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Genetic analysis of cassava
brown streak disease root
necrosis using image analysis
and genome-wide
association studies
Leah Nandudu1,2*, Christopher Strock1, Alex Ogbonna1,
Robert Kawuki2 and Jean-Luc Jannink1,3

1School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University,
Ithaca, NY, United States, 2Root Crops Department, National Crops Resources Research Institute
(NaCRRI), Kampala, Uganda, 3US Department of Agriculture, Agricultural Research Service (USDA-
ARS), Ithaca, NY, United States
Cassava brown streak disease (CBSD) poses a substantial threat to food security.

To address this challenge, we used PlantCV to extract CBSD root necrosis image

traits from 320 clones, with an aim of identifying genomic regions through

genome-wide association studies (GWAS) and candidate genes. Results revealed

strong correlations among certain root necrosis image traits, such as necrotic

area fraction and necrotic width fraction, as well as between the convex hull area

of root necrosis and the percentage of necrosis. Low correlations were observed

between CBSD scores obtained from the 1-5 scoring method and all root

necrosis traits. Broad-sense heritability estimates of root necrosis image traits

ranged from low to moderate, with the highest estimate of 0.42 observed for the

percentage of necrosis, while narrow-sense heritability consistently remained

low, ranging from 0.03 to 0.22. Leveraging data from 30,750 SNPs obtained

through DArT genotyping, eight SNPs on chromosomes 1, 7, and 11 were

identified and associated with both the ellipse eccentricity of root necrosis and

the percentage of necrosis through GWAS. Candidate gene analysis in the

172.2kb region on the chromosome 1 revealed 24 potential genes with diverse

functions, including ubiquitin-protein ligase, DNA-binding transcription factors,

and RNA metabolism protein, among others. Despite our initial expectation that

image analysis objectivity would yield better heritability estimates and stronger

genomic associations than the 1-5 scoring method, the results were

unexpectedly lower. Further research is needed to comprehensively

understand the genetic basis of these traits and their relevance to cassava

breeding and disease management.
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Introduction

Cassava (Manihot esculenta Crantz) is a vital tropical food crop,

ranking third in caloric contribution after maize and rice. Its large

starchy roots and edible leaves serve as a primary food source for

more than 800 million people, primarily in sub-Saharan Africa

(Nassar & Ortiz, 2010).

Over the past 90 years, cassava production has faced escalating

threats from biotic and abiotic stresses (Tomlinson et al., 2018)

exacerbated by climate change (Jarvis et al., 2012). Cassava brown

streak disease (CBSD), ranked among the seven most serious threats

to world food security (Pennisi, 2010), stands as a significant biotic

challenge to cassava production, particularly in East, Central and

Southern Africa, with the potential to cause losses of up to 100% in

susceptible varieties (Hillocks et al., 2000; Hillocks & Jennings,

2003; Kaweesi et al., 2014). CBSD is caused by a positive sense

single-stranded RNA virus belonging to the genus Ipomovirus and

family Potyviridae (Winter et al., 2010; Walker et al., 2022). It is

caused by two distinct viruses: cassava brown streak virus (CBSV)

and Uganda cassava brown streak virus (UCBSV), both collectively

referred to as cassava brown streak viruses (CBSVs). Both viruses

are transmitted by whiteflies (Bemisa tabaci) in a semi-persistent

manner (Maruthi et al., 2005; Mero et al., 2021) and through the

movement of infected stem cuttings by farmers, which adds to the

complexity of controlling the disease. CBSD symptoms are

characterized by the initial emergence of leaf chlorosis along

secondary vein margins, which later develop into blotches.

Subsequently, brown streaks develop on the stem, accompanied

by radial root constrictions and root necrosis (Hillocks & Jennings,

2003; Alicai et al., 2007; Kaweesi et al., 2014). The most destructive

symptom is root necrosis, as it makes the cassava tubers unfit for

consumption by both humans and animals. Therefore, it is essential

to thoroughly investigate CBSD root necrosis to uncover the genetic

markers or genetic mechanisms that can be leveraged in breeding

for resistance. This can be comprehended by adopting root necrosis

image capture and analysis to complement the 1-5 visual severity

scores. This incorporation of root necrosis imaging could introduce

fresh opportunities for enriching the qualitative 1-5 scoring

approach with more precise quantitative analyses.

