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weeding: a review
Meiqi Xiang †, Minghao Qu †, Gang Wang*, Zhongyang Ma,
Xuegeng Chen, Zihao Zhou, Jiangtao Qi, Xiaomei Gao,
Hailan Li and Honglei Jia

College of Biological and Agricultural Engineering, Jilin University, Changchun, China
Weeding is a key link in agricultural production. Intelligent mechanical weeding is

recognized as environmentally friendly, and it profoundly alleviates labor

intensity compared with manual hand weeding. While intelligent mechanical

weeding can be implemented only when a large number of disciplines are

intersected and integrated. This article reviewed two important aspects of

intelligent mechanical weeding. The first one was detection technology for

crops and weeds. The contact sensors, non-contact sensors and machine

vision play pivotal roles in supporting crop detection, which are used for

guiding the movements of mechanical weeding executive parts. The second

one was mechanical weeding executive part, which include hoes, spring teeth,

fingers, brushes, swing and rotational executive parts, these parts were created to

adapt to different soil conditions and crop agronomy. It is a fact that intelligent

mechanical weeding is not widely applied yet, this review also analyzed the

related reasons. We found that compared with the biochemical sprayer,

intelligent mechanical weeding has two inevitable limitations: The higher

technology cost and lower working efficiency. And some conclusions were

commented objectively in the end.
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1 Introduction

There is a long history of weeds negatively affect agricultural

production, weeds compete against crops for nutrients, sunlight, and

water, which lowers crop production and quality (Nichols et al.,

2015). According to the publicly available data, prior to the

widespread application of herbicides, the average yearly loss of

production of Chinese crops, including grain, cotton, oil, and other

crops, caused by field weeds was 3,419,609 tons, 61,065 tons, 189,304

tons, and 515,256 tons, respectively (Ministry of Agriculture and

Rural Affairs of the PRC, 2024). Gharde et al. (2018) also calculated

an average number that the yield losses caused by weeds of four major

field crops: 15 to 66% in direct-seeded rice, 18 to 65% in maize, 50 to

76% in soybean, and 45 to 71% in groundnut. The annual weeding

cost as running into the $100 billion us dollars globally (Kraehmer

and Baur, 2013). Weeding is essential for both economic

development and agricultural productivity.

Manual weeding, biological weeding and chemical weeding have

been applied in agricultural production for a long time (Li et al.,

2022b). However, traditional manual weeding is labor-intensive,

which is not in line with the development of modern agriculture.

According to a study conducted in Zambia, the average labor

requirement is 50.25 person-days per hectare (Lee and Thierfelder,

2017). In the Netherlands, the mean input of manual weeding in

organic row crops is ca. 45 h·ha-1 for planted vegetables, but increases

to more than 175 h·ha-1 for direct-sown onion (Allium cepa L.) under

field conditions. Compared with manual weeding, biochemical

weeding has higher efficiency and better weeding performance,

which gradually becomes the most widely used weeding method

worldwide. Nonetheless, the constant-rate and indiscriminate

application of chemical weeding easily lead to weed resistance,

cause environmental contamination and public health problems

(Laursen et al., 2016; Wu et al., 2020; Villette et al., 2022). In the

20th century, due to intensification and automation, agricultural

mechanization has increased significantly over the years, and

mechanical weeding since no biochemical spray is applied, there

will be no herbicide residue, as a green method that protects the

environment has begun to be widely concerned (Bechar and

Vigneault, 2016). Currently, with the advent of desire for organic

agriculture and precision agriculture in tandem, mechanical weeding

poses a new challenge to intelligent development (Zhang et al., 2021).

Intelligent mechanical weeding can perfectly supplement the flaws of

manual weeding and biochemical weeding, which can profoundly

improve the crop quality.

Generally speaking, the intelligent mechanical weeding machine

is a robot, which can realize weeding like human beings, they can

distinguish weeds and crops, and locate their positions (Jin et al.,

2022). Intelligent mechanical weeding is an organic combination of

computer science, electronics, machinery and many other

disciplines. Seedling and weed detection are pre-technologies for

intelligent weeding, and then all kinds of WEP could play their

important roles. Mechanical weeding includes inter-row weeding

and intra-row weeding. Among them, the inter-row weeding is easy

to deal with because of the absence of interference from the crop

row; nevertheless, the intra-row weeding requires real-time crops
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avoidance to prevent damage. Therefore, how to achieve intra-row

weeding is a challenging research in mechanical weeding (Quan

et al., 2021). Usually, there are two major methods for intelligent

mechanical weeding. In one situation, the intelligent weeding

machine could detect the weeds and then remove them directly.

Another scenario is that the intelligent weeding machine detects the

crop, then avoids the crop and executes the weeding movements in

locations without crop seedlings. Since crops are almost

mechanically planted in rows nowadays, their positions are more

uniform then weeds, so the latter scenario is more cost-effective in

real applications. Such as the designs of Quan et al. (2022); Garford

(2023); Poulsen (2023b) and the German company K.U.L.T. Kress

(Kress, 2023) were all applied this designing principle.

In this paper, the research literature about intelligent weeding

was reviewed from the aspects of obtaining the positions of

seedlings and weeds and WEP. Their working efficiency, weeding

rate, seedling damage rate and limitations were also reviewed. The

purpose of this research is to merged cutting-edge detection

technologies for crop and weed, as well as the WEP applied for

all kinds of specific scenarios, it can provide the academic and

design reference for the researchers in the fields of intelligent

mechanical weeding, and it can also act as a quick start of the

new beginners.
2 Literature and analysis

2.1 Search strategy

For the purpose of getting a comprehensive and objective

assessment, the review examines the relevant literature as much as

available. Initially, the popular literature index database was utilized for

pertinent English-language works in this project, such as Google Scholar

(https://scholar.google.com/), Scopus (http://www.scopus.com), and

Web of Science (http://www.webofknowledge.com). The searching

approach is as follows: Topic = “mechanical* weed control*

intelligent” AND (Keywords added: intra-row weed control/robotic

weeding/weeding robot). The earliest literature of the preliminary

search was published in 1989, so the timespan = “1999-2022”,

document types = “article+review article+meeting+dissertation thesis”,

and 175 documents were obtained. Subsequently, Chinese literature was

also been searched in the largest Chinese knowledge resource database in

the world, CNKI (https://www.cnki.net). Topic = “mechanical* weed

control* intelligent”. The earliest literature of the preliminary search was

published in 2005, so the timespan = “2005-2022”, document types =

“article+dissertation thesis”, and here are only articles from the EI and

CSSCI are filtered in this article, and 121 documents were obtained. And

then, these works were manually inspected to determine whether can be

included or rejected. Specifically, the application scenarios had strict

requirements, the relevant researches aiming at seedling and weed

detection, as well as the specific weeding executive parts that served

for crop farmland were included. The researches serving for other

application scenarios were rejected, such as, the researches about lawn

weeding, orchard weeding were rejected. Finally, we had collected 244

articles in total.
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2.2 Research status analysis

