approach for the detection of defects in corn seeds by integrating

hyperspectral imaging (HSI) technology with deep learning.

Initially, they formulated a Convolutional Neural Network

structure (CNN-FES) based on a feature selection mechanism.

Furthermore, they developed a Convolutional Neural Network

architecture (CNN-ATM) incorporating an attention-based

classification mechanism for classifying one-dimensional spectral

data. The results indicate that the designed CNN-ATM performs

similarly to the three aforementioned methods across the entire

wavelength spectrum. It achieves classification accuracy of over 90%

on both the training and test datasets. Yao et al. (2022) proposed an

iterative semi-supervised CNNs framework by means of active

learning and superpixel segmentation techniques, dubbed semi-

active CNNs (SA-CNNs) for HSI classification. Firstly, a CNN-

based on a small-scale unbiased labeled set was used. Then, the

reliable samples consist of two parts: high label homogeneity and

most informativeness were actively selected from superpixel

segments. The experimental results show substantial performance

improvements of the proposed SA-CNNs over other similar

competitors. Zhang et al. (2020) proposed hyperspectral imaging

combined with the DCNN to identify corn seed varieties. Three

models, namely DCNN, KNN, and SVM, were employed to

construct the classification models. The findings revealed that the

DCNN model achieved a training accuracy rate of 100%. Yao et al.

(2023b) proposed a novel multimodal deep learning framework by

extending conventional ViT with minimal modifications (ExViT).

First, a multimodal RS image patch with parallel branches of

position-shared ViTs extended with separable convolution

modules was used. Then, a cross-modality attention (CMA)

module was employed in RS scenes by exploiting pixel-level

spatial correlation. The experimental results effectively

demonstrate the effectiveness of the proposed method. Fan et al.

(2023) employed hyperspectral imaging technology in combination

with a multi-scale three-dimensional Convolutional Neural

Network (3DCNN) to discern the vitality of individual seeds.

Utilizing a voting algorithm to amalgamate the outcomes from all

small blocks associated with the same seed, they determined an

individual seed’s viability. The results indicated that the multi-scale

3DCNN model achieved a discrimination accuracy of 90.67% when

assessing the vitality of individual seeds in the test dataset.

These studies collectively demonstrate that spectral images

acquired from hyperspectral imaging systems can be employed to

train deep learning models for distinguishing various levels of seed

vitality. However, the current input data for deep learning algorithms

mostly consists of one-dimensional spectral information without

integrating spectral information with image data for training neural

networks. Additionally, the temporal correlation of spectral data

acquisition is often overlooked. Therefore, optimizing neural

network models through combination is advantageous for better

training on hyperspectral images, leading to the extraction of more

effective features and ultimately achieving efficient detection of sweet

corn seed vitality.

The aim of this study is to utilize a range of deep convolutional

algorithms and their enhanced network models to achieve a rapid
Frontiers in Plant Science 03
nondestructive assessment of the vitality of sweet corn seeds. The

specific objectives are outlined as follows:
(1) To evaluate the effectiveness of a CNN-LSTM model

optimized with the firefly algorithm for the detection of

sweet corn seed vitality.

(2) To employ various deep learning models to develop

classification models for sweet corn seed vitality using

spectral images.

(3) To assess the viability of standard machine learning

algorithms for the identification of sweet corn seed vitality.
2 Materials and methods

2.1 Sample preparation

In this study, a total of 600 Yuetian 29 sweet corn seeds were

prepared, from which 496 seeds exhibiting complete grains and

uniform size were carefully chosen. These seeds were acquired from

the Guangdong Academy of Agricultural Sciences’ Tmall shopping

platform and were harvested in April 2023. All samples were

divided into four groups, each group containing 124 samples,

which were packaged as purchased and stored at a consistent

temperature of 4°C until the commencement of the experiment.

Prior to the experiment, the 496 chosen sweet corn seeds were

positioned inside an artificial aging chamber with a temperature set

at 50°C and a relative humidity level of 25%. The seeds were placed

in the aging chamber for 6 hours, 12 hours, and 24 hours,

respectively, and were subsequently removed and labeled as B, C,

and D grades. Besides, the samples that have not been aged are

labeled A. After aging, all the seeds were dried in a 20°C incubator

to regain their original weight.
2.2 Hyperspectral information acquisition

Hyperspectral data was collected using the GaiaField-V10E

hyperspectral imaging system during the experiment. This

equipment was manufactured by Jiangsu Dualix Spectral Imaging

Technology Co., Ltd, located in Wuxi, Jiangsu, China. The system

primarily consists of components such as a hyperspectral camera, a

spectral dark box, a halogen lamp, a computer, and a sample platform.