High-throughput phenotyping based on images holds

enormous promise in unraveling the genetic basis of root

necrosis. Image analysis enables the dissection of the genetic

architecture of root necrosis by harnessing valuable information

from variation in root necrosis expression patterns, which are often

challenging to characterize with the naked eye (Demidchik et al.,

2020). The effectiveness of image analysis for crop phenotyping has

been showcased in a variety of species, including beans (Kumar

et al., 2013; Sun et al., 2016), rice (Wu et al., 2019), potatoes

(Cassells et al., 1999; Siebring et al., 2019). Its success extends to the

study of diverse traits, ranging from plant architecture to

chlorophyll content (Yadav et al., 2010; Dutta Gupta et al., 2013;

Walter et al., 2015). Image analysis in plants has also been expanded

to multiple pathosystems, enabling the detection and quantification

of plant diseases (Sun et al., 2014; Elliott et al., 2022; Palma et al.,

2022; Shi et al., 2023). Success of image analysis relies on a diverse

range of image analysis tools, including Image J/Fuji (Schindelin
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et al., 2012, 2015, 2017), Brushlets (Meyer & Coifman, 1997),

PlantCV (Gehan et al., 2017), and many others. Plant Computer

Vision (PlantCV) is an open-source, high-throughput image

analysis tool that can be used to create customized workflows for

segmenting and measuring quantitative characteristics of plants

from images (Gehan et al., 2017). PlantCV Version 2.1 is a Python-

based package comprised of modular functions, which has

remarkable flexibility, usability, and functionality in processing

images from multiple platforms including red, green, and blue

(RGB), Near-infrared (NIR), PSII fluorescence, thermal, and

hyperspectral sensors. PlantCV has found application in the

phenotypic characterization of a diversity of plant species

including pennycress, Arabidopsis, wheat, teff, rice, common bean,

quinoa, and more (Castillo et al., 2022; Knapp et al., 2022; Griffiths

et al., 2023; Pierz et al., 2023), underscoring its significance as a

valuable tool for quantitative classification of plant phenotypes.

Substantial advancements in next-generation sequencing (NGS)

and statistical methodologies have opened new avenues for plant

breeders to use state-of-the-art tools and methods to adopt more

efficient strategies when developing improved cassava varieties

(Wolfe et al., 2016). CBSD root necrosis is a trait in cassava for

which the genetic architecture can be explored by leveraging DNA

markers spread throughout the entire cassava genome. Integration of

DNA markers has gained widespread acceptance in genome-wide

association studies (GWAS) and has proven invaluable in revealing

the extensive allelic diversity present within natural populations

(Wang et al., 2020; Xiao et al., 2022). As a result, GWAS has

enabled the identification of genomic regions or QTLs

(Quantitative Trait Loci) associated with desirable traits that have

been leveraged in implementing marker-assisted selection (MAS)

and/or genomic selection (Rabbi et al., 2022). Quantitative root

necrosis assessment using image analysis introduces novel traits

that provide precise measurements and capture spatial

characteristics overlooked by the traditional 1-5 scoring method,

which relies on human observation to quantify root necrosis. To

implement quantitative root necrosis assessments, Diversity Arrays

Technology (DArT) markers, which detect thousands of genetic loci

through microarray technology were used to conduct GWAS for root

necrosis. These markers rely on hybridization of genomic DNA

fragments to microarrays with probes for multiple loci, enabling

detection of genetic polymorphisms such as SNPs and indels (Deres

and Feyissa, 2023). Given that this marks the first attempt to

investigate the genetic architecture of CBSD root necrosis using

imaging. There is a necessity to identify genomic regions and

alleles linked to these traits, potentially resulting in the discovery of

novel genetic loci associated with CBSD resistance. This is because for

more than 9 decades, CBSD evaluations have primarily relied on a

qualitative 1-5 visual scoring scale (Tomlinson et al., 2018) which

hinders the precise quantitative assessment of CBSD root necrosis,

thus restricting the potential to reveal functional genomic insights.

These insights can play a crucial role in utilizing marker-assisted

selection or genomic selection to expedite genetic gains in breeding

for CBSD root necrosis resistance.