2.2.1 Annual published volume
The annual number of related research on intelligent

mechanical weeding as shown in Figure 1. The number of

documents shows an overall upward trend, fluctuating slightly in

the middle. During the ten years from 2012 to 2022, the increase of

the English papers was about350%, and the increase of Chinese

papers was about 500%. After 2017, the number of publications has

increased significantly, indicating that the research on intelligent

mechanical weeding has gradually become a research hotspot.

2.2.2 Research institutions and the authors
According to the statistics analysis of the national occurrence, the

top five countries that the most frequently appear are China, the USA,

Germany, Denmark and Japan. All of these countries are with good

agricultural mechanization development and high degree of

industrial automation. The relevant volume reached 40, 27, 23, 17

and 13 posts respectively. The organizations and authors of intelligent

mechanical weeding are mainly concentrated in universities and

research institutes, especially universities (Table 1), among which

University Hohenheim, China Agricultural University, Aarhus

University and others are in the forefront. Institution and the

author map is as shown in Figure 2, it is visible that the research

topic node size is small but the connection strength and the network

density is higher, indicating that although the relevant research

belongs to an emerging topic, the volume of submissions is not

much, but the interaction between the research institutions or

authors is closer, there is more academic cooperation between each

other, and the research perspective is more concentrated.
3 Crop detection

The unique performance of intelligent mechanical weeding

equipment is the ability to distinguish weeds and crops precisely.

Mechanical weeding can be divided into two modes: one mode is
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identifying the crop, and another is identifying the weeds. As for the

former mode, the WEP continuously performs the weeding

operation and only performs the seedling avoidance operation if a

crop is identified. As for the latter mode, the WEP performs

removal action when weeds are detected. According to the

technologies of distinguishing weeds and crops, there are three

major subcategories, which are real-time detection technologies

based on proximity sensors, geographical information system (GIS)

and machine vision, respectively.
3.1 Detection technology based on
proximity sensors

Proximity sensors are reliable and affordable. There are two

types of proximity sensors which are physical contact sensors and

non-contact sensors. As for physical contact sensors, they use a

certain part to detect the crop position with the promise of no harm

to crops [Jia et al. (2018)]. For non-contact sensors, they can detect

crop positions without direct mechanical contact. Some examples of

non-contact sensors include Hall proximity switches, ultrasonic

sensors, laser sensors and X-ray sensors. One device mounted a Hall

proximity switch on a single depth-limiting wheel [Zhou et al.

(2018)]. The single depth-limiting wheel and the Hall proximity

switch can measure the distance between the seedling and the

depth-limiting wheel, and this information is sent to a micro-

controller, which calculates the relative position between the

weeding device and the target crop, and then a command is sent

to a servo motor. The servo motor drives the weeding knife to rotate

around the main rotating shaft, thus keeping the two weeding

knives separate to avoid seedlings.

Another type of non-contact proximity switch is the ultrasonic

sensor. Saber et al. (2015) developed a rotating pressure roller

weeding device, which used two spinning pressure rollers to uproot

weeds. The device has two ultrasonic sensors at the front and rear to

detect crop positions. When the front ultrasonic sensor identifies an

approaching crop plant, the weeding mechanism is quickly raised to

pass the plant, and once it passes the crop plant, the rear ultrasonic
FIGURE 1

Number of published articles related to intelligent mechanical weeding. Among them, the number of articles from 1999 to 2003 and 2004 was 0.
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sensor lowers the weeding part to the ground to work continuously.

Cordill and Grift (2011) used a laser sensor to detect maize stalks.

The laser sensor has a transmitter that emits four 3.5 mm-diameter

visible red laser beams and a receiver that picks them up. By

analyzing the pulse signals, the maize stalks can be distinguished

from other objects, thus the exact location of the maize plant can

be determined.

Haff et al. (2011) developed a tomato seedling detection

technology by X-rays, which projected an X-ray beam

perpendicular to the crop row and parallel to the soil surface

through a portable X-ray source. The main stem of the tomato

absorbs the energy of the X-rays, reducing the output voltage

(signal), thus the tomato’s main stem can be detected even when
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it is obscured by weeds or crop foliage. The detection signal is then

used for controlling a pair of intra-row mechanical weeding knives.

Proximity sensors are cost-effective, a mechanical travel switch

is merely about ¥10 (e.g., https://item.taobao.com, accessed on 25

Jan 2024; https://www.tmall.com, accessed on 25 Jan 2024), and

such configuration is really simple. They can be equipped in any

necessary position according to specific requirements. But

proximity sensors also have many limitations. Such as they can

not distinguish crops and weeds, they can only tell that obstacles

exist (Dou et al., 2024). If the weeds are higher than the mounting

position, the non-contact sensor will emit an error signal. If the

weeds also have strong enough stiffness, the contact sensor would

also let the WEP avoid them rather than consider them as weeds.
FIGURE 2

Institution and authors co-present knowledge graph. The size of the node indicates the number of publications, and the connection between the
nodes indicates the connection between the institutions or the authors.
TABLE 1 Top 10 research institutions and authors in the number of publications.

