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Ye Yang2, Hongxia Liu2 and Jie Li2*

1College of Plant Protection, Shanxi Agricultural University, Taigu, China, 2College of Horticulture,
Shanxi Agricultural University, Taigu, China
Thrips are serious pests of Hemerocallis citrina Baroni (daylily), affecting crop yield

and quality. To defend against pests, daylily has evolved a set of sophisticated

defense mechanisms. In the present study, induction of systemic resistance in

Hemerocallis citrina ‘Datong Huanghua’ by Thrips palmi feeding was investigated

at both biochemical and molecular levels. The soluble sugar content of daylily

leaves was significantly lower than that in control check (CK) at all time points of

feeding by T. palmi, whereas the amino acid and free fatty acid contents started to

be significantly lower than those in CK after 7 days. Secondary metabolites such as

tannins, flavonoids, and total phenols, which are harmful to the growth and

reproduction of T. palmi, were increased significantly. The activities of defense

enzymes such as peroxidase (POD), phenylalanine ammonia lyase (PAL), and

polyphenol oxidase (PPO) were significantly increased, and the degree of

damage to plants was reduced. The significant increase in protease inhibitor (PI)

activity may lead to disrupted digestion and slower growth in T. palmi. Using RNA

sequencing, 1,894 differentially expressed genes (DEGs) were identified between

control and treatment groups at five timepoints. DEGs were mainly enriched in

secondary metabolite synthesis, jasmonic acid (JA), salicylic acid (SA), and other

defense hormone signal transduction pathways, defense enzyme synthesis, MAPK

signaling, cell wall thickening, carbohydrate metabolism, photosynthesis, and

other insect resistance pathways. Subsequently, 698 DEGs were predicted to be

transcription factors, including bHLH and WRKY members related to biotic stress.

WGCNA identified 18 hub genes in four key modules (Purple, Midnight blue, Blue,

and Red) including MYB-like DNA-binding domain (TRINITY_DN2391_c0_g1,

TRINITY_DN3285_c0_g1 ) , z inc-finger of the FCS-type , C2-C2

(TRINITY_DN21050_c0_g2), and NPR1 (TRINITY_DN13045_c0_g1,

TRINITY_DN855_c0_g2). The results indicate that biosynthesis of secondary

metabolites, phenylalanine metabolism, PIs, and defense hormones pathways

are involved in the induced resistance to T. palmi in daylily.
KEYWORDS

Hemerocallis citrina Baroni, Thrips palmi, physiological responses, biochemical
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1 Introduction

Hemerocallis citrina Baroni (daylily) is a perennial herbaceous

plant belonging to the Liliaceae family with edible flowers,

medicinal properties, and ornamental functions. Daylilies are

naturally distributed in East Asia, with the paramount diversity of

species originating in Korea, Japan, and China, and have been

cultivated for thousands of years (Matand et al., 2020; Misiukevičius

et al., 2023). Thrips species such as Frankliniella intonsa, Thrips

palmi, and Frankliniella occidentalis are common pests of daylily,

causing plant damage. The life cycle of thrips includes five stages:

egg, nymph, prepupa, pupa, and adult. Adults lay eggs in young

plant tissues; 1st and 2nd instar nymphs are agile, and young plant

tissues are their favorite feeding site; 3rd instar nymphs (prepupae)

are no longer fed and pupated underground in the uppermost 3−5

cm soil layer; 4th instar nymphs (pupae) do not eat and pass the

pupal stage in the soil layer (Cannon et al., 2007). The generational

overlap of thrips is extensive, and it takes 15−20 days to complete

the first generation, of which the egg duration is 5−7 days, and the

adult duration is 7−10 days. The turn of spring and summer is the

first peak of thrips infecting daylily (Dhall et al., 2021). The filing-

sucking mouthparts of thrips damage the young leaves, tender

stems, and flower buds of daylily. Thrips-infested plants exhibit

slow growth, shortened internodes, and bent flower buds, which

diminishes commercial value. When thrips were present in great

numbers, the bud dropping rate of daylily was 31.65% higher than

in controls, the actual bud dropping rate was as high as 99.62%, and

it is the only insect pest that can lead to a completely failed harvest

(Gao et al., 2021). In addition, owing to the small size of thrips, the

high degree of concealment, the rapid reproduction, and the high

incidence of drug resistance, it is difficult to achieve the desired

control effect with a single insecticide (Steenbergen et al., 2018).

Therefore, the safest and most effective strategy for thrips

prevention and control is to utilize the insect resistance of the

host plant. To this end, investigation of the physiological

mechanisms of thrips resistance in daylily provides a basis for

breeding insect-resistant plants.

Host plant damage by phytophagous insects alters plant

nutrient content, production of toxic secondary metabolites, the

activities of defense proteins and enzymes, and upregulates the

expression of various defense-associated genes (Badenes-Pérez,

2022; Beran and Petschenka, 2022). The redistribution of certain

nutrients and rapid synthesis of secondary metabolites in plants

after pest infestation affects the feeding, growth, and development of

pests, which in turn stimulates insect resistance (Erb and Reymond,

2019; Barbero and Maffei, 2023). Levels of soluble sugars, free

amino acids, and soluble proteins in bean leaves decreased with

increasing population density and feeding time of F. occidentalis,

and were lower than those in control levels (Qian et al., 2018). Pest

damage induces the accumulation of flavonoids in plants

(Ramaroson et al., 2022); Spodoptera litura feeding stress has

been shown to induce Glycine max to synthesize flavonoids (Du

et al., 2019). Examples of herbivore-induced defense mechanisms

are the accumulation of toxic chemicals such as benzoxazinoids

(BXDs; chemical defense), glucosinolates, and alkaloids, which are

classes of specialized metabolites that function as deterrents
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(Batyrshina et al., 2020). Chemical defense by BXDs in wheat