In this study, we used data from PlantCV and CBSD severity

scores to achieve four main objectives: (1) characterizing root

necrosis image traits through broad-sense and narrow-sense
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heritability, genotype by trait (GT), and genotype plus genotype-by-

environment interaction (GGE) biplots, (2) determining

phenotypic and genetic correlations, (3) identifying genomic

regions through univariate and multivariate GWAS analyses, and

(4) categorizing candidate genes associated with root necrosis image

traits and CBSD severity in the Cycle 2 population of

genomic selection.
Materials and methods

Plant material and field conditions

The Cycle (C2) population of genomic selection, which

consisted of 471 cassava clones used in this study, was developed

at the National Crops Resources Research Institute (NaCRRI),

Uganda (Nandudu et al., 2023). This population was developed

through a series of selection and hybridization cycles involving

clones selected based on genomic estimated breeding values

(GEBVs) derived from the initial cycle (C0) and the first cycle

(C1) populations. A comprehensive selection process identified 95

clones from the C1 population, which were then crossed, resulting

in the creation of a population of 6,570 seedlings. From this pool,

471 cassava clones for the C2 population were selected. This C2

population was then evaluated in two clonal evaluation trials

(CETs) that were planted in two locations (Namulonge and

Serere) in 2019/2020 and 2020/2021. CETs were set up using an

augmented incomplete block design, with three check varieties

(UG110017, TME204 and Mkumba) planted in each block. Each

plot consisted of ten plants, arranged in a single row with a spacing

of 1m *1m. Additionally, spreader rows of a CBSD susceptible clone
Frontiers in Plant Science 03
(TME 204) were planted around the experimental field and between

blocks to enhance disease pressure.
Root necrosis image acquisition

During the harvest, five cassava roots were randomly sampled

from each plant within a plot. The selection of only five roots was

done to ensure consistency across all plots, considering that the

number of cassava roots per plant varied. Subsequently, three

images were captured by slicing each root at proximal, middle,

and distal points as illustrated by (Ishmael and Emmanuel, 2020)

using a sharp knife. In the field, RGB images were captured using

Android tablets equipped with the Field Book App (Rife, 2016).

This approach was employed to ensure the integrity of both the

images and the associated data. 51,194 images (Figure 1) were

collected from 471 clones. Note that we expected more images, but

losses occurred due to natural calamities and poor sprouting of stem

cuttings, particularly at the Serere experimental site. All images have

been made accessible on Cassava base (Tecle et al., 2014; Morales

et al., 2022) in Joint Photographic Experts Group (JPEG) formats.
Root necrosis image processing

Root necrosis images underwent processing to measure root

necrotic lesion traits from the root discs.

Original image
Root necrosis images (Figure 2A and Supplementary Figure 1A)

were labeled with an identification code containing the clone’s
FIGURE 1

Examples of root necrosis manifestation as caused by cassava brown streak viruses in the C2 population.
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name, plot number, plant number, root number, and image position

on the root.

Segmentation of root disc cross-section and root
necrotic lesions

The original RGB image was transformed to HSV (Hue,

saturation, value) color space to segregate the root disc from the

background. To isolate necrotic lesions from the root disc, the RGB

image was converted using the CIELAB (L*a*b*) (lightness, green

magenta, blue, yellow) color space (Figure 2B). The L channel was

then isolated, and the background was removed using the selection

created in the root disc segmentation step. A default lower threshold

of 160 and an upper threshold of 255 were used to analyze the L

channel for the identification and selection of necrotic lesions.

Subsequently, morphological image processing operations were

employed in Python to eliminate background noise and fill holes
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in both the root cross-section and necrotic lesions, leaving them

both as single and solid objects (Figure 2C, Supplementary

Figure 1B, and source code).
Segmented image processing
Using PlantCV, various shape properties of both root cross-

section and necrotic area were measured including: (1) total root

cross-sectional area (Figure 2D), (2) convex hull area of the cross-

section, (3) cross-section perimeter, (4) cross-section width, (5)

cross-section height, (6) longest path across the centroid of the

cross-section, (7) cross-section eccentricity, (8) cross-section major

axis, and (9) cross-section minor axis. For the root cross section, we

refer to these shape properties as “root1” to “root9”. Shape

properties of the total necrotic regions were also measured

including: (1) total necrotic area, (2) convex hull necrotic area,

(3) necrotic perimeter, (4) necrotic width, (5) necrotic height, (6)