Institutions Authors

Name Post volume Name Post volume

1 University Hohenheim 12 Gerhards, Roland 5

2 China Agricultural University 12 Fennimore, Steven A 5

3 Aarhus University 9 Slaughter, David C 4

4 University of California System 9 Norremark, M 3

5 University of California Davis 9 Griepentrog, H W 3

6 University of Copenhagen 6 Perez-ruiz, M 3

7 Consejo Superior de Investigaciones Cientificas 5 Czymmek, Vitali 3

8 Anhui Agricultural University 4 Nielsen, J 3

9 University of Bonn 4 Quan, Longzhe 3

10 University of Sevilla 4 Melander, B 3
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3.2 Seedling pre-position based on GIS

Geographical Information System (GIS) is a comprehensive

discipline that covers the content and knowledge of geography,

cartography, mapping, management, remote sensing and computer

science (Zhang and Cao, 2019). Its specific application in agriculture

is depicted as follows, a GPS-equipped seeding machine will record

the location information of each seed when sowing and draw a Geo-

referenced seed map. The map can be used for determining the

seedling location during the later field management. For instance,

Norremark et al. (2008, 2012)developed an intra-row mechanical

weeding system, which based on the RTK-GPS positioning

technology to pre-locate the seed locations while sowing, then a

geo-referenced seedmap was created. The end-effector of the weeding

machine will carry out seedling avoidance and weeding actions in

accordance with the geo-referenced seed map during a subsequent

weeding operation. Similar investigations could also be found in the

studies of Perez-Ruiz et al. (2012).

Since GIS-based crop positioning detection is not impacted by

outside factors, such as weather and light, it offers a high level of

positioning accuracy. However, the technology is costly, and its

requirements from supporting machines are higher (Zhu et al.,

2009). Additionally, because the establishment of the map and the

weeding operation do not occur at the same time, this technology is

not applicable on-site, and new issues like crop loss and crop

displacement that happened at the weeding operation site cannot

be resolved quickly.
3.3 Machine vision technology

With the continuous rise of artificial intelligence technology,

machine vision technology has been widely used to identify and

locate crops and weeds. Machine vision technology can collect

dynamic images of crops and weeds in real-time, and obtain the

location information of seedlings and weeds at any moment (Sonka

et al., 2002). Machine vision technology can be divided into two

major divisions, which are image processing and deep learning.

However, image-processing-centered technologies usually need to

extract features such as color, morphology, texture and spatial

distribution of crops and weeds in the form of vectors. Then, they

select appropriate classifiers for detection and recognition, which are

easily affected by factors such as light, shadow and mechanical

vibration, making it difficult to meet the recognition needs of

smart weeding operations (Chen et al., 2015). With regards

to irregular-shaped object detection, image processing has a limited

applicable ability, thus some other technologies should be introduced

to expand the applicable ability. For example, post-processing

algorithm. Zheng et al. (2017) developed a post-processing

algorithm used for distinguishing maize seedlings from weeds after

image preprocessing. Color indices were used to develop a

classification model, and the nine optimal features were selected by

principal component analysis to reduce the effect of illumination.

Finally, support vector data description was used as a classifier to

differentiate the maize from the mixes of different weed species.

Results showed that the average accuracy was 92.14%.
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In order to compensate the flaw of merely utilizing image

processing, and based on shallow machine learning methods,

deep learning algorithms are proposed. Deep learning contains

multiple hidden layers of multilayer perceptrons, and more abstract

higher-level features are formed by combining lower-level features

to express attribute categories or features to discover the distributed

characteristics of the data (Marsland, 2015). Numerous deep

learning algorithms have been widely used in crop and weed

recognition studies, such as Artificial Neural Network (ANN),

Support Vector Machine (SVM), Naive Bayes model, Ada Boost

algorithm, Decision Tree, K-means, and so on (Sunil et al., 2022).

ANN has a working mechanism similar to the human brain

(McCulloch and Pitts, 1990), and SVM is a binary classification

model (Cortes and Vapnik, 1995). The combination of these two

technologies enabled the machine to distinguish weeds from sugar

beets. Results showed the overall classification accuracy of ANNwas

92.92%, where 92.50% of weeds were correctly classified

(Bakhshipour and Jafari, 2018). Higher precision was obtained

when the SVM was used as the classifier with an overall accuracy

of 95.00% and 93.33% of weeds were correctly classified. In terms of

sugar beet plant classification, the classification accuracies of ANN

and SVM were 93.33% and 96.67%, respectively (Bakhshipour and

Jafari, 2018). The AdaBoost algorithm has a nice performance in

crop and weed classification (Freund and Schapire, 1997). Through

multiple iterations and finally convergence, this algorithm can

generate a classifier for seedlings and weeds. As shown in

Figure 3, the AdaBoost algorithm adjusts the sample weights

through each iteration, based on previous classification results,

increasing the weight of incorrect classification and reducing the

weight of correct classification, which ensures the overall

classification accuracy in the end. Xu et al. (2020) investigated a

natural weed identification method based on RGB image feature

and depth feature fusion in wheat fields, the method extracted the

color, location, texture and depth features from the RGB and depth

images. The AdaBoost algorithm was used to synthesize and learn

multiple classifiers. According to the experimental results, weeds

were recognized with an accuracy of 88% during the tillering stage,

and the recognition accuracy was 81.08% during the jointing stage.

Convolutional Neural Network (CNN) is one of the representative

deep learning algorithms. The network structure of LeNet-5 which

was proposed by Lecun et al. (1998) was one of the earliest CNN and

the best version of the LeNet series. There are three convolutional

layers in the model, which can reduce the parameter number of the

whole network and learn the local feature information of the image. As

well as two subsampling layers, which can reduce the resolution, make

the features more abstract, and make the network converge more

easily. As for reducing the resolution, it can make the computational

speed faster and insensitive to offset and deformation. The

implementation of LeNet established the structure of CNN, which is

now the basis for a great number of neural networks (Patterson and

Gibson, 2018). CNN has also been used to investigate the

identification of crops and weeds (Ferreira et al., 2017; Teimouri

et al., 2018; Camargo et al., 2021). CNN usually has a better

performance combined with classifiers. For example, K-means is

one of the representative classifiers, it can calculate the distance

between each object and each seed cluster center, and assign each
frontiersin.org
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object to the nearest cluster center (Macqueen, 1967). Tang et al.

(2017) constructed a weed identification model based on K-means

feature learning combined with CNN to identify soybean seedlings

and their associated weeds. According to the experimental findings,

this approach obtained an accuracy of 92.89%, outperforming merely

CNN with random initialization by 1.82%.

Crop detection and semantic segmentation are two main

functions of deep learning algorithms when performing crop and

weed recognition tasks. Crop detection can be considered as a

combination of two tasks, target localization and classification, i.e.,

locating the position of an object in an image and identifying the class

to which the object belongs (Viola, 2001). YOLO is one of the faster

object detection models. In the YOLO algorithm, the core idea is to

predict the presence of target objects in each grid, assign the

corresponding class and confidence level by dividing the image

several times, and finally combine the predictive results in all grids

to select the final detection result, which is fast in execution and can

achieve highly efficient detection. In order to address the stability

problem of traditional image processing methods in the field complex

background environment, the YOLOv5m model which incorporates

a channel attention mechanism (SENet) was constructed by Li et al.