This state-of-the-art apparatus boasts a broad spectral range spanning

from 388nm to 1025nm, harnessing a comprehensive collection of 360

bands designed to capture intricate spectral data. The equipment and

artificially aged seed samples are shown in Figure 1.

The ideal distance between the camera lens and the sample was

meticulously set at 68 cm to ensure the capture of clear and precise

images. Furthermore, the exposure time and camera scan speed

were configured at 12 ms and 0.6 mm/s, respectively. Besides, the

sweet corn seeds with different aging grades were numbered to carry

out better germination experiments and analyze seed vitality. After

these operations, spectral images of the samples were expertly

acquired. Finally, the image correction for black and white plate
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data was performed using the following Equation 1: (Tang et al.

2023)

I =
Iorg − Idark
Iwhite − Idark

(1)

where Iorg, Idark, Iwhite, and I represent the original hyperspectral

image, black reference, white reference, and calibrated image,

respectively. Subsequently, the calibrated image was utilized to

extract the local average spectrum or directly serve as the

convolutional neural network input.
2.3 Standard germination test

Following the acquisition of hyperspectral data from seeds of four

different grades, a germination test was conducted in accordance with

the standards of the International Seed Testing Association (ISTA) to

assess the impact of artificial aging on sweet corn seeds (Pang et al.,

2021). The seeds were placed on a germinating tray with germinating

paper according to the number, and all the germinating samples were

placed at a room temperature of about 25-30°C for the germinating

experiment. The germination process lasts seven days, during which a
Frontiers in Plant Science 04
certain amount of water is applied according to the moisture level of

the germinating paper. On the seventh day of germination testing,

measure the length of each seedling. According to the ISTA standards,

seeds with embryonic shoot lengths exceeding 1cm are considered

germinated or viable. Therefore, on the seventh day of the experiment,

tally the number of germinated seeds based on shoot length and

calculate the germination rate of the seeds. The germination rate results

for the seeds are presented in Table 1. The findings indicate that, as

aging time increased, the germination percentage of the seeds

decreased. The germination of aged seeds significantly differed from

that of normal seeds. It is evident that creating sweet corn seeds with

varying levels of viability through artificial aging is achievable. Still,

producing robust seedlings under favorable conditions is challenging

for these treated seeds.

To further differentiate seeds of varying vigor, categorize seeds of

each aging level into four vigor grades based on shoot length: high

vigor (greater than 7cm), medium vigor (3-7cm), low vigor(1-3cm),

and no vigor(less than 1cm). For the sake of simplicity, we use

abbreviations to represent different vigor levels: High Vigor (HV),

Medium Vigor (MV), Low Vigor (LV), and No Vigor (NV),

respectively. The statistical results of different germination lengths

are shown in Table 2. It can also be seen from Table 2 that seed
TABLE 1 Statistical results of different germination numbers.

Statistical object A (0h) B (6h) C (12h) D (24h) Total

Total number of samples 124 124 124 124 496

Number of germinated seeds 113 98 87 74 372

Germination percentage 91.1% 79.0% 70.2% 59.7% 75.0%
TABLE 2 Statistical results of different germination lengths.

Statistical object A (0h) B (6h) C (12h) D (24h) Total

high vigor (>7cm) 43 36 29 17 125

medium vigor (3-7cm) 45 32 22 21 120

low vigor (1-3cm) 25 30 36 36 127

no vigor (<1cm) 11 26 37 50 124
BA

FIGURE 1

Hyperspectral data collection. (A) hyperspectral imaging system; (B) artificially aged seeds.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1361309
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang and Song 10.3389/fpls.2024.1361309
vitality decreases to some extent with the degree of aging. Finally, the

numbers of high, medium, low, and non-viable seeds contained in the

seed collection of Guangdong Sweet 29 were 125, 120, 127, and 124,

respectively, obtained after germination experiments. According to

the number of seeds, the corresponding spectral information was

extracted for the subsequent seed vigor identification study.
2.4 Spectral extraction and preprocessing

In the extraction of hyperspectral data, the average reflection

spectral value of the region of interest in the spectral image is

calculated after correcting the hyperspectral images. This experiment

obtained the average reflectance spectral values corresponding to the

whole corn seed region. The image data format generated by the

hyperspectral imaging system is represented as m×n×w, where m

stands for image length, n for image width, and w for the number of

spectral bands. In the case of the GaiaField-V10E hyperspectral

imaging system, the spectral image data matrix is 1211×960×360.