necrotic longest path across the centroid, (7) necrotic ellipse

eccentricity, (8) necrotic ellipse major axis, and (9) necrotic

ellipse minor axis. For the necrotic area, we refer to these shape

properties as “necro1” to “necro9”. All quantified traits were

documented in pixels and subsequently normalized to those of

the root disc, as outlined in Table 1. Only normalized traits were

employed for subsequent analyses.
Phenotyping CBSD using the 1-5
scoring method

Disease severity at 3, 6 and 12 MAP were measured with the 1-5

visual scoring scale (Legg and Thresh, 1998). CBSD foliar severities

were determined based on symptom expression on the leaves and

stems for each plant in a plot. A score of 1 denoted no symptoms; 2

slight foliar chlorotic leaf mottling with no stem lesions; 3 foliar

chlorotic leaf mottling and blotches with mild stem lesions, but no

die back; 4 foliar chlorotic leaf mottling and blotches with

pronounced stem lesions, but no die back; and 5 defoliation with

stem lesions and dieback. Root severity scores were ascertained by

visually evaluating the ratio of necrotic lesions to the total area of

cross-sectioned root discs obtained from five roots per plant within

a plot. In the root severity scoring, a score of 1 indicated absence of

necrosis, 2 represented less than 5% necrotic lesions; 3 denoted 6 –

10% necrotic lesions; 4 signified 11 – 25% necrotic lesions and mild

root constriction; while 5 denoted >25% necrotic lesions with severe

root constriction.
DArTseq genotyping

Of the 471 clones in the CET, 320 were chosen at random for

genotyping. For each clone, two young top leaves were collected,

folded, and punched using a 5mm hand puncher before being

placed in 96-well plates. Subsequently, DNA extraction,

Genotyping-by-Sequencing, and SNP calling were performed for

each sample using the DArTseq genotyping platform (https://

www.diversityarrays.com/technology-and-resources/dartreseq/).
A

B

D

C

FIGURE 2

Schematic of root disc processing steps; (A) original image;
(B) segmentation of root cross section using L channel from the
CIELAB (L*a*b*) (lightness, green magenta, blue yellow) color space;
(C) morphological image processing; (D) measure of total root
cross-section.
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28,434 markers were identified through DArTseq, and these were

combined with an additional set of GBS-imputed genotypic data for

the same lines (Marnin Wolfe, unpublished data) resulting in a

dataset containing 51,860 SNPs. The integration of both marker

datasets improved SNP coverage. To enhance the association power

and address potential sequencing errors, an additional filtering step

was applied to the combined marker dataset. Genotypes with more

than 10% missing data and SNPs with over 5% missing data or

minor allele frequency below 5% were removed. After filtering, a

total of 30,750 SNP markers were obtained and used for

downstream analyses.
Statistical analyses

Descriptive statistical measures describing root
necrosis image traits

The root necrosis image data displayed significant skewness and

non-normal distributions. To address this, most traits underwent

natural logarithm transformation, except for solidity of necrosis,

and necrotic ellipse eccentricity, which remained unchanged. Also,

to visualize the relationships among clones in the C2 population

and evaluate their performance across the two environments, the

dataset containing root necrosis image traits underwent analysis

using both genotype by trait (GT) and genotype plus genotype-

versus-environment interaction (GGE) biplot analyses. GT and

GGE analyses were executed via the gtb and gge functions

respectively within the R package metan (Olivoto and Lúcio,

2020). These functions used the first two principal components

(PC) extracted through singular value decomposition (SVD) to

partition the standardized genotype by trait and genotype by

environment tables, yielding eigenvalues for genotypes, traits,
Frontiers in Plant Science 05
environments, and singular values. In the biplot, the cosine of the

angle between the vectors of two traits approximated the Pearson

correlation with an angle less than 90° indicating a positive

correlation, greater than 90° indicating a negative correlation and

90° indicating a zero correlation (Ma et al., 2004; Yan and Frégeau-

Reid, 2018). Descriptive statistics of mean, standard deviation and

variance were also calculated using base functions in R.
Phenotypic and genetic correlations
Phenotypic and genetic correlations were calculated for both

CBSD root necrosis image traits and severity scores from the 1-5

visual scoring scale. These were computed using log-transformed

phenotypic values and deregressed Best linear unbiased predictions

(BLUPs). Correlation analyses were performed using the cor

function in the R package (R Development Core Team, 2016),

and visualization of the correlation matrices was done using the

‘corrplot’ R package (Wei and Simko, 2017).
Broad-sense and narrow-sense heritability
A standard linear mixed effects model was used to partition

variance components using the lme4 package in R (R Development

Core Team, 2016) to determine broad-sense heritability.