(2022a). The mAP of the SE-YOLOv5m model on the test set was

90.66% (IoU 0.5), indicating the effectiveness of the SE-YOLOv5m

model for detecting maize plants. The proposed SE-YOLOv5m

model was able to infer at 20.4 ms on a GPU on an image with the

size of 960 pixels × 540 pixels, which have the potential to be applied

to embedded terminals. Evaluation under different weed proportions

shows that different weed proportions in the field have no significant

influence on the detection accuracy of the maize plant detection

models. Of course, besides YOLO, some other deep learning models

are also widely used in crop seedling identification tasks, such as

Single Shot MultiBox Detector (SSD), Regions with CNN features (R-

CNN), Faster R-CNN, and so on. Peng et al. (2019) found that the

Faster R-CNN network by introducing a feature pyramid network in

the Region Proposal Network (RPN) got better results compared with

YOLOv3. Firstly, the model extracted image features by using a
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residual convolutional network, and then introduced a feature

pyramidal network in the RPN to generate the target candidate

frame, and finally realized the effective identification for cotton field

weeds in complex backgrounds.

Semantic segmentation understands images at pixel level. This

method identifies and classifies each pixel based on the semantic

information contained in the image. Semantic segmentation can

identify object locations and boundaries in images more accurately

than Crop detection (Zou et al., 2021; Kamath et al., 2022; Wang et

al., 2022; Ma et al., 2023). Fully Convolutional Networks (FCN) was

the first semantic segmentation model, which was invented by Long

et al. (2015), it segmented images by end-to-end training of CNN.

Lottes et al. (2018) achieved semantic segmentation of sugar beet

and weeds by using FCN with sequence information. The system

relies on FCN with an encoder-decoder structure and incorporates

spatial information by considering image sequences. Exploiting the

crop arrangement information that is observable from the image

sequences enables the system to robustly estimate pixel-wise

labeling into crop and weed. Ma et al. (2019) proposed a SegNet

semantic segmentation model based on FCN, which used VGG16

with fully-connected layers removed as the encoding part to achieve

feature extraction. The encoding part consists of five stages with 13

convolutional layers, each stage contains a convolutional layer and a

pooling layer, and the feature map size is halved after each stage.

The decoding part is symmetric to the encoding part and also

contains five stages with 13 convolutional layers, each stage contains

up-sampling layers and convolutional layers, and the feature map

size is doubled after each stage. All convolutional layers of the

model are followed by Batch Normalization (BN) layers and ReLU

activation functions, which allow the network to converge faster

and improve the nonlinear representation of the network. The

experiments showed that the method achieved high classification

accuracy in the segmentation of rice seedlings and weeds, with an

average accuracy of 92.7%.

Overall, machine vision technology has become the mainstream

technology compared with proximity sensors and GIS based pre-
FIGURE 3

Schematic diagram of AdaBoost algorithm. Where Di denotes the weight distribution of the training data before the start of the i-th iteration, the
trained classifier at the bottom is the weak classifier created in each iteration, the combined classifier is a strong classifier formed by combining all
weak classifiers.
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positioning technologies, it can accurately locate seedlings and grass

through techniques such as image processing and deep learning,

and laying a technical foundation for subsequent weeding

operations. However, machine vision technology requires high

technical support and maintenance, and factors such as lighting,

soil moisture, and background in farmland may affect the

recognition effect of machine vision technology. Therefore, it

needs to be adapted and adjusted in different environments.

Machine vision technology requires high research and equipment

costs, which may be difficult for some small farmers to afford. This

will be further discussed in depth in the following text.
4 Weeding executive parts

There is a metaphor, the detection technology for seedlings and

weeds is equivalent to the human eyes, the control system is

equivalent to the human brain, and the weeding executive parts

(WEP) are equivalent to the human hands. The weeding scenarios

can be divided into paddy fields and dry fields, so the WEP are

designed to meet their specific soil conditions.
4.1 Paddy fields WEP

Compared with dry fields, which are relatively fertile and

compacted, paddy fields have the characteristics of high moisture

content, low strength, and high viscosity due to long-term

immersion. In order to avoid weed tangling and soil adhesion, the

WEP for paddy fields are usually designed into a spring-tooth shape.

Tian (2022) demonstrates a paddy cage weeding device, the intra-row

WEP is a spring-tooth shape, and the weeding parts will comb the

paddy seedlings and weeds indiscriminately. Since the paddy is

stronger than the weeds during the tillering period, paddy roots are

deeper than the common weeds (Hance and Holly, 1991), so the

weeds can be removed and paddy seedlings will be retained. However,

although the damage to crops is relatively small, it still has harm to

crops. In order to realize non-contact intra-row weeding, Tao et al.

(2015) designed an intra-row WEP, which removes the intra-row

weeds by WEP rotating between two seedlings, the rotational

movement cuts the weed roots below the soil surface, as well as

stirs and flips the mud. The seedling avoidance function of the intra-

rowWEP is realized by manual adjustment, operators should control

the intra-row WEP to forward along with the row, and pay special

attention to letting the WEP enter and leave the intra-row spaces, so

as to avoid the contact between the WEP and seedlings.
4.2 Dry fields WEP

Dry fields have the characteristic of less soil adhesion compared

with paddy fields, so not only spring-tooth WEP, but also large-

contact-area WEP can be applied in dry fields. In terms of inter-row

weeding, hoes are widely applied, and fingers are also widely applied

in intra-row weeding. Besides the non-powered WEP above, some

powered intra-row WEP are also hotspots, such as brushes, swing

executive parts and rotational executive parts.
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a. Hoe WEP. The weeding mechanism of hoes is as follows,

while they are dragged by power machines and stretched

into the soil, the inter-row weeds will be removed along

with their proceeding. Generally speaking, weeding hoes

have two types, the sweep and the ducksfoot (Pullen, 1995;