showed a complex response at the leaf and phloem level that

altered aphid feeding preference, and BXDs act as antifeedants to

aphids (Singh et al., 2021a). In response to pest stress, defense-

related enzyme systems in plants are activated. The main defense

enzymes include peroxidase (POD), polyphenol oxidase (PPO), and

phenylalanine ammonia lyase (PAL). Changes in the activities of

these enzymes reflects the insect resistance of host plants to a

certain extent (War et al., 2018). PAL is the rate-limiting enzyme in

the phenylpropanoid metabolic pathway. Pest damage in plants

initiates or upregulates phenylpropanoid metabolism, which

increases PAL activity in damaged parts, resulting in a substantial

accumulation of lignin in the cell wall and cell wall thickening,

which prevents the spread of pests. Simultaneously, the increase in

PAL activity increases the content of phytoalexins, which are toxic

to phytophagous insects, and thereby prevent and control pests

(Pant and Huang, 2022). Thrips feeding causes a significant

accumulation of reactive oxygen species (ROS) in plants, leading

to cell damage; plant PPO and POD remove excessive H2O2 and

superoxide anions to maintain the dynamic balance of ROS, thus

protecting plants against damage (Mouden and Leiss, 2021).

Protease inhibitors (PIs) competitively and reversibly bind to

intestinal proteases of herbivorous insects and allosterically bind

to inhibitor-insensitive proteases to reduce protease hydrolysis

activity, ultimately leading to slow growth and dysplasia in insects

(Divekar et al., 2023). When herbivorous insects feed, plants are

exposed to mechanical challenge in the form of tissue injury and

chemical challenge caused by insect salivary secretions entering

plant tissues. Subsequently, PI genes are induced at the wound site

through transmission of signal molecules and amplification of the

signal via a cascade, resulting in PI genes being expressed locally at

the wound site and throughout the plant (Ferreira et al., 2023).

Transcriptome sequencing technology (RNA-Seq) has been

frequently applied to study the interaction mechanisms between

pests and hosts, and has become the main approach to explore gene

expression. The transcriptome is a fundamental link between

genomic and proteomic information associated with biological

functions. Regulation of transcription level is the most studied

and most important regulation strategy in organisms (Lowe et al.,

2017; Paul et al., 2022). In plants exposed to insect feeding stress,

defense signaling pathways are initiated, a series of physiological

and biochemical reactions are induced, and expression of defense

genes is activated (Whiteman and Tarnopol, 2021). The

physiological and biochemical metabolism of plants is altered

through signal transduction, transcriptional regulation, and gene

expression, which improves the resistance of plants to pest stress

(Du et al., 2020; Wani et al., 2022). Sitobion avenae feeding induces

PAL gene expression in wheat (Van Eck et al., 2010). In cotton,

Helicoverpa armigera feeding induces changes in the gene

expression of lysyl oxidase (LOX), propylene oxide cyclase, and

chalcone synthase, and activates plant defenses against pests at the

molecular level (Chen et al., 2020). In response to insect feeding,

plants initiate multiple hormone signaling pathways such as

jasmonic acid (JA), salicylic acid (SA), and ethylene (ET), causing

the accumulation of plant defense compounds, stimulating the

expression of defense genes, and triggering the release of volatile
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substances, which further enhances the resistance of plants to

herbivorous insects (Kersch-Becker and Thaler, 2019; Zhao et al.,

2021). In maize, Spodoptera litura feeding significantly upregulateds

defense-related genes, oxidative stress-related genes, transcriptional

regulatory genes, protein synthesis genes, plant hormone-related

genes, and genes related to primary and secondary metabolism

(Singh et al., 2021b). In tobacco exposed to Bemisia tabaci stress,

defensepathways suchasROS,PI synthesis,hormonemetabolism, and

WRKY were significantly upregulated, and plant resistance was

enhanced (Wang et al., 2023b). Transcription factors play a key

regulatory role in the battle between plants and herbivorous insects

by regulating cellular activities via gene expression. Members of the

WRKY, APETALA2/ethylene response factor (AP2/ERF), basic helix-

loop-helix (bHLH), basic leucine zipper (bZIP),myeloblastosis-related

(MYB), and NAC (no apical meristem/Arabidopsis transcription

activation factor/cup-shaped cotyledon) families are involved in the

regulation of plant disease and insect resistance networks (Tsuda and

Somssich, 2015).