There were four distinct types of sweet corn seeds with varying vitality

levels, and each image contained 50 seeds. Consequently, a total of 12

images were acquired. The spectral data of 496 sweet corn seeds were

selected through a germination experiment. Then, image processing

technology automatically extracts each sample’s average reflection

spectral value in each band. The entire automated process for

extracting Regions of Interest (ROI) from the calibrated spectral

image segment is illustrated in Figure 2. Step 1: Initially,

hyperspectral images were read, and spectral data were analyzed. The

reflectance image of sweet corn seeds at 635.77nm was chosen in the

first step because it exhibited clear outlines and distinct appearances.

Step 2: The captured grayscale image underwent filtering and

enhancement operations before image segmentation. Step 3: The

Otsu algorithm was utilized to derive the binary image. Step 4:

Subsequently, the binary image served as the mask image. In the

next step, the mask image and calibrated images were used to extract

complete sweet corn seed images. Step 5: Finally, the spectra of all pixels

within the ROI were averaged at each wavelength for each seed.
2.5 Different classification models

2.5.1 Classic machine learning algorithms
The Support Vector Machine (SVM) is a robust supervised

classification method extensively used for addressing nonlinear
Frontiers in Plant Science 05
classification, function estimation, and pattern recognition tasks

(Luan and Tsai, 2021). Its fundamental principle revolves around

establishing a hyperplane capable of effectively segregating the

training dataset within a high-dimensional feature space,

maximizing the geometric margin. This study selected the Radial

Basis Function (RBF) as the kernel function because of its

effectiveness in dealing with nonlinear data. Achieving a well-

fitted model requires carefully determining two critical

parameters: the penalty coefficient (c) and the kernel parameter

(g). The grid-search technique has been utilized to identify the

optimal values for c and g. The search range for these parameters

was set to 2-8-28. The Extreme Learning Machine (ELM) is a

formidable machine learning algorithm employed in classification

and regression tasks. ELM stands out for its remarkable efficiency,

particularly in solving nonlinear problems. The core concept behind

ELM is to randomly initialize the weights and biases of the hidden

layer and then focus on training only the output layer. To obtain an

effective ELM model, it’s crucial to tune two key parameters: the

number of hidden neurons (N) and the activation function. The

weight parameters connecting neurons within the ELM structure

were stochastically generated and remained entirely unrelated to the

training data (Bansal et al., 2022).

2.5.2 Convolutional neural networks
The information collected from sweet corn seeds of different

vitality levels by the hyperspectral imaging system includes spectral

and image data. Therefore, some typical neural network models utilize

spectral images and data to construct seed vitality identificationmodels.

Convolutional Neural Networks (CNNs) are a class of deep

learning models specifically tailored for analyzing and processing

data with grid-like structures, particularly images and videos. CNNs

are founded on the fundamental concept of hierarchical feature

extraction through convolutional and pooling operations, enabling

them to excel in various computer vision tasks, such as image

recognition, classification, and segmentation. A typical CNN

architecture consists of multiple layers, including convolutional

layers, pooling layers, and fully connected layers, all working

together to automatically learn and extract high-level features

from input data. This process greatly aids in comprehending

complex patterns and structures (Li et al., 2021).