Godwin et al., 2007). Usually, the hoe unit has its own depth

limit wheel and is attached to the main frame by a spring-

loaded parallel linkage, thus ensuring operation at an

accurate depth. The blade of sweep hoes is either an ‘L’ or

‘A’ shape and removes weeds by cutting their roots just

below the ground at a depth of about 25 mm (Pullen and

Cowell, 1997). The ducksfoot blade differs from the sweep

because of its raised profile, the raised profile has the

function of burying and mixing the weeds. The ducksfoot

blade is usually attached to a spring tine. Han (2011)

designed a horizontal disc weeding machine with a

ducksfoot actuator. It is driven by the ground wheel and

passively loosens the soil, breaks the soil consolidation in

the seedling row and removes weeds. It has a monomeric

profiling function and can get different cultivation depths

by adjusting the installation height of the fixed

shovel handle.

b. Spring-tooth WEP. The spring-tooth WEP can be added

to an inter-row cultivator to increase the function of intra-

row weeding. One kind of the spring-tooth WEP is

composited by spring-loaded steel rods on each side of

the row. The executive parts can undercut small weeds

between two maize seedlings. Since there exists stiffness

difference between maize seedlings and weeds, the spring

tines will separate when they encounter the maize

seedlings, rather than damage them. Han (2011)

invented a combined spring-tooth intra-row weeding

machine with six groups of spring teeth divided into two

sections at the front and rear. Each group of spring teeth

stretches vertically to a depth of 20 to 40 cm into the

ground due to gravity.

c. Finger-shaped WEP. The finger-shaped WEP is usually

composed of two discs with opposite directions, on which

finger-shaped steel teeth or finger-shaped rubbers are

installed (Godwin et al., 2007). While working, the disc

rotates under the soil friction force, causing the finger-

shaped structure to enter the soil and damage the weed

roots. Owing to the space between the two opposite discs

that can accommodate the diameter of crop seedlings, there

will not be seedling damage if the forward direction is

guided correctly.

d. Brush WEP. The brush WEP are composed of flexible

polypropylene brush discs that rotate powered or non-

powered at a depth of 20-30 mm into the soil surface

(Kouwenhoven, 1997; Godwin et al., 2007). The effect of the

brush WEP is to lift the weeds out of the soil, breaking the

stems and exposing the roots, leaving them vulnerable to

drying out. Brush discs can be easily assembled into units of

the desired width and spacing for different crops. Higher

rotational speed means better weeding performance, while

resulting in dust in dry conditions at the same time.
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e. Swing WEP. Swing WEP are designed to achieve seedling

avoidance and weeding by driving the executive parts in a

reciprocating motion, which can be divided into single and

double swing types depending on the components. The

automatic hoeing machine developed by Drimac (2023)

used a single-swing design, which removed weeds from the

intra-row by driving the weeding knife in a reciprocating

motion. WEP with double swing design are more common,

such as Home (2003); Perez-Ruiz et al. (2012); Perez-Ruiz

et al. (2014), Robovator intra-row WEP (Midtiby et al.,

2012; Melander et al., 2015; Poulsen, 2023a), ICWeeder

interplant WEP (Steketee, 2023), and Zhou et al. (2018) all

used this design principle. The intra-row weeding knives

have two working states. The inside tips of the blades

touched each other, which was defined as the ‘closed’

state. With the knives in the closed state, all weeds in the

central area of the crop row were killed. The other state was

defined as the ‘open’ state. By actuating the related switches

(e.g. pneumatic valve, solenoid valve, motor, etc.), each

linkage arm and its associated intra-row knife blade were

positioned away from the seedling, creating a knife-free,

uncultivated area centered around the seedling. With the

intra-row knives in the open state, all plants growing within

the central region were not killed, while all plants growing

outside the central region were killed.

f. Rotational WEP. Rotational WEP achieve seedling

avoidance and weeding by driving the WEP to rotate

periodically according to a certain pattern, which can be

classified into horizontal rotation and vertical rotation.

Quan et al. (2022) designed a disc weeding knife with

vertical rotation based on a wheeled mobile platform,

where each disc consisted of three weeding knives and the

gap between the weeding knives served as a space for crop

avoidance (Figure 4). A similar design could be found in the

publication of Gobor (2013). Intra-row WEP with a vertical

rotation design is more common, such as disc-hoe WEP

(Garford, 2023), and the cycloid hoe WEP (Norremark

et al., 2008, 2012), etc. Garford (2023) designed a disc-hoe

with an arc-shaped notch, this kind of WEP realized

weeding by rotating the notched disc knife, and the

seedling avoidance function is realized by a control

program, which lets the notch towards the seedling all the

time when a crop is detected. Since the notched disc knife is

stretched into the soil all the time, along with the forward of

the power machine, it achieves weeding around the crop.

The cycloid hoe has some tines, the tines will stretch into

the soil, and the root-soil complex of weeds will be brought

out. The cycloid hoe is suitable for inter-row weeding, and it

can also be applied in an intra-row weeding machine if

combined with a seedling-avoidance control strategy, which

allows the seedlings to pass through the tine gaps.
Through the above literature, it could be concluded that each

WEP was invented to meet some specific weeding scenarios, the

summary is shown in Table 2.
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5 Discussion

5.1 Comparison of various weed
control methods

In terms of working efficiency, intelligent weeding machinery has

significant advantages over manual weeding. First, it can work

continuously for a rather long time while ensuring the operational

quality. For example, the weeding robots created by the German

company K.U.L.T. Kress has an operating width of 1.5 m to 3.5 m, an

operating speed of up to 5 km·h-1 and an operating capacity of up to

1.5 ha·h-1 (Kress, 2023). AgBot II and Dahlia Robotics can realize

uninterrupted autonomous navigation and weeding by carrying

solar-power systems, operate an average of about 2.7 ha per day,

and their efficiency can be 5-8 times that of personal manual

operation (Garford, 2023; Kress, 2023; Robotics, 2023; Poulsen,

2023b). As for traction-type equipment, it can carry several

weeding units, so it can realize the simultaneous weeding operation

of multiple rows, and its efficiency can be further improved.

Completing the heavy and monotonous weeding work with

intelligent weeding machinery is not only a more effective method,

but also serves to optimize human resources and reduce labor costs.

Applying intelligent weeding machinery is important for promoting

agricultural modernization and technological progress.