Herbivorous insect feeding initiates the inducible defense

mechanism of plants, triggering a series of signal transduction

and gene expression events, and the generation of defense

substances. Inducible defense plays an more important role in the

self-protection of plants (Maleck and Dietrich, 1999). At present,

there are few reports on the physiological responses and omics

differences of daylily in response to thrips feeding. In the present

study, H. citrina ‘Datong Huanghua’ inoculated with T. palmi was

used to determine the content of nutrients and secondary

metabolites and defense enzyme activities in leaves to elucidate

the physiological changes that induce pest defenses. Transcriptome

analysis of thrips-infested leaves was performed with healthy leaves

as controls. Differentially expressed genes (DEGs) were identified,

and the main transcription factors and their expression patterns

were analyzed. Key insect resistance genes were identified to

elucidate the induced defense mechanism of daylily in response to

T. palmi.
2 Materials and methods

2.1 Materials

Adults T. palmi individuals naturally occurring in daylily fields

at the Horticultural Station of Shanxi Agricultural University were

used as the source of test insects. The daylily variety used in the

study was Datong Huanghua, which was planted at the

Horticultural Station of Shanxi Agricultural University.
2.2 Seedling growth

The study was performed from March to June 2023 at the

Horticultural Station of Shanxi Agricultural University. To prevent

T. palmi and other pests, a 60-mesh insect-proof net was used to set

up a net room, similar to a vegetable greenhouse, from west to east

in the field to establish the experimental plot. After 45 days of

seedling growth, the experiment began.
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To establish the treatment group with induction of T. palmi (T.

palmi-fed, abbreviated as TF), 1 day before the experiment,

sufficient T. palmi were collected in the field and brought to the

laboratory in a cage (118.7 × 100 × 100 cm) made of 60-mesh

insect-proof net. T. palmi was starved for 12 h prior to the test, to

ensure adequate feeding induction on plants. On the day of the

experiment, T. palmi were transported to the net room in 50-mL

centrifuge tubes, and T. palmi from one tube were released onto 3−4

plants such that there were ~90 individuals per plant; at least 15

plants were treated overall to ensure that three biological replicates

could be sampled at each point. T. palmi concentrated on the

upper–middle position of young leaves, and each plant had 6−7

such leaves. Datong Huanghua plants in this treatment group (TF)

were individually covered with a 60-mesh insect-proof net to

prevent T. palmi from escaping. In the control group (control

check, abbreviated as CK), no insects were introduced, daylily

plants were allowed to grow normally without any treatment in

the net room, and each plant was individually covered with insect-

proof net. Each treatment group included three biological replicates.

Plant leaves were collected at 1, 3, 5, 7, and 9 days after the

introduction of T. palmi (named TF1−TF5), and leaves of CK group

plants collected at the same time served as controls (named CK1

−CK5). Three replicates were included at each stage, yielding five

extractions with 30 samples in total, which were frozen in liquid

nitrogen and stored at -80°C until future use.
2.3 Determination of plant nutrient content

The content of amino acids, free fatty acids, and soluble sugars in

TF1−TF5 and CK1−CK5 was determined. Amino acids content was

determined using an amino acids content determination kit

(ninhydrin colorimetric method; 50T/48S) and a standard curve

obtained using cysteine (Li et al., 2023a). Free fatty acids content was

determined using a free fatty acids content determination kit (copper

soap colorimetry; 50T/48S) and a standard curve obtained using

palmitic acid (Wu and Shen, 2021). Soluble sugars content was

determined using a plant soluble sugars content determination kit

(anthrone colorimetry; 50T/48S) and a standard curve obtained using

anhydrous glucose (Kwon et al., 2015). All kits were purchased from

Beijing Solarbio Science & Technology Co., Ltd (Beijing, China). Data

were summarized and processed using Microsoft Excel 2010 and

statistically analyzed with SPSS software v20.0. The significance of

the difference in nutrients betweenhealthy daylily leaves and leaves fed

on byT. palmiwas tested by Tukey’s test (p < 0.05) and graph plotting

using SigmaPlot 14.0 software. Data processing for secondary matter

content and defense enzyme activities of daylily leaves before and after

feeding by T. palmi was done in the same way as data processing for

nutrient content determination.
2.4 Determination of plant secondary
metabolites content

The content of tannins, flavonoids, and total phenols in TF1−TF5

and CK1−CK5 was determined. Tannins content was determined
frontiersin.org
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using a Tannins content determination kit (Folin-Ciocalteu

colorimetric method; 50T/48S) and a standard curve obtained using

tannic acid (Sharma et al., 2021). Flavonoids content was determined

using a flavonoids content determination kit (AlCl3 colorimetric

method; 50T/48S) and a standard curve obtained using rutin (Liu

et al., 2022). Total phenols content was determined using a total

phenols content determination kit (Folin-Ciocalteu colorimetric

method; 50T/48S) and a standard curve obtained using catechol

(Palacios et al., 2021). All kits were purchased from Beijing Solarbio

Science & Technology Co., Ltd (Beijing, China).
2.5 Determination of plant defense
enzyme activities

The activities of POD, PAL, PPO, and PI in TF1−TF5 and CK1

−CK5 samples were determined. POD activity was determined

using a POD test kit (guaiacol method; 50T/48S) (Li et al., 2019).

PAL activity was determined using a PAL test kit (L-phenylalanine

method; 50T/48S) (Shang et al., 2023). PPO activity was determined

using a PPO test kit (pyrocatechol method; 50T/48S) (Wang et al.,

2023a). All kits were purchased from Beijing Solarbio Science &

Technology Co., Ltd, Beijing, China. PI activity was measured using

a plant PI enzyme-linked immunosorbent assay kit (double-

antibody sandwich method; 50T/48S) and a standard curve

obtained using serine protease inhibin (Kumar et al., 2018).
2.6 Transcriptome sequencing and analysis

RNA was extracted from TF1−TF5 and CK1−CK5 samples using

the TRIzol method (Wang et al., 2022). RNA integrity was assessed

using 1% agarose gel electrophoresis, and the RIN value was

determined using an Agilent 2100 bioanalyzer (Agilent Technologies

Inc., Santa Clara, CA, USA). After RNA quality determination, the

cDNA library was constructed and high-throughput sequencing was

performed on an Illumina Hiseq platform (Shanghai Majorbio Bio-

Pharm Technology Co., Ltd, Shanghai, China) with three biological

replicates. Raw data obtained by sequencing were filtered to remove

adapters and low-quality reads, and high-quality clean data was

obtained. The base quality score (Q30) of clean data was determined.