A mixed linear model for the observed root necrosis image traits

was fitted.

y=Xb+Zcc+ZbB+Zpp+Znn+Zrr+ϵ

where y represents the vector of phenotypic data related to root

necrosis image traits, while X denotes an n×q known design matrix

encompassing fixed effects for location, year, checks, and image

number. The vector b represents the coefficients associated with

these fixed effects.
TABLE 1 Characterization and phenotypic variation of CBSD root necrosis traits in the C2 population.

Trait
Name

Acronyms Trait description Mean and
standard
deviation

Variance Broad-
sense
heritability

Narrow-
sense
heritability

1 Solidity
of necrosis

SN Ratio of area of root necrosis to the convex hull area of
root necrosis. SN = necro1/necro2.

0.29 ± 0.28 0.08 0.16 0.03

2 Convex hull
area of
root
necrosis

CHAN Area of the smallest convex polygon containing necrotic
points. CHAN = necro2/root1.

3.03 ± 0.27 0.08 0.14 0.22

3 Ellipse
eccentricity
of
root
necrosis

EEN Ratio of the distance of the focus from the center of the
ellipse of the necrotic lesion and the distance of one end
of the ellipse from the center. EEN = necro7.

0.79 ± 0.17 0.03 0.27 0.09

4 Percentage
of necrosis

NECRO Percentage area of the total root cross section that is
necrotic. NECRO = necro1/root1.

0.69 ± 1.28 1.65 0.42 0.15

5 Necrotic
area fraction

NAF Ratio of the entire region of the root cross section
affected by necrosis to Area of the smallest convex
polygon containing necrotic points. NAF = necro2/root1.

-2.15 ± 1.80 3.25 0.23 0.17

6 Necrotic
width
fraction

NWF Ratio of the widest part of the entire necrotic area to the
width of the widest part of the root cross-section. NWF
= necro4/root4.

-0.77 ± 0.98 0.95 0.21 0.13
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Zc, Zb, Zp, Zn and Zr are known design matrices of random

effects clone ID, block effects, plot ID, plant ID, and root ID with

distributions of c ~ N (0, Isc2), B ~ N (0, IsB2), p ~ N (0, Isp2), n ~ N

(0, Isn2), and r ~ N (0, Isr2). ϵ is the residual with a distribution of ϵ
~N (0, Ise2).

Broad-sense heritability was determined using H2 = s c
2 / [s c

2

+ sP
2/nP + sN2/nN + sR2/nR + s ϵ

2/nI] Where sc2 is the genotypic
variance, sP2 plot variance, sN

2 variance of plants within a plot, sR2

variance of roots within a plant, and s ϵ
2 is the residual variance.

The values nP, nN, nR and nI are the harmonic means the number of

plots per clone, number of plants per clone, number of roots per

clone, and number of images per clone. Best linear unbiased

predictions (BLUPs) were obtained from the mixed linear model,

and these were deregressed using the following equation:

deregressed BLUP =
BLUP

1 − PEV
s2
c

Where PEV was the prediction error variance of the BLUP and

sc 2 variances of the genotypes (Garrick et al., 2009). Deregressed

BLUPs were used for downstream analyses.

Narrow sense heritability was estimated using the function

emmreml in the EMMREML package (Akdemir & Okeke, 2015)

in R.
Genome-wide association studies

Deregressed BLUPs of the 320 clones with genomic data for

both root necrosis image traits and CBSD severity scores from the

1-5 scoring method (de los Campos et al., 2013) were used to

perform univariate and multivariate GWAS using GEMMA version

0.98.4 with default parameters (Zhou, 2012; Zhou and Stephens,

2014). Univariate GWAS analysis was based on model; Y =Wa+ xb
+U +ℇ, U ~MVNn (0, lt-1K), ℇ ~MVNn(0, t-1In) where Y is an n-

vector of CBSD root necrosis image traits and severity scores from

the 1-5 scoring method; W is an n x c matrix of principal

components as covariates including a column of 1s; a is a c-

vector of the corresponding coefficients including the intercept; x

is an n-vector of marker genotypes; b is the effect size of the marker;

U is an n-vector of random effects; ℇ is an n-vector of errors; t-1 is
the variance of the residual errors; l is the ratio between the random
effect and error variances; K is a known n × n relatedness matrix and

In is an n x n identity matrix. Using the prcomp function in R,

principal components (PCs) were determined, and four (PCs) these

were used to account for population structure.