Although intelligent weeding machinery can work continuously

with excellent quality for a long time, it is still impossible to perform

weeding operations at relative high speeds (average operating speed is

less than 3 km·h-1), and the production efficiency is far below chemical

weeding (average operation speed exceeding 12 km·h-1). The crop or

weed detection speed is a major factor that limiting the weeding

operating speed. For example, when applying a non-contact proximity

sensor for crop recognition and localization (as described in Section

2.2), since proximity sensors have a relative close detection range, the

actuators have limited error room in executing movements, as well as

these proximity sensors have a relative slower reaction frequency, so

they can properly work only when the weeding machine has a relative

slower forward speed, ensuring theWEP have sufficient response time

to execute the movement (Ye et al., 2020). For example, Cordill and

Grift (2011) used a laser sensor to detect maize seedlings, limited by

hardware and the algorithm, the weeding machine’s highest speed was

only 0.1 m·s-1. In terms of detecting seedlings based on machine vision

technology (as described in Section 2.3), since the detection accuracy is

negatively correlated with the forward speed, it is necessary to ensure

higher-quality detecting results by reducing the forward speed. In

terms of the weeding machine designed by Chang et al. (2021), its best

operation speed was only 0.15 m·s-1, and when the machine’s speed

exceeded 0.2 m·s-1, the operational quality decreased sharply, which

was reflected by the increased crop damage rate and reduced weeding

rate. Generally speaking, in order to achieve a higher weeding quality,

it has to sacrifice weeding efficiency.

WEP’s execution speed is another factor that affects the weeding

efficiency. As described in Section 3, different WEP (blades, brushes,

rollers, etc.) remove weeds in different ways (rotation, vibration, or

rolling), and the different actuation speeds determine weeding efficiency

directly. The longer the execution cycle, the slower weeding efficiency.
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In addition, mechanical weeding is not as effective as chemical

weeding currently. Barbas et al. (2020) conducted an experiment to

compare the weeding effectiveness between mechanical and

herbicide treatments on weed densities and biomass. The

experimental results showed that chemical methods were more

effective than mechanical methods in reducing weed densities

and biomass. Cao et al. (2023) reached similar conclusions,

they found that owing to the fact that mechanical weeding

may not completely remove the weed root system, it does not

address the underlying issues that lead to weed revival. Therefore,

there requires additional solutions in conjunction with mechanical

weeding, such as repeated applications of mechanical weeding or

using a combination of mechanical and biochemical methods, in
Frontiers in Plant Science 09
order to manage weed populations more effectively over a relative

long term.
5.2 Influential factors of weeding rate and
crop damage rate

Stable weeding rate and crop damage rate are key factors in the

application of intelligent mechanical weeding technology. The stable

weeding rate ensures a clean crop growing environment and avoids

weeds competition with crops for resources such as water, nutrients

and sunlight, which can improve the yield and quality of crops, and at

the same time, the damage caused by machinery should be avoided.
B

A

FIGURE 4

Structure schematic diagram of disc weeding knife with vertical rotation. (A) Front view. (B) Isometric view.
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However, in current practical applications, there is often a certain

correlation between the weeding rate and crop damage rate, and the

operation effect of the technique is vulnerable to the impact of the

operation scenario, soil conditions, cultivation agriculture, crop

characteristics or weather factors. It is a challenge to achieve a

stable stable weeding rate and crop damage rate.

Generally speaking, it is difficult for intelligent weeding

equipment to operate in paddy fields compared with dry fields, so

the performance in paddy fields is also suboptimal. Substantial

intelligent mechanical weeding-related literature showed that the

paddy weeding rate is generally around 80%, and the crop damage

rate is around 4%. While the dry field weeding rate is rather higher,

the weeding rate is generally between 90% to 95% and the crop

damage rate is between 2% to 6% (Bakker et al., 2011; Perez-Ruiz

et al., 2014; Quan et al., 2022). For example, in the study of Jia et al.

(2018), a seedling avoidable weeding device for inter-tillage maize

based on the proximity switch sensor showed an average weeding

rate of 94.7%. Similarly, as for the study of Chang et al. (2021), the

experimental results showed that when the forward speed was lower

than 0.15 m·s-1, the weeding rate was 92.6%.

Beyond the operational scenarios, in actual field operations, the

complex ground conditions are also important factors that affecting

the weeding performance of intelligent weeding equipment, such as

the complexity of the terrain, soil moisture and surface cleanliness.

The more complex the terrain, the lower the weeding performance,

because higher complex ground conditions let the weeding

equipment steer, turn around and do other operations more

frequently, which may decrease weeding rates and increase seedling

damage rates. A related study showed that soil moisture has a greater

impact on the operating effect (Rayhan et al., 2021). Mechanical

weeding works best in dry soil conditions because weeds can be

uprooted or cut off easily (Yan, 2021). And surface cleanliness has a

profound influence on the weeding rate and seedling damage rate as

well. Sun (2020) conducted a comparative experiment which showed

that the relative lower residue-remained plot increased the weeding
Frontiers in Plant Science 10
rate by 2.3% and 0.8% in terms of inter-row and intra-row weeding,

respectively. Similarly, when the field is filled with too many large soil

clods and rocks, etc., intelligent weeding equipment will lose its

operational efficiency, and the equipment’s life will also be affected

greatly (Hiesl and Benjamin, 2013).

The influence of environmental factors is also cannot be ignored.

Such as wind direction and intensity, illumination intensity and so on.

It always requires specific conditions for the best results (Jeon et al.,

2011; Hu et al., 2013). For example, strong winds can cause crops

sway, overlap or shade, further increasing the difficulty of positioning

(Chen et al., 2020). And in the research of Parra et al. (2020) and Yu

et al. (2019), they also hold the similar viewpoint that environmental

factors have an impact on the accuracy of identification. Even lighting

conditions can affect the appearance and visibility of the target object,

leading to issues like bright spots or shadows in the image, which affect

the detection of the target object (Jeon et al., 2011). Chang et al. (2021)

and his colleagues also verified this conclusion through collected

images under different lighting conditions. Therefore, in order to

ensure the stability and reliability of machine vision systems, it is

necessary to consider the lighting changes and take corresponding

measures, such as using light compensation algorithms, adjusting the

camera positions, regular calibration of the machine vision system, etc.

Furthermore, in order to be applied in the field scenario, special

equipment is required. For example, to deal with silt in paddy fields or

dust in dry fields, the image recognition equipment needs to have high

dust and waterproof grade.

Furthermore, due to the intelligent weeding equipment typically

relies on image recognition technology to identify weeds and

distinguish them from crops (Chang et al., 2021). However, this

technology may not be accurate enough to identify all types of

weeds, particularly if there are some visual similar characteristics

between the crops and the weed. For example, rice and gramineous

weeds (Figure 5) all have long and narrow leaves, and inadequate

morphological differences cause a hassle for current machine vision

technology to distinguish them (Jiang, 2019). Even for the same crop
TABLE 2 Weeding executive parts and their characteristics.