Trinity software was used to assemble the clean data obtained by

sequencing to construct the UniGene library.
2.7 Identification and annotation of DEGs

Therelativeexpression levelsof eachgeneweredeterminedusing the

Transcripts Per Million (TPM) standardization algorithm in

FeatureCounts software (Vera Alvarez et al., 2019) and combined with

gene transfer format (GTF) files describing genomic features. DESeq 2

(Qi et al., 2023)was used to compare the number of read counts between

TF and CK groups, and differential expression analysis was performed

onsamples between the groups.Geneswithp-adjust<0.05and | log2FC |

≥1 after p-value correction were considered DEGs. DEGs were

functionally annotated using the Gene Ontology (GO) database
Frontiers in Plant Science 04
(http://www.geneontology.org/) and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (https://www.genome.jp/kegg/).

Finally, transcription factors of DEGs were predicted using the Plant

Transcription Factor Database (PlantTFDB; http://planttfdb.gao-

lab.org/prediction.php/).
2.8 Identification and functional analysis of
key modules for defense enzyme activities
and secondary metabolites synthesis

We constructed a transcriptome expression matrix of leaves from

the TF1-TF5 samples and screened for genes with TPM values <1.

Furthermore, we used the WGCNA package (version 1.6.6) in R

software (version 3.4.4) to construct a gene co-expression network.

We selectedb=16 as the soft threshold for subsequent analysis andused
the ‘blockwiseModules’ function to construct the gene network, with the

following parameter settings: power = 6, TOMType = unsigned,

maxBlockSize = 100 000, minModuleSize = 80, mergeCutHeight =

0.25, nThreads = 0; all other parameters were set to default values, and

module feature genes for each module were calculated. We used the

‘exportNetworkToCytoscape’ function in the WGCNA package to

export network relationships between genes in relevant modules, and

Cytoscape software (version 3.7.1) was used to create graphs.
2.9 Quantitative real-time PCR analysis

Seven genes were selected randomly for qRT-PCR validation. RNA

was reverse-transcribed using a PrimeScript RT Reagent Kit (Takara,

Beijing, China). All procedures were conducted in accordance with the

manufacturer’s instructions. The resulting cDNAs were quantified by

TB Green Premix Ex Taq II (Takara). Each qRT-PCR experiment (15

mL) consisted of 7.5 mL of 2× SG Fast qPCRMaster Mix, 0.6 mL of each
primer (10mM), 40ngof cDNAtemplate, andddH2Oto15mL.Thermal

cycling involved an initial denaturation at 95°C for 3min, followedby 40

cycles of denaturation at 95°C for 30s, annealing at 56°C for 30s, and

extension at 72°C for 40s. Relative expression levels of genes were

calculated using the 2-△△CT method with the actin gene as an

internal control, and the experiment was repeated at least three times.

Primer sequences are listed in Supplementary Table 1.
3 Results

3.1 Effect of T. palmi feeding on plant
nutrient content

Primary metabolites such as amino acids, soluble sugars and

free fatty acids play an important role in plant-induced defenses

(Prado and Tjallingii, 2007). The amino acid and free fatty acid

contents were higher than those in CK at 1 and 3 days, but

significantly lower than those in CK at 7 days; they reached the

lowest level at 9 days, 0.26 and 0.73 times the content in CK,

respectively (Figures 1A, B). The soluble sugars content was

significantly lower in the TF group than in the CK group at each
frontiersin.org
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timepoint and reached the lowest level at 9 day, 0.69 times that in

CK (Figure 1C).
3.2 Effect of T. palmi feeding on plant
secondary metabolites content

Insect feeding induces the accumulation of various toxic

secondary metabolites such as phenols, alkaloids, and terpenoids

in plants, and reduces the digestive capacity of insects and the

amount of food and eggs, thereby directly or indirectly enhancing

insect resistance (Mipeshwaree et al., 2023). Tannins, flavonoids,

and total phenols in plants were increased significantly at each

timepoint after T. palmi feeding induction. Flavonoids content

reached a peak at 3 days, 3.5 times that in CK (Figure 2B).

Tannins and total phenols content reached a peak at 5 days, 2

and 1.7 times that in CK, respectively (Figures 2A, C).
3.3 Effect of T. palmi feeding on the
activities of plant defense enzymes

POD,PAL,PPO, andPI aredefense enzymesofplantsunderbiotic

stress, and changes in these enzymes activities reflect the insect

resistance of host plants to a certain extent (Uemura and Arimura,

2019). The activities of POD, PAL, PPO, and PI in leaves of Datong

Huanghua induced by T. palmi feeding were significantly higher than

in CK at each timepoint. POD, PAL, and PPO were all initially

increased then decreased. POD and PAL activities reached a peak at

5 days, at 5 and 2 times those in CK, respectively (Figures 3A, B). PPO

activity reached a peak at 3 days, 1.8 times that in CK (Figure 3C). PI

activity reached a peak at 1 day, 1.6 times that in CK, and although it

showed a downward trend, it was still 1.2-fold higher than in CK at 9

days (Figure 3D).
3.4 Quality assessment of transcriptome
sequencing results

To study the changes in transcription levels of daylily under T.