Multivariate GWAS analysis was based on the model Y =WA +

xbt + U + ℇ, U ∼ MNn×d(0, K, Vg), ℇ ∼ MNn×d(0, In×n, Ve) where

Y is an n x d matrix of d CBSD root necrosis image traits

phenotypes for n individuals; W is an n×c matrix of principal

components as covariates including a column of 1s; A is a c by d

matrix of the corresponding coefficients including the intercept; x is

an n-vector of marker genotypes; b is a d vector of marker effect

sizes for the d phenotypes; U is an n by d matrix of random effects; ℇ
is an n by d matrix of errors; K is a known n by n relatedness matrix,

In×n is a n by n identity matrix, Vg is a d by d symmetric matrix of

genetic variance components, Ve is a d by d symmetric matrix of
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environmental variance components and MNn×d(0, V1, V2) denotes

the n×d matrix normal distribution with mean 0, row covariance

matrix V1 (n by n), and column covariance matrix V2 (d by d).

Given the extensive number of traits in this study and our aim to

enhance the likelihood of identifying shared candidate genes, we

performed multivariate GWAS only on traits exhibiting high

phenotypic and genotypic correlations. These trait combinations

included: (1) convex hull area of root necrosis, percentage of

necrosis, necrotic area fraction and necrotic width fraction, (2)

necrotic area fraction and necrotic width fraction, (3) ellipse

eccentricity of root necrosis, percentage of necrosis, necrotic area

fraction and necrotic width fraction, (4) percentage of necrosis,

necrotic area fraction and necrotic width fraction, (5) percentage of

necrosis, necrotic area fraction and CBSD severity at 12 months

after planting (CBSDS12). Despite the absence of strong phenotypic

correlations, we conducted multivariate GWAS analyses for the

necrosis percentage and CBSD severity at 3 months after planting

(CBSDS3) as well as at 6 months after planting (CBSDS6).

Additionally, a multivariate GWAS analysis was performed for

the necrosis percentage and CBSD severity at 12 months after

planting (CBSDS12). Visualization of Manhattan and quantile-

quantile plots was carried out using the “qqman” R package

(Turner and Turner, 2021). To account for multiple testing, the

significance threshold was set at a corrected p-value of 0.05 divided

by the number of markers on each chromosome, as described by Li

and Ji (2005).
Candidate gene analysis

Significant SNP markers linked to both root necrosis image

traits and CBSD severity scores were used to determine genomic

regions that were characterized for candidate genes. Gene positions

were established using M. esculenta genome version 6, and any

genes that overlapped with these significant genomic regions were

classified as candidate genes. BEDTools were employed to detect

potential genes regions where the significant SNPs were identified

(Quinlan & Hall, 2010). Identified genes were characterized for gene

ontology including molecular and biological functioning using

PANTHER version 17.0 (Mi et al., 2019) and M. esculenta

genome version 6 gene ontology database in Phytozome

(Goodstein et al., 2012).
Results

Characterization of CBSD root necrosis
image traits in the C2 population

To visualize the relationships among genotypes, traits, and

environments associated to both root necrosis image traits and

the 1-5 visual severity scores, GT and GGE biplots were generated.

Specifically, the convex hull area of root necrosis, necrotic area

fraction, necrotic width fraction, and the percentage of necrosis

exhibited strong positive correlations among themselves.

Conversely, all these root necrosis image traits exhibited negative
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correlations with both the ellipse eccentricity of root necrosis and

the solidity of necrosis. Interestingly, the root necrosis image traits,

including convex hull area of root necrosis, necrotic area fraction,

necrotic width fraction, and the percentage of necrosis,

demonstrated weak but positive correlations with CBSDs3,

CBSDs6, and CBSDs12, as shown in Figure 3. In contrast, ellipse

eccentricity of root necrosis and the solidity of necrosis exhibited

strong negative correlations. The GGE biplots revealed a positive

correlation between datasets from the Namulonge experimental site

for both years and the Serere experimental site in the 2020/2021

season. The dataset from the Serere experimental site in the 2019/

2020 season was not correlated with all the other experimental sites.