Types Advantages Disadvantages Applications

Hoes
(Pullen, 1995;
Godwin
et al., 2007)

More effective and high
operating speed

The risk of crop burial
Inter-row weeding for dry fields
and paddy fields

Spring-tooth
(Han, 2011)

Simple structure and easy to cooperate
with cultivators

Accurate row-controlling requirements
Intra-row weeding for dry fields
and paddy fields

Finger
(Godwin
et al., 2007)

Simple structure, light weight and
good intra-row weeding performance

Accurate row-controlling requirements Intra-row weeding for dry fields

Brush
(Kouwenhoven,
1997)

Unique ability of working in high
moisture soil

Power required
Relative high seedling damage rate
Dust in dry conditions

Omnibearing weeding before
seedling; Inter-row weeding for
dry fields

Swing type
(Drimac, 2023)

Simple to design and manufacture
High operational reliability

Power required
Greatly influenced by the forward speed and the planting space
Most of them need the assistance of detection control systems

Intra-row weeding for dry fields

Rotational type
(Garford, 2023)

Unique ability of working in nearly all
kinds of soil conditions

Power required
Most of them need the assistance of detection control systems

Intra-row weeding for dry fields
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species at different growth periods, the operation effect of intelligent

weeding machinery is not the same. This is because the crop’s

appearance will change all the time. Accordingly, the need for a full-

cycle sample collection method to avoid the influence of crop

appearance’s dynamic changing has been mentioned in numerous

studies. These tests confirmed that the detection accuracy of crops and

weeds is limited by the growth stages (Han, 2011; Jiang, 2019; Feng,

2020; Zhang, 2021).

In addition to the above non-machine influencing factors, the

WEP can also affect the weeding and seedling injury rates. In Han’s

study, two WEP were designed but the inter-row weeding

performance was quite different (Han, 2011). Under optimal

operating conditions, the horizontal disc inter-row weeding unit

(hoe type) achieved weeding rate of 73.1% and crop damage rate of

4.41%, while the assembly multi-finger intra-row weeding

mechanism were 87.6% and 2.73%, respectively.

But we are confident that with the development of science and

technology and manufacturing, the performance of intelligent

grinding equipment will become more and more stable, and the

good stability and balance between grinding rate and seed rate will

be achieved, so that intelligent mechanical grinding technology can

really play its advantages and intelligent development of agriculture.
5.3 Limitations of the application

Mechanical weeding technologies offer several advantages over

biochemical weeding methods, such as being environmentally
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friendly and reducing the risk of biochemical contamination. It is

an advanced and promising agricultural technology that has the

potential to revolutionize agricultural practices (Westwood et al.,

2018). However, there are also several limitations that must be taken

into consideration.
1. High technology costs. The higher initial investment and

ongoing maintenance costs directly limit its accessibility and

promotion in markets for smaller growers or operations with

limited resources (Cox et al., 1999). Intelligent mechanical

weeding methods, such as robotic weeding, can be expensive

to implement, requiring significant upfront funds in terms of

technology research and infrastructure development.

Moreover, the operations of intelligent weeding equipment

require a wide range of skills, such as mechanical operation,

electronic knowledge, crop field management and

maintenance skills to ensure normal operation and

operational quality. This means farms require more

professional labors, particularly for larger farms (Gazoulis

et al., 2021; Schlinker, 2021), which increases the labor

costs. Besides, intelligent mechanical weeding equipment is

the integration of multiple technologies, and due to the

compatibility among different equipment, more capital

investment is also needed to address the issue of technology

compatibility (Alba et al., 2020; Machleb et al., 2021; Hosseini

et al., 2022). During the research investigation, the authors

learned that Red Star Farm in Beian City, Heilongjiang

Province, China once spent ¥ 2.8 million to purchase an

intelligent maize weeding machine based on image

recognition in 2021 (As shown in Figure 6), and it also

needs to be equipped with professional operators and

maintenance technology, which further increases the

application cost (Bawden et al., 2017). Consequently, this

cost may be prohibitively high for small-scale farmers or those

with limited financial resources, meaning that this technology

may only be accessible to economical capable agribusinesses.

2. Employment reduction. The rapid development of intelligent

weeding technology has enabled agricultural equipment to

perform automatically and with high quality, but as intelligent

weeding equipment becomes more widely used, it may have

some impact on employment rates. First of all, traditional

farmers or agricultural workers need to invest a lot of time and

effort to perform weed removal, but the advent of intelligent

weeding technology can replace the human resources (Van

Der Weide et al., 2008; Kunz et al., 2018). Secondly, the

application of intelligent weeding technology will improve the

relevant skills, and the higher threshold will eliminate

traditional agricultural practitioners who cannot meet the

higher technical requirements, compressing the population

eligible for the position.

3. Production impact. Theoretically, intelligent mechanical

weeding can effectively control weed populations, promote

normal crop growth and improve yields. However, in

practice, the effect of intelligent mechanical weeding on

crop yield is still a controversial topic compared with

chemical weeding. Some relevant studies have shown that
FIGURE 5

The gramineous weed Echinochloa crus-galli (L.) P. Beauv (left) and
rice seedlings (right). They are highly similar in terms of appearance,
which poses great difficulties for image recognition technology to
distinguish them.
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compared with chemical weeding, intelligent mechanical

weeding could obviously increase the activities of

superoxide dismutase and peroxidase in the uppermost

leaves of rice plants, thus effectively increasing the crop

yield. Liu et al. (2023) verified the above conclusions by

three field experiments in 2020 and 2021. Three experimental

fields were set up in South China, the results showed that

mechanical weeding significantly increased the tiller numbers

by 7-23% and grain yield by 2-11% at the harvest maturity

stage compared with the chemical weeding. However, there

also existed the viewpoint that crop yields tended to decrease

as herbicide usage decreased (Fang et al., 2022). For example,

in a study conducted by Kunz et al. (2018), they mentioned

that compared with untreated control, there was a significant

increase in crop yield with either chemical weeding or

intelligent mechanical weeding treatment. However, when

comparing between the two treatments, mechanical weeding

yielded an average of 48% less than chemical weeding. Of

course, there are also numerous researchers who consider

that there is no significant difference between chemical and

mechanical weeding, including Pannacci and Tei (2014);

Fogliatto et al. (2019); Machleb et al. (2021); Jiao et al.