palmi stress, using Illumina 2× 150 bp paired-end sequencing,

141.58 Gb of clean data was obtained from 10 samples. Clean
Frontiers in Plant Science 05
data from each sample reached >6.03 Gb, the percentage of Q30

bases was >94.18%. The percentage in brackets in the last column of

Table 1 is the comparison rate for clean reads; clean reads

comparison efficiency ranged between 78.76% and 82.94%. The

results showed that the quality of the sequencing output data was

good, and the data could be used for further analysis.
3.5 DEGs in plants in response to T.
palmi feeding

Transient expressionofgeneswas investigated in the leavesofdaylily

in response to T. palmi feeding.The five timepoints after induction of T.

palm feeding yielded 78,987 DEGs. The highest number of DEGs

(20,390) was observed at the TF5 stage, including 13,701 upregulated

and6,689downregulatedgenes.TheTF1 stagehad the lowestnumberof

DEGs (8,010), including 5,956 upregulated and 2,054 downregulated

genes. The number of upregulated genes was higher than that of

downregulated genes at all stages (Figure 4A). Only 1,894 genes were

differentially expressed at all stages (TF1−TF5; Figure 4B).

DEGs were subjected to GO functional annotation analysis to obtain

their functions in response to T. palmi feeding. GO enrichment analysis

showed that DEGs were more enriched in biological process (BP)

subcategories, including secondary metabolite biosynthesis

(GO:0044550), hormone biosynthesis (GO:0042446), fatty acid

biosynthetic process (GO:0006633), jasmonic acid metabolism

(GO:0009694), and lignin biosynthesis (GO:0009809). Among cellular

component (CC) subcategories, plastids (GO:0009536) and plant-type

cell wall (GO:0009505) were significantly enriched. Among molecular

function (MF) subcategories, protein phosphatase inhibitor activity

(GO:0004864), peroxidase activity (GO:0004601), and phenylalanine

4-monooxygenase activity (GO:0004505) were significantly

enriched (Figure 4C).

Pathway analysis ofDEGswas performedusing theKEGGdatabase

to explore the metabolic processes and cell signaling pathways involved

in genes associated with resistance to T. palmi. According to the KEGG

enrichment analysis results for DEGs at the five stages, amino acid

metabolic pathways such as a-linolenic acid metabolism, tryptophan

metabolism, and phenylalanine metabolism, and plant insect resistance

pathways including glutathione metabolism, flavonoid biosynthesis,

anthocyanin biosynthesis, cutin, cork, and wax biosynthesis, and
A B C

FIGURE 1

Determination of plant nutrients. (A) Amino acids content; (B) free fatty acids content; (C) soluble sugars content. Different letters indicate significant
differences in nutrient composition between healthy leaves and leaves after feeding by T. palmi (p <0.05).
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ascorbic acid and aldehyde acidmetabolism, were significantly enriched

after T. palmi feeding (Figure 4D).
3.6 Analysis of gene expression patterns
related to T. palmi resistance

Based on thefindings fromDEGs, andGOenrichment andKEGG

pathway analyses, 787 potential candidate genes related to T. palmi

resistance were subjected to differential expression analysis (Figure 5).

These genes could be divided into two expression patterns, among
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which Cluster 1 contains 679 genes. Its functions include the synthesis

of secondary substances such as flavonoids, alkaloids and diterpenes,

the synthesis of defense enzymes such as POD, PAL, PPO, PI, and

catalase, the signal transduction of defense hormones such as JA and

SA, MAPK signaling pathway-plant, wax synthesis, cell wall

thickening, and others, which are mainly upregulated after feeding

by T. palmi, and are more significant in the TF2 period. Cluster 2

contains 108 genes whose functions include amino acid metabolism,

starch and sucrose metabolism, nitrogen metabolism, photosynthesis,

carbohydrate metabolism, and others, which are mainly

downregulated after feeding by T. palmi.
A B

DC

FIGURE 3

Determination of plant defense enzymes. (A) Peroxidase (POD) activity; (B) phenylalanine ammonia lyase (PAL) activity; (C) polyphenol oxidase (PPO)
activity; (D) protease inhibitor (PI) activity. Different letters indicate significant differences in defense enzymes activities between healthy leaves and
leaves after feeding by T. palmi (p < 0.05).
A B C

FIGURE 2

Determination of plant secondary metabolites. (A) Tannins content; (B) flavonoids content; (C) total phenols content. Different letters indicate
significant differences in the content of secondary metabolites between healthy leaves and leaves after feeding by T. palmi (p < 0.05).
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3.7 Prediction of transcription factors and
their expression patterns

Transcription factors play a key role in the transcriptional

regulatory network related to plant induced defenses. In order to
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explore the transcription factors related to T. palmi resistance in

daylily, 698 transcription factors were identified from 78,987 DEGs,

which clustered into 31 transcription factors families (Figure 6A,

Supplementary Table 2). Approximately half of these genes are

closely related to biological and non-biotic stress responses,
A B

DC

FIGURE 4

Differentially expressed genes (DEGs) in Datong Huanghua exposed to Thrips palmi feeding. (A) Number of DEGs at different stages; (B) venn
diagram analysis of DEGs; (C) gene ontology (GO) enrichment analysis of DEGs; (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of DEGs.
TABLE 1 Transcriptome sequencing data statistics.