Moreover, within the C2 population, most clones displayed stability

across different environments, with only a few exceptions. Notably,

outliers such as UG16F002P004 and UG16F291P132 were observed

in the Namulonge experimental site for both years, while

clones UG16F07P001, UG16F295P041, UG16FF294P095,

UG16F296P025, UG16F082P001, and UG16F319P029 exhibited

unique characteristics in the Serere 2019/2020 experimental site.

Broad-sense heritability estimates for root necrosis image traits

consistently spanned from low to moderate values (ranging between

0.14 and 0.42). Among these traits, the percentage of necrosis

displayed the highest heritability estimate at 0.42, whereas the

solidity of necrosis and the convex hull area of root necrosis

exhibited the lowest broad-sense heritability estimates, measuring

0.16 and 0.14, respectively (Table 1). Regarding the CBSD severity

scores derived from the 1-5 scoring method, the broad-sense

heritability estimates stood at 0.73, 0.74, and 0.71 for CBSDs3,

CBSDs6, and CBSDs12, respectively. Narrow-sense heritability

estimates consistently remained low, ranging from 0.03 to 0.22.

Among these estimates, the convex hull area of root necrosis

exhibited the highest value at 0.22, while the solidity of necrosis

and ellipse eccentricity of root necrosis displayed the lowest

narrow-sense heritability estimates, measuring 0.03 and 0.09,

respectively (Table 1). The percentage of necrosis was estimated
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at 0.15, whereas necrotic area fraction and necrotic width fraction

had estimates of 0.17 and 0.13, respectively. In the context of CBSD

severity scores obtained from the 1-5 scoring method, the narrow-

sense heritability estimates were 0.34, 0.42, and 0.50 for CBSDs3,

CBSDs6, and CBSDs12, respectively.
Phenotypic and genetic correlations
between root necrosis image traits and
severity scores from 1-5 scoring method

The analysis revealed several significant correlations among

root necrosis image traits, as shown in Figure 4. Notably, the

necrotic area fraction and necrotic width fraction exhibited the

strongest correlation at 0.85. Additionally, the convex hull area of

root necrosis correlated positively with the percentage of necrosis (r

= 0.53), necrotic area fraction (r = 0.50), and necrotic width fraction

(r = 0.40). A strong correlation was also found between the

percentage of necrosis and both necrotic area fraction (r = 0.79)

and necrotic width fraction (r = 0.55). Low but positive phenotypic

correlations were observed between the solidity of necrosis and the

ellipse eccentricity of root necrosis (r = 0.07). In contrast, negative

correlations ranged from -0.25 to -0.81 among solidity of necrosis,

convex hull area of root necrosis, percentage of necrosis, necrotic

area fraction, and necrotic width fraction. Moreover, ellipse

eccentricity of root necrosis showed negative correlations with

convex hull area of root necrosis, percentage of necrosis, and

necrotic area fraction. The correlation coefficients between root

necrosis image traits and severity scores from the 1-5 scoring

method obtained at 3, 6, and 12 months after planting (MAP)

were relatively low, ranging from -0.08 to 0.31. Notably, positive but

modest correlation coefficients (ranging from -0.08 to 0.26) were

observed between CBSDs3 and CBSDs6 and all root necrosis image

traits. In the case of CBSDs12, correlation coefficients with root

necrosis traits ranged from -0.10 to 0.31, with the percentage of
FIGURE 3

Genotype by trait (GT) and genotypic main effect plus genotype by environment interaction (GGE) biplots based on transformed root necrosis image
data. GT trait codes are SD, Solidity of necrosis; CHAN, Convex hull area of root necrosis; EEN, Ellipse eccentricity of root necrosis; NECRO,
Percentage of necrosis; NAF, Necrotic area fraction; NWF, Necrotic width fraction; CBSDs3, CBSD foliar severity at 3 MAP; CBSDs6, CBSD foliar
severity at 6; CBSDs12, CBSD root severity at 12 MAP while GGE biplot shows the location-year scaled.
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necrosis demonstrating the highest correlation coefficient of 0.31.

Interestingly, ellipse eccentricity of root necrosis consistently

exhibited negative correlation coefficients with all the CBSD

severity scores. Furthermore, correlations were evident within the

CBSD severity scores themselves, including a strong correlation of r

= 0.88 between CBSDs3 and CBSDs6. Additionally, moderately

positive correlations (r = 0.58 and 0.55) were identified between
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CBSDs12 and CBSDs3, as well as between CBSDs12 and

CBSDs6, respectively.