Drawing from sweet corn seeds’ spectral and image

characteristics at varying vitality levels, this study introduces

dedicated 2DCNN and 1DCNN models designed for vitality

detection. The structural diagrams of these models are presented in
B C DA

FIGURE 2

Spectral data extraction process. (A) 635.77nm wavelength image; (B) image processing; (C) image segmentation; (D) ROI of every corn seed.
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Figures 3A, B for the two-dimensional and one-dimensional CNNs,

respectively. The 2DCNN comprised two convolutional layers with a

kernel size of 5×5 each, and the number of filters was configured as 6

and 16, respectively. The size of the maximum pooling layer was set at

2×2. Before training the CNNmodel using spectral images, each seed

image was cropped to a size of 46×46. In addition, for data

dimensionality reduction, Principal Component Analysis (PCA) is

applied to transform the original 46×46×360 spectral image data into

a reduced format of 46×46×5. Consequently, this reduced image is

used as the input for a fully connected layer consisting of 120

neurons, followed by another layer with 5 neurons, both of which

employ the Rectified Linear Unit (ReLU) activation function. The

entire model is trained on the samples using the stochastic gradient

descent (SGD) optimization technique. In contrast to the 2DCNN,

the 1DCNN transforms data into a 1D format by reducing its

dimensionality. Similarly, the 1DCNN also comprises two

convolutional layers with a size of 1×3, and deep feature down-

sampling is achieved through maximum pooling with a size of 1×2.

The number of neurons in the fully connected layer is reduced from

128 to 4, and ultimately, softmax is employed for viability

classification. To mitigate the risk of overfitting and introduce

regularization, a dropout layer with a rate of 0.2 is incorporated

before each fully connected layer. The activation function settings

remain consistent with those of the 2DCNN.

2.5.3 Long short-term memory
Long Short-Term Memory (LSTM) is a distinctive variant of

recurrent neural network (RNN) architecture that has garnered

substantial recognition in the realm of deep learning [23]. LSTM is

engineered to address the challenge of capturing and modeling long-

range dependencies within sequential data, which is crucial for various

complex tasks such as time series analysis and natural language

processing. This intrinsic capability makes LSTM a formidable

choice for diverse applications that demand the modeling and

prediction of sequential data with intricate temporal dependencies.

Two-dimensional (2D) and One-dimensional (1D) LSTM frameworks

are employed to process spectral and image features. The optimal
Frontiers in Plant Science 06
architectures for these frameworks are depicted in Figures 4A, B,

respectively. The Spectral-LSTM model consisted of an LSTM block

and two fully connected layers, and a dropout layer with a value of 0.2

was added in front of these two parts to prevent overfitting. The

difference is that in the image-LSTM model, batch normalization was

added between the two parts in addition to three LSTM blocks and two

fully connected layers. Before softmax classification, exponential linear

unit (ELU) was used as the activation function in the image-LSTM

model. This method tried to close the average value of the output of the

activation function to zero, thereby speeding up the learning speed and

avoiding the problem of the disappearance of the gradient through the

identification of positive values.

2.5.4 CNN-LSTM model
Using PCA for dimensionality reduction before training a CNN

network can reduce the amount of training data required to some

extent. However, it also results in the loss of some valuable spectral

information. LSTM networks are effective models for handling time

series data, and the spectroscopic data collected in the experiment

has a certain temporal sequence. In this study, we propose a hybrid

architecture known as CNN-LSTM. The CNN-LSTM model is

designed to integrate spectral fusion features into the network

architecture, ultimately enhancing its performance. Figure 5

illustrates the CNN-LSTM framework for evaluating the viability

of sweet corn seeds. Two convolutional layers with a 3×3 kernel size

were employed to extract features from spectral images. The output

image following the CNN convolutional processing served as input

for two LSTM blocks and batch normalization was added.

Subsequently, two fully connected layers, comprising 128 and 5

neurons, were incorporated, with the activation function remaining

as the Exponential Linear Unit (ELU).

Deep learning models typically have numerous hyperparameters,

many of which are determined based on personal experience or

multiple trial-and-error attempts. In the proposed CNN-LSTM

model, two crucial parameters are batch size (bs) and learning rate

(lr). The lr determines the speed of model learning, with a higher lr

resulting in faster training but potentially leading to a significant
B

A

FIGURE 3

CNN models. (A) CNN for image; (B) 1DCNN for spectrum.
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decrease in network performance. Small batch sizes are typically

employed during network training. Each epoch subdivides the

training samples into several groups, known as the batch size, and

feeds them into the network for training. In general, a larger batch

size leads to a more accurate determination of the descent direction.