Sample Raw reads/bp Clean reads/bp Q20 (%) Q30 (%) Mapped Reads/bp

CK1 48,597,229 43,722,323 96.95 94.35 17,805,077 (81.45%)

CK2 50,907,231 42,588,800 96.90 94.25 17,268,027 (81.10%)

CK3 46,682,755 41,929,344 96.94 94.36 17,363,380 (82.82%)

CK4 49,858,899 41,816,134 96.91 94.30 17,136,180 (81.96%)

CK5 52,020,018 42,876,465 96.87 94.18 17,551,857 (81.86%)

TF1 48,261,914 43,261,865 97.01 94.40 17,520,186 (81.00%)

TF2 50,083,781 43,001,949 96.92 94.29 16,936,456 (78.76%)

TF3 47,431,502 43,260,224 97.00 94.52 17,586,256 (81.31%)

TF4 44,050,892 42,486,957 97.11 94.72 17,617,214 (82.94%)

TF5 45,904,987 41,947,648 97.51 95.15 17,024,435 (81.18%)
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including MYB, bHLH, AP2/ERF, WRKY, bZIP, and NAC. On the

basis of their expression patterns, these genes were divided into four

clusters (Figures 6B, C). The transcription factors in Cluster 1,

Cluster 2, and Cluster 3 were upregulated after feeding by T. palmi.

The transcription factors in Cluster 1 were mainly bHLH and

WRKY, and were significantly upregulated at the TF4 stage. The

transcription factors in Cluster 2, and Cluster 3 were mainly AP2/

ERF and MYB, Cluster 2 was significantly upregulated at the TF5

stage, and Cluster 3 was significantly upregulated at the TF2 stage.

The transcription factors in Cluster 4 were mainly bZIP and NAC,

which were downregulated compared with CK. Cluster 3 and

Cluster 1 included the highest numbers, with 107 and 104

upregulated transcription factors, respectively, indicating that they

play an important role in the resistance of daylily to T. palmi.
3.8 Co-expression network identification
and key module analysis

WGCNA can be used to identify co-expressed gene modules,

explore biological correlations between modules and target traits,

and mine core genes in the module network. WGCNA was applied

to the transcriptomic data to explore the relationships between

genes related to the content of amino acids, free fatty acids, soluble

sugars, tannins, flavonoids, and total phenols, and the activities of

POD, PAL, PPO, and PI in daylily. The soft threshold b = 16 was

determined by calculation (Figure 7A), and 24,665 genes were used

to construct a co-expression network with 16 co-expression

modules, among which the Turquoise module was the largest

with 7,743 genes, whereas the Midnight blue module was the

smallest with only 44 genes (Figures 7B, C). The Midnight blue

module contained genes strongly linked to flavonoids content, PAL
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activity, tannins content, PI activity, and PPO activity, with

correlation values of 0.572, 0.518, 0.515, 0.443, and 0.407,

respectively. The Salmon module included genes strongly linked

to soluble sugars content, with a correlation value of 0.647. The

Black module contained genes strongly linked to total phenols

content, with a correlation value of 0.502. The Blue module

included genes strongly linked to POD, with a correlation value

of 0.623. The Yellow module contained genes weakly linked to

amino acids content and free fatty acids content, with correlation

values of 0.221 and 0.205, respectively (Figure 7C). Four key

modules (Purple, Midnight blue, Blue, and Red) highly correlated

with the 10 phenotypes (amino acids, free fatty acids, soluble sugars,

tannins, flavonoids, total phenols, POD, PAL, PPO, and PI) were

selected, and key genes in the regulatory network were visualized

using Cytoscape 2.0 with weights >0.4 (Figure 7D). A total of 18

network hub genes were identified as key genes and were annotated

using Arabidopsis and Asparagus databases. Examples include

natural resistance-associated macrophage protein, cytochrome

P450, secondary metabolites biosynthesis, jasmonic/salicylic acid

mediated signaling pathway, protein serine/threonine kinase

activity, dienelactone biosynthetic, brassinosteroid biosynthetic,

endonuclease/exonuclease/phosphatase family, glutamyl

endopeptidase, haloacid dehalogenase-like hydrolase, and oxylipin

biosynthetic process (Table 2). TRINITY_DN6738_c0_g2 plays a

major regulatory role in the secondary material synthesis pathway,

which influences pest feeding; TRINITY_DN21120_c0_g1

promotes the synthesis of PIs and hinders the digestive function

of pests; TRINITY_DN167_c0_g1 regulates nutrient redistribution

by plant amino acid metabolism to reduce the nutrients available to

pests while ensuring normal plant growth; TRINITY_DN855_c0_g2

regulates defense hormone signaling, such as JA and SA, to activate

plant systemic resistance. In addition, three transcription factors were
FIGURE 5

Analysis of gene expression patterns related to T. palmi resistance.
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annota t ed , name ly MYB- l i ke DNA-b ind ing domain

(TRINITY_DN2391_c0_g1, TRINITY_DN3285_c0_g1), zinc-finger

of the FCS-type, C2-C2 (TRINITY_DN21050_c0_g2), and regulatory

p r o t e i n N P R 1 O S

(TRINITY_DN13045_c0_g1, TRINITY_DN855_c0_g2).
3.9 Verification using quantitative real-
time PCR