(2022) and so on. They explored the effects of both

treatments on sugar beet, maize, soybean, and snap bean

crops, respectively, and obtained similar conclusions,

indicating that the effects of mechanical weeding on yield

and quality were essentially the same compared with

conventional herbicides. So the impact of intelligent

weeding on crop yield is unclear and requires comparative

analysis based on specific situations and field measurements.
5.4 Future technology trends

Green and precise weed control is a crucial element in the

advancement of green agriculture and precision agriculture.
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According to the existing literature, the applications of intelligent

weeding machinery in field scenarios is shown in Table 3, they are

mainly divided by crops such as vegetables, maize and soybeans. In

addition, the table summarized the detection network model,

weeding execution parts, operation efficiency and weeding effect

evaluation in different crop-field application scenarios.

The statistics listed above indicate that intelligent machinery

weeding technology is still in proceeding. In order to advance the

real applications, we recommend that researchers need to invest

more efforts in the following areas:
1. Increase the universality of machines. To adapt to

different types of crops and soil conditions, it is necessary

to design and develop intelligent mechanical weed

control tools that are versatile. This can reduce the

investment cost for farmers and crop growers, and

improve the applicability of the technology in various

agricultural environments.

2. Improve the accuracy of machine visual detection models.

Intelligent mechanical weed control technology relies on

machine vision detection models to distinguish weeds from

crops. Continuous improvement of machine learning

algorithms and training datasets is needed to enhance the

accuracy and robustness of the detection models.

3. Increase the weeding efficiency. The operational efficiency

of weed control equipment is a key factor in promoting the

practical application of intelligent mechanical weed control

technology. By improving the working speed, stability, and

operability of weed control equipment, human resources

and operating time can be effectively reduced, thereby

enhancing the productivity of crops.

4. Increase the operational quality. Intelligent mechanical

weed control technology should not only meet the

quantity demands of crops, but also ensure the quality of

operations. Researchers need to continue improving the

weeding accuracy and operational precision of weed control

equipment to ensure minimal damage to crops and maximize

weed removal.

5. Reduce the technological costs. Currently, the cost of

intelligent mechanical weed control technology is relatively

high. In order to promote its widespread adoption, researchers

need to make efforts to reduce the cost of technology,

including research, production, and maintenance costs of

machinery and related technologies. This will make it easier

for farmers and crop growers to adopt intelligent mechanical

weed control technology and benefit from it.
6 Conclusions

Intelligent mechanical weeding is a complex work, which needs

the collaboration of Crop detection, weeding executive parts

movements and so on. Nowadays, mechanical sowing is widely

applied, which leads the crop positions to be uniform, so the Crop

detection of aiming crops is easier than that of aiming weeds. In

other words, precisely avoiding the crop seedlings and then
FIGURE 6

Intelligent mechanical weeding machine purchased by Red Star
Farm in Heilongjiang Province, China.
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executing weeding movements in the other areas is a better strategy

for completing mechanical weeding.

With respect to the crop detection, although proximity sensors

are cost-effective, they can not distinguish crops and weeds, GIS-

based seedling pre-positioning technology can not figure out onsite

issues such as crop loss or crop displacement. Thus, we deduced

that the machine vision technology will be the mainstream in the

future, and reducing environmental interference, improving

robustness and detection accuracy will always be the right

development directions. All kinds of mechanical WEP have their

own advantages in their special working scenarios, although some

crops could tolerate the indiscriminate weeding treatments during

some certain growing stages, the WEP which have the seedling

avoidable function would be more popular, owing to the special

protection mechanism.

Although intelligent mechanical weeding has some limitations

currently, nobody can deny that intelligent mechanical weeding has

so many advantages over biochemical and hand weeding. It is

inevitable that intelligent mechanical weeding will become a

mainstream weeding method in the future, the relevant

technologies and key components will have a flourishing

development, it is only a matter of time. However, to achieve

these developments, we proposed some suggestions as follows:
Fron
1. Research and development of equipment that suitable for

various crops or scenarios.

2. Precise detection of crops in complex field environments.

3. Creation of high-performance intelligent weeding machines.

4. Research of corresponding weeding execution parts.

5. Promote key technological innovations and reduce

technology costs.
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We insist that when the technology costs will be lowered, the

robust is improved in the near future, intelligent mechanical

weeding equipment will be widely used.
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TABLE 3 Statistics on the application status of the intelligent weeding machinery.

References
Crop
type

Detection method WEP Application/Performance

Jiang
et al. (2023)

lettuce
optimized SPH-YOLOv5x model
Accuracy = 95%

A dilution knife in the
vegetable diluter

Efficiency = 3.28 km/h
Weeding rate = 80.25%

Ye et al. (2023) Soybean
laser ranging sensor
Accuracy = 95%

A elastic Comb
Reciprocating a Soybean
Plant-to-Plant Seedling
Avoidance and
Weeding Device

Efficiency = 0.31 m/s
Weeding rate = 98.2%
Seedling injury rate = 1.69%

Visentin
et al. (2023)

lettuce
Deep Neural Network (ResNet18)
Accuracy = 98% (crop)
Accuracy = 98% (weed)

A gripper
Weeding rate = 85%
Seedling injury rate ≤5%

Quan
et al. (2022)

Maize
YOLOv3 network
Accuracy = 98.5% (maize)
Accuracy = 90.9% (weed)

A blade weeding knife
A wedge weeding knife
A plough-surface
weeding knife

Efficiency = 1.8km/h
Weeding rate = 85.91%
Seedling injury rate = 1.17%

Lottes
et al. (2017)

Carrot,
sugar
beet

A system that performs vegetation detection, local as well as
object-based feature extraction, random forest classification,
and smoothing through a Markov random field to obtain an
accurate estimate of crops and weeds.

A multi-propose field
robot by BOSCH
DeepField Robotics

Weeding rate = 93.86%

Astrand and
Baerveldt
(2002)

Sugar
beet

gray-level vision system and color-based vision system
Accuracy = 77% (Sugar beet) Accuracy = 87%(Weed)
Guidance Accuracy = ± 2 cm

rotating wheel that is
rotated perpendicular to
the row line.

When the distance between the plants
was about 17 cm, the robot was able to
recognize all the sugar beet plants and
the weeding tool worked well.
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