2.5.5 The CNN-LSTM optimized by the
Firefly algorithm

To further boost the performance of the CNN-LSTM model, we

suggest employing the Firefly algorithm (FA) to optimize two crucial

hyperparameters within the model: learning rate (lr) and batch size

(bs). The Firefly Algorithm is a population-based stochastic search

algorithm. Each firefly is randomly positioned within the search space

of the objective function. The brightness of each firefly is tied to the

fitness value of the objective function at its current location. Brighter

fireflies represent positions that yield superior values for the objective

function. Each firefly is attracted to brighter fireflies, which motivates

them tomove in search of better solutions. As the population evolves,

the algorithm ultimately converges to effective solutions for

optimization problems. The algorithm is detailed and explained as

Equations 2–5 (Kumar and Kumar, 2021).

For a D-dimensional search space and a total population size of

NP in the population, the position of the i-th firefly (i = 1, 2,…, j,

NP) is represented as Xi=(xi1, xi2,…,xiD).

In nature, fireflies rely on the intensity of their own light to attract

potential mates or companions. The attraction b(r) between two

fireflies is primarily determined by their luminous intensity, which
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can be expressed using the formula (2).

b(r) = b0 � e−g�ri,j2 (2)

where g is a fixed light absorption coefficient, b0 is the

attractiveness at r = 0, the distance ri,j between any two fireflies i

and j at Xi and Xj can be computed according to Euclidian distance:

ri,j = Xi − Xj

�� �� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oD

d=1(xi,d − xj,d)
2

q
(3)

For fireflies xi and xj, if the brightness of firefly xj is greater than

that of firefly xi, firefly xi will move toward firefly xj. The position

update formula is as follows:

xt+1i = xti + b0e
−g r2i,j (xtj − xti ) + a rand −

1
2

� �
(4)

where a is called the step factor, rand represents uniformly

distributed random number within [0, 1].

Therefore, the Firefly Algorithm flowchart for optimizing the

CNN-LSTMmodel is depicted in Figure 6. Specifically, the objective

function for optimizing the CNN-LSTM model with the FA

algorithm is defined as follows:

fobj = 1 −
sum(Tr = Tv)

Tr
(5)

where, Tr represents the actual number of sample labels, and Ts
represents the predicted sample labels. Therefore, the smaller the value

of the objective function, the more reliable the model performance, and
FIGURE 5

CNN-LSTM for image.
B

A

FIGURE 4

LSTM models. (A) LSTM for the image; (B) 1DLSTM for the spectrum.
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the optimized parameters are also the best. The specific description of

the whole algorithm framework is explained in the following steps: Step

1: Partitioning the sample dataset. Step 2: The parameters of the CNN-

LSTM model are optimized by using the FA algorithm in the training

set. Step 3: Initialize the parameters of the FA algorithm. Step 4:

Evaluate the fitness function, select the optimal individual and local

optimal solution, and update the population information. Step 5:

Determine whether the algorithm meets the termination condition.

Step 6: Output the optimal solution(lr and bs). Step 7: The CNN-LSTM

model is constructed with the optimal parameters, and the

performance of the model is evaluated on the test set.
3 Experimental results and analysis

3.1 Spectral characteristics analysis

Figure 7 shows the spectra curves of all samples and the average

spectra of four kinds of sweet corn seeds with different vigor,
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respectively. The spectral range of 388-1025 nm was employed to

study the spectral characteristics of sweet corn seeds. While the

spectral curves of four different grades of vitality seeds exhibited a

fundamental similarity, distinctions arose in terms of the specific

wavelengths of spectral absorption peaks and the corresponding

reflectance values at each band. As evident from the averaged

spectral curve depicted in Figure 7B, variations exist in the

average spectral curves corresponding to varying degrees of aging.

Notably, the spectral reflection values tend to decrease with

prolonged aging duration. Among these observations, the distinct

dissimilarity between the spectral curve of HV (no aging) and that

of the other three aging categories is noteworthy. The spectral

curves of the other three kinds of sweet corn seeds with different

aging degrees are difficult to distinguish. The value of the average

spectra of LV is the highest compared to NV and MV at

wavelengths of 400-750nm. Moreover, the average spectral value

of MV is the highest compared with LV and NV in the 750-1025nm

range. The average spectral curves of NV and LV are very similar to

each other to some extent. Broadly speaking, the spectral curves of
BA

FIGURE 7

The spectra curves of sweet corn seeds with different vigor. (A) Full spectra curves; (B) Average spectra curves.
FIGURE 6

The structure of FA optimized the CNN-LSTM.
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the four distinct types of sweet corn seeds, each characterized by

varying levels of vigor, exhibit notable distinctions. As a result, the

extraction of spectral attributes for the purpose of variety

classification appears to be a viable approach.