To confirm the reliability of the transcriptome data, seven genes

were selected for qRT-PCR verification. Comparison of

transcriptome sequencing data and qRT-PCR data indicated very

similar expression trends, with a Pearson correlation coefficient (R2)

of 0.838 (Figure 8; Supplementary Figure 1), demonstrating good

reliability for the RNA-seq data.
4 Discussion

The defenses initiated by plants after being attacked by

herbivorous insects are induced defenses. The process of inducing

insect resistance includes the activation of pest stress signals,

transmission of internal pest signals, expression of defense

compound-associated genes, and synthesis of defense substances,

culminating in insect resistance (Stout and Duffey, 1996). Nutrients,
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secondary metabolites, and defense enzymes play a vital role in the

physiological responses of plants to pest stress (War et al., 2013; Li

et al., 2022b). Studies have shown that low levels of soluble sugars,

amino acids, and other nutrients reduce the desirability for pests,

and plant resistance is stronger (Cao et al., 2018). Insect damage

induces plants to produce a large number of terpenoids, phenols,

nitrogen-containing compounds, and other secondary metabolites,

affecting insect feeding, growth, development, and reproduction

(Divekar et al., 2022). Changes in the activities of defense-related

enzymes occur during the production of secondary metabolites and

other anthelmintic-related substances. Plant defense enzymes are

upregulated in response to insect stress; they promote the synthesis

of quinones, lignin, phytoalexins, and other insect resistance

compounds in plants; hinder insect feeding; and maintain plant

metabolic balance (Li et al., 2022a). Plant tissues usually contain a

small amount of PIs. However, after being damaged by herbivorous

insects, the damage site induces a large number of PIs to be rapidly

transported throughput the plant, which blocks the protease activity

in the intestine of herbivorous insects, thereby inhibiting pest

population expansion and protecting the plant (Zhu-Salzman and

Zeng, 2015). In previous studies, transcriptome analysis of plants in

response to herbivorous insect feeding shown that DEGs were

significantly enriched in hormone synthesis pathways such as

biosynthesis of secondary metabolites (e.g., quinones and

flavonoids), phenylalanine metabolism, POD activity, a-linolenic
acid metabolism, and JA synthesis (Li et al., 2020).
A B

C

FIGURE 6

Expression of transcription factors. (A) Number of transcription factors; (B) transcription factors’ expression patterns; (C) expression pattern
clustering results.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1361276
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1361276
Insects feeding on plants induce changes in primary and

secondary metabolites, including sugars, amino acids, organic

acids, flavonoids, phenols and tannins. In the present study, after

feeding by T. palmi, the soluble sugars content in the leaves of

daylily was significantly lower than that of the CK group at five

timepoints. It may be that carbohydrates (mainly soluble sugars)

synthesized in the aboveground part may not only meet the needs of

plant growth, development, and defenses, but also be more

distributed in the root system to ensure its growth activity,

thereby improving the tolerance of the plant. Amino acid and

fatty acid contents were higher than those in CK after 1 and 3 days

of feeding by T. palmi and significantly lower than those in CK after

7 days. Amino acid and free fatty acid contents increased in the

early stage of infestation, which may be a compensatory resilience of

the plant to cope with pest infestation; however, when the

infestation increased to a certain degree, the plant’s own nutrient

supply was insufficient, and then there was a successive decrease in

the contents of nutrients, finally lower than those in CK. It suggests

that plants can become less attractive to pests through changes in

nutrient levels in the body, and that nutrients can also be involved

in defense responses to increase plant resistance to pests. Reduction

of foliage nutritive quality after herbivory could be an adaptation of

plants to insect attack, slowing down larval development and
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affecting negatively impacting insect fitness (Cornelissen and

Stiling, 2006). Analysis of five cotton cultivars revealed that aphid

and jassid infestation decreased each cultivar’s sugar and protein

content (Amin et al., 2016). Notably, a previous study reported that

the low sugar and protein content in tomato leaves is not conducive

to the growth and development of Helicoverpa armigera (Bisht

et al., 2022). Insect feeding induction is an important factor

triggering the plant defense system. The elicitors in insect oral

secretions enable plants to identify harmful signals, then initiate the

defense system to induce resistance (Alves-Silva and Del-Claro,

2016). For example, through the catalysis of various defense

enzymes such as POD, PAL, PPO, and PI, they induce the

accumulation of various toxic secondary metabolites such as

phenols, alkaloids, and terpenoids in plants, thereby directly or

indirectly improving insect resistance (Appu et al., 2021).

Nilaparvata lugens feeding increased the activities of POD, PAL,

and PPO in rice plants, which not only reduced the damage induced

by pest feeding, but also played an important role in the

accumulation of toxic metabolites (Li et al., 2023b). Pieris rapae

feeding causes damage to Phaseolus vulgaris L. leaves, which directly

induces high expression of PI genes, and plants exhibit induced

insect resistance (Xiang et al., 2018). In the present study, the

activities of defense enzymes such as POD, PAL, PPO, and PI, and
A B

DC

FIGURE 7

Weighted gene co-expression network analysis (WGCNA) of plant defense-related genes. (A) Scale-free network model index under different soft
thresholds; (B) gene clustering tree based on the topological dissimilarity matrix; (C) heatmap of correlations between modules and traits; (D) gene
co-expression network in the plant defense-related gene module; hub genes are colored pink.
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the contents of secondary metabolites such as tannins, flavonoids,

and total phenols in leaves of daylily following feeding by T. palmi

were significantly higher than those of CK. These findings are

consistent with previous reports showing that thrips damage

significantly increased the flavonoid, tannin, and lignin content in

alfalfa leaves (Wu et al., 2021), andH. armigera feeding significantly

increased the phenol content of pigeon pea (Kaur et al., 2014). In

our previous study, PI activity was significantly increased in plants

exposed to insect damage, resulting in the obstruction of insect

digestion and slow growth, and the tannins, flavonoids, and total

phenols content in daylily leaves were significantly higher in plants

exposed to insect damage, which were not conducive to

colonization by T. palmi (unpublished data).
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After plants are stressed by insect feeding, defense signaling