As depicted in Figure 7B, it becomes evident that the spectral

curves of the HV seeds stand out from those of the other three

vitality levels. Consequently, MV, LV, and NV are considered for

correlation analysis. The discrepancies in average spectra between

MV, LV, and NV are illustrated in Figure 8. The shaded gray areas

in Figure 8 indicate that the wavelengths corresponding to the three

vitality levels do not exhibit significant differences (p< 0.01).

Furthermore, MV and LV exhibit substantial differences except in

the 870-930nm range, and MV and NV show significant differences

except in the 650-760nm range. The findings from Figure 7 and

Figure 8 collectively suggest that all four vitality levels can be

effectively visually distinguished based on the average spectral

profiles of their different vitality levels. Consequently, the training

of machine learning models can effectively accomplish the

classification of these different vitality levels.
3.2 Comparison of the effects of traditional
models under different
preprocessing strategies

During the process of collecting sample data in a spectral

imaging system, it is difficult to avoid being disturbed by various

types of noise information. Translation: Therefore, preprocessing of

sample data can effectively enhance the accuracy of the data.

Standard Normative Variables (SNV) and Multiple Scattering

Correction (MSC), as two primary data preprocessing methods,

can effectively remove peaks and spikes from the data while

preserving the primary characteristics of the samples, resulting in

smoother data. The preprocessing results of hyperspectral data are

shown in Figure 9. The MSC can effectively enhance the correlation

between spectral data, reduce spectral variations caused by different

scattering levels, and thereby effectively reduce the impact of noise
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on data analysis, as shown in Figure 9A. On the other hand, SNV

can effectively standardize and normalize spectral data, thereby

improving spectral resolution, as shown in Figure 9B. After data

preprocessing, the spectral data become smoother.

This paper used SVM, ELM, 1DLSTM, and 1DCNN to establish

the models for determining the viability of sweet corn seeds under a

hyperspectral full band. All the sample data were randomly divided

into a training set and a test set according to 7:3. The experimental

results of traditional models using different preprocessing strategies

are shown in Table 3. As demonstrated by the findings in Table 3, the

classification results for the original spectral data indicate that

1DCNN outperformed other methods, achieving an impressive

accuracy of 91.08%. This accuracy is notably 4% higher than that

of SVM, which exhibited the poorest performance among the tested

algorithms. Moreover, the utilization of preprocessed data notably

enhances the model’s classification accuracy compared to using the

original spectral data. Among the various preprocessing methods

evaluated, data subjected to the MSC preprocessing yielded the most

impressive classification results, boasting the highest accuracy at

92.03%. This performance surpassed that achieved by the SNV

preprocessing across all four models. In terms of model

performance, 1DCNN has the best performance, followed by ELM,

1DLSTM is inferior to ELM, and SVM has the worst performance.

To better analyze the model’s performance in identifying seeds

with different vigor levels, the corresponding confusion matrices of

the above models are shown in Figure 10. As can be seen from the

analysis in Figure 10, all models were significantly easier to

distinguish between high vitality and low vitality samples, which

is basically consistent with the analysis results of the average

spectral curves shown in Figure 7. For the deep learning models,

its models are built through continuous training and learning,

which has a relatively average classification accuracy rate for each

type of sample. On the whole, the classification error rate of the

model is the highest for the moderately active and inactive samples,

which is basically consistent with the correlation analysis results in

Figure 8. Of course, the result of this reason is that the

characteristics of the samples are very similar.
BA

FIGURE 8

Correlation analysis of spectra. (A) Average spectrum with correlation analysis of MV and LV; (B) Average spectrum with correlation analysis of MV
and NV.
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3.3 Comparison of the results of traditional
models under various preferred
banding methods

The original spectral data obtained from the hyperspectral

imaging system is 960*960*360, which contains 360 band

numbers in the 380-1025nm band range, indicating that each

sample data has 360 spectral reflection values. However, not all

bands contribute to extracting meaningful features from the target.