pathways are initiated, a series of physiological and biochemical

reactions are induced, and the expression of defense genes is

activated (Wu et al., 2010). In alfalfa damaged by thrips,

pathways related to carbohydrate metabolism, lipid metabolism,

MAPK signaling, hormone synthesis, and secondary metabolite

synthesis are activated to initiate a defense response to thrips

damage (Zhang et al., 2021). In the present study, the DEGs

identified in daylily exposed to T. palmi infestation were mainly

enriched in secondary metabolite synthesis, defense hormones

signal transduction, defense enzymes synthesis, MAPK signaling

pathway-plant, cell wall thickening, carbohydrate metabolism,

photosynthesis, and other insect-resistant pathways. The
TABLE 2 Hub genes and predicted functions.

Gene ID Homologous species/gene Gene function

TRINITY_DN3285_c0_g1
Telopea speciosissima
XP_043691361.1

MYB-like DNA-binding domain

TRINITY_DN1826_c0_g2
Dioscorea alata
KAH7671728.1

Oxidative phosphorylation; Haloacid dehalogenase-like hydrolase

TRINITY_DN6738_c0_g2
Asparagus officinalis
XP_020261199.1

Cytochrome P450; Secondary metabolites biosynthesis; Brassinosteroid biosynthetic

TRINITY_DN21120_c0_g1
Asparagus officinalis
XP_020272828.1

Protein serine/threonine kinase activity

TRINITY_DN20977_c0_g1
Elaeis guineensis
XP_010939670.1

Phosphate-induced protein

TRINITY_DN13045_c0_g1
Dendrobium catenatum
PKU61926.1

NPR1-interacting

TRINITY_DN11460_c1_g1
Ananas comosus
XP_020082461.1

AWPM-19-like membrane family protein

TRINITY_DN3711_c0_g1
Asparagus officinalis
XP_020244100.1

Natural resistance-associated macrophage protein

TRINITY_DN855_c0_g2
Castanea mollissima
KAF3962412.1

Jasmonic/Salicylic acid-mediated signaling pathway; Regulatory protein NPR1

TRINITY_DN11921_c0_g6
Dioscorea alata
KAH7666769.1

Endonuclease/Exonuclease/phosphatase family

TRINITY_DN21050_c0_g2
Asparagus officinalis
XP_020249010.1

Zinc-finger of the FCS-type, C2-C2

TRINITY_DN1499_c0_g1
Asparagus officinalis
XP_020268739.1

Transcript variant X3, mRNA

TRINITY_DN167_c0_g1
Asparagus officinalis
ONK67613.1

Glutamyl endopeptidase; Amino acid metabolism; Dienelactone biosynthetic

TRINITY_DN102454_c0_g1
Dendrobium nobile
KAI0496278.1

Cullin-3A-like

TRINITY_DN2391_c0_g1
Asparagus officinalis
XP_020250343.1

MYB-like DNA-binding domain

TRINITY_DN3101_c1_g3
Capsicum annuum
XP_016565577.1

Cysteine-rich receptor-like protein kinase 31;oxylipin biosynthetic process

TRINITY_DN3759_c0_g1
Dendrobium chrysotoxum
KAH0445920.1

Cytosolic large ribosomal subunit

TRINITY_DN5667_c0_g2
Quercus suber
XP_023907021.1

EXF-150 Actin
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transcription factors identifiedon thebasis ofDEGswereclustered into

theMYB, bHLH, AP2/ERF,WRKY, bZIP, and NAC families. Among

them, MYB, WRKY, bHLH, and AP2/ERF transcription factors were

significantly upregulated after feedingbyT. palmi, indicating that these

four families of transcription factors play an important role in induced

resistance to T. palmi defense in daylily. The aphid resistance-related

transcription factors in alfalfa were consistent with the thrips

resistance-associated transcription factors in daylily, but the MYB,

NAC, and AP2/ERF families were dominant in alfalfa responses to

aphids (Jacques et al., 2020). Furthermore, WGCNA and DEGs

analysis demonstrated that MYB-like DNA-binding domain

(TRINITY _ DN2391 _ c0 _ g1, TRINITY _ DN3285 _ c0 _ g1),

zinc-finger of the FCS-type C2-C2 (TRINITY _ DN21050 _ c0 _ g2),

and regulatory protein NPR1 (TRINITY _ DN13045 _ c0 _ g1,

TRINITY _ DN855 _ c0 _ g2) are closely related to the synthesis of

anti-stress compounds such as antioxidant enzymes, JA, SA and

secondary metabolites. These results suggest that these genes play an

important role in the defense responses of daylily to T. palmi.

In conclusion, the present findings elucidate the potential

mechanism and hub genes of the resistance of daylily to T. palmi.

The synergistic effects of nutrients, secondary metabolites, and

defense enzymes increased the resistance of daylily to T. palmi.

The mechanisms include reducing the nutrients available to T.

palmi, catalyzing defense enzymes to produce secondary

metabolites that are toxic to T. palmi, activating JA, SA, and

other defense hormones signal transduction pathways, improving

the resistance of daylily plants, and reducing the damage caused by

T. palmi. The results of this study expand our the understanding of

the mechanisms of insect resistance in daylily, and inform the

development of effective strategies to control T. palmi by inducing

exogenous factors to enhance insect resistance.
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FIGURE 8

Correlation point map between RNA-Seq and qRT-PCR
expression patterns.
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