Most of the information obtained from most of these bands is

essentially used for information. It is essential to select spectral

feature wavelengths that carry useful information to address this

issue. Three band optimization methods, including Sequential

Projection Algorithm (SPA), Competitive Adaptive Reweighted

Sampling (CARS), and Variable Iterative Space Shrinkage

Approach (VISSA), were employed on the original spectral

dataset. Collectively, these methodologies serve to extract

pertinent information from the high-dimensional spectral data,

effectively eliminating redundancy and irrelevant features.

In the experiment, the SPA algorithm identified 25 distinctive

spectral bands, the CARS algorithm highlighted 68 relevant bands, and

the VISSA algorithm pinpointed 123 significant bands. By employing

band selection strategies, redundant information is significantly
Frontiers in Plant Science 10
reduced, which is advantageous for model training and reduces

computational time. Subsequently, the selected feature wavelengths

were employed to construct the models for discerning the sweet corn

seed viability. The experimental results are shown in Table 4.

Firstly, when comparing the three band selection methods,

VISSA demonstrated the best performance in the test set,

followed by CARS, while SPA showed the poorest performance.

This could be attributed to VISSA retaining the highest number of

bands, which is favorable for model training. However, in terms of

actual classification accuracy, the three band selection methods did

not exhibit a significant difference, with less than a 2% gap between

them. Secondly, 1DCNN still maintains the highest classification

accuracy across different preprocessing methods, reaching 89.06%,

followed by ELM. 1DLSTM performs the worst, with the SVM

slightly outperforming 1DLSTM. The maximum difference in

classification accuracy between the various models is around 3%.

Finally, compared to the performance of various models across all

spectral bands, there is a noticeable decrease in the performance of

all algorithms, with classification accuracy decreasing by

approximately 2% to 4% on average. Overall, the band selection

strategy reduces the training time of the models to some extent, but

it may also result in the exclusion of some valuable spectral

information, thus leading to a decline in model performance.
TABLE 3 Classification accuracy of traditional models using different preprocessing strategies.

Model

Preprocessing method

Original spectra MSC SNV

Training
accuracy (%)

Test
accuracy (%)

Training
accuracy (%)

Test
accuracy (%)

Training
accuracy (%)

Test
accuracy (%)

SVM 92.35 87.16 92.45 89.21 92.31 87.55

ELM 93.68 90.57 94.03 91.23 93.02 90.69

1DLSTM 91.29 89.33 92.35 90.52 91.60 89.87

1DCNN 93.45 91.08 93.59 92.03 93.21 91.54
The bold font indicates that the algorithm has the best results compared to the other parties.
BA

FIGURE 9

The preprocessing results of hyperspectral data. (A) MSC; (B) SNV.
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3.4 Comparison of the effects of different
deep neural networks

To facilitate the training of deep learning models, the spectral

image data, initially containing 360 spectral bands, underwent

dimensionality reduction using the Principal Component Analysis

(PCA) algorithm. Following PCA treatment, a set of five spectral

bands of images, each with a size of 46×46 pixels, within the 388-

1025nm range, were employed to create various deep learning

network-based spectral models. These models are proficient in
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effectively detecting different levels of vitality in sweet corn seeds.

Subsequently, the CNN, LSTM, CNN-LSTM, and FA-CNN-LSTM

models were applied to assess the classification accuracy. The training

set and the test set were divided into an 7:3 ratio. The experimental

results, hyperparameters for each deep learning model, and the

optimizer selections are detailed in Table 5. The provided

hyperparameters include batch size (bs) and learning rate (lr).

Besides, all training and validation experiments are conducted on a

deep learning workstation performed on an Ubuntu 20.04 LTS system

with an Intel Xeon Gold 6130 CPU@2.1GHz 32 processors, two
TABLE 4 Average classification accuracy of the model under different band preferences.

Model

Band preference method

SPA CARS VISSA

Training
accuracy (%)

Test
accuracy (%)

Training
accuracy (%)

Test
accuracy (%)

Training
accuracy (%)

Test
accuracy (%)

SVM 88.91 86.52 89.33 86.89 89.62 87.51

ELM 89.29 87.26 90.08 88.55 89.87 88.94

1DLSTM 87.02 85.61 87.65 85.96 89.21 86.47

1DCNN 90.05 87.95 90.17 88.87 90.30 89.06
The bold font indicates that the algorithm has the best results compared to the other parties.
B
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FIGURE 10

Confusion matrices for different models. (A) SVM; (B) ELM; (C) 1DLSTM; (D) 1DCNN.
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CUDA devices with dual Nvidia GeForce RTX 3090 GPUs, and 64 GB

memory. The software is implemented on the PyTorch 1.13.0

framework and the PyTorch Image Models library with Python 3.9.

It is worth noting that, in the training dataset, the classification

accuracy of all models is nearly 100%. In particular, the proposed

model achieves a classification accuracy of 100% on the training set.

However, in terms of accuracy on the test set, the FA-CNN-LSTM

model displayed the most impressive classification performance among

all models, achieving the highest accuracy at 97.23%. Following closely

were CNN-LSTM and LSTM, with CNN performing the least
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effectively, achieving an accuracy of 94.59%. Moreover, the

performance of the FA-CNN-LSTM model significantly outperforms

the other three deep learning models, with an approximately 2% higher

accuracy on the test set. This notable improvement can be attributed to

the FA algorithm’s superior optimization of the model’s

hyperparameters, specifically batch size (bs) and learning rate (lr).

When compared to traditional machine learning models, the deep

learningmodels performed notably better. In particular, the accuracy of

the FA-CNN-LSTMmodel on the test set is 5% higher than that of the

1DCNN model.
TABLE 5 Deep neural network recognition model based on 2D spectral image data.

Deep learning model
Parameters

Optimizer
Training
accuracy

(%)

Test
accuracy

(%)bs lr

CNN 1 0.001 SGD 97.17 94.59

LSTM 4 0.001 Adam 98.65 95.27

CNN-LSTM 2 0.001 SGD 98.82 95.94

FA-CNN-LSTM 2 0.002 SGD 100 97.23
The bold font indicates that the algorithm has the best results compared to the other parties.
B
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A

FIGURE 11

Confusion matrices for deep learning models. (A) CNN; (B) LSTM; (C) CNN-LSTM; (D) FA-CNN-LSTM.
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To better analyze the experimental results from a visual

perspective, Figure 11 displays the confusion matrices of various

neural network models in seed vitality detection. The relevant results

are consistent with the data statistically summarized in Table 5, thereby

effectively demonstrating the accuracy of the experimental results.

Furthermore, Figure 12 illustrates the accuracy and loss

function evolution curves of four deep learning models on a test

set. The loss function on the test set is constantly decreasing and

almost approaching 0 for all models. CNN and FA-CNN-LSTM

remained stable at 70 epochs. Similarly, both CNN and FA-CNN-

LSTM models exhibit a stable accuracy trend after 70 epochs. More

importantly, all models achieve a stable testing accuracy trend after

nearly 100 epochs and reach their peak performance on the test

data. The preceding experimental findings underscore the

impressive capacity of deep learning models in discerning various

vitality levels among sweet corn seeds. Additionally, these results

emphasize the effectiveness of optimizing the CNN-LSTM model

using the FA to enhance its overall performance.
4 Conclusion

Nondestructive seed vitality identification is beneficial for

selecting high-quality seeds. This paper proposed hyperspectral

imaging and deep learning model optimized by firefly algorithm

to identify different viability sweet corn seeds. First, a total of 496

sweet corn seeds hyperspectral data of four different aging grades

were collected. Then, traditional machine learning algorithms and

deep learning methods are both utilized to construct seed vitality

identification models, employing one-dimensional spectral data and

spectral images, respectively. The experimental results indicated

that the classification accuracy of traditional machine learning

algorithms is significantly better across the full band compared to

the selected bands. In comparison to traditional machine learning

algorithms, the deep learning model exhibited a significant

improvement in classification performance, achieving an accuracy

rate exceeding 94.59%. In particular, the FA-CNN-LSTM had the

best performance at 97.23%. Furthermore, the CNN-LSTM model

optimized by the FA obtains superior parameter configurations,
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resulting in a 1.29% improvement in classification accuracy

compared to the CNN-LSTM. In summary, it is worth noting

that this approach demands a more substantial volume of image

data compared to conventional machine learning algorithms. In

future research, we plan to explore additional deep-learning models

specifically designed for scenarios with limited sample data to

improve the identification of sweet corn seed varieties.
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