The genotypic correlations mirrored the pattern observed in the

phenotypic correlations, as illustrated in Figure 5. Notably, a high

genetic correlation emerged between necrotic area fraction and

necrotic width fraction (r = 0.85), along with a similarly strong

association between the percentage of necrosis and necrotic area
FIGURE 5

Genetic correlation coefficients among root necrosis imaging traits and visual scores from the 1-5 scoring method. Frequency distribution
histograms are shown on the diagonal. SD, Solidity of necrosis; CHAN, Convex hull area of root necrosis; EEN, Ellipse eccentricity of root necrosis;
NECRO, Percentage of necrosis; NAF, Necrotic area fraction; NWF, Necrotic width fraction; CBSDs3, CBSD foliar severity at 3 MAP; CBSDs6, CBSD
foliar severity at 6 MAP; CBSDs12, CBSD root severity at 12 MAP. Significant thresholds: *, P<0.05; **, P<0.01; ***, P<0.001.
FIGURE 4

Phenotypic correlation coefficients among root necrosis imaging traits and visual scores from the 1-5 scoring method. Frequency distribution
histograms are shown on the diagonal. SD, Solidity of necrosis; CHAN, Convex hull area of root necrosis; EEN, Ellipse eccentricity of root necrosis;
NECRO, Percentage of necrosis; NAF, Necrotic area fraction; NWF, Necrotic width fraction; CBSDs3, CBSD foliar severity at 3 MAP; CBSDs6, CBSD
foliar severity at 6MAP; CBSDs12, CBSD root severity at 12 MAP. Significant thresholds: *, P<0.05; **, P<0.01; ***, P<0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1360729
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nandudu et al. 10.3389/fpls.2024.1360729
fraction (r = 0.81). Moderate yet positive genetic correlations were

observed between the convex area of root necrosis and the

percentage of necrosis (r = 0.52), necrotic area fraction (r = 0.61),

and necrotic width fraction (r = 0.56). Conversely, negative genetic

correlations ranging from -0.03 to -0.85 were consistently observed

between the solidity of necrosis and the eccentricity of root necrosis,

as well as with all other root necrosis traits. In terms of genetic

correlations between root necrosis traits and CBSD severity scores

on the 1-5 scale, they spanned from low to moderate (r = 0.01 –

0.58). The percentage of necrosis (r = 0.58), necrotic area fraction (r

= 0.46), and the convex hull area of root necrosis (0.37) exhibited

the most substantial correlation coefficients with CBSDs12.

However, correlation coefficients between CBSDs3 and CBSDs6

and most root necrosis traits failed to reach significance at the p-

value threshold of 0.001. Correlations were also evident among the

CBSD severity scores themselves, including a strong correlation of r

= 0.74 between CBSDs3 and CBSDs6. Additionally, moderately

positive correlations (r = 0.22 and 0.16) were identified between

CBSDs12 and CBSDs3, as well as between CBSDs12 and

CBSDs6, respectively.
GWAS of CBSD traits in the C2 population

A comprehensive analysis was conducted on 320 clones within

the C2 population, using both univariate and multivariate GWAS

methodologies. In the univariate GWAS analysis, a total of eight

SNPs were discovered across chromosomes 1, 7, and 11. These

SNPs were determined to be linked with both the ellipse eccentricity

of root necrosis and the percentage of root necrosis (Table 2,

Figure 6, Supplementary Figure 2). Specifically, two SNPs on

chromosomes 7 and 11 were linked to the ellipse eccentricity of

root necrosis, while six SNPs on chromosome 1 were associated

with the percentage of necrosis. Each significant marker accounted

for a relatively small proportion of phenotypic variance, ranging

from 0.01 to 0.41. Particularly, SNP markers S1_29063012 and

S1_29103386 associated to the percentage of root necrosis were

found to explain the highest variance among them (Table 2). No

significant associations were observed with the other root necrosis

image traits (Supplementary Figures 3 and 4). Concerning the

CBSD severity scores, one SNP marker located on chromosome 1
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was found to be associated with CBSDs12, whereas no SNPs

displayed associations with CBSDs3 and CBSDs6 (Supplementary

Figures 5 and 6). In the multivariate GWAS analysis, no significant

associations were detected for various trait combinations, except for

ellipse eccentricity of root necrosis, percentage of root necrosis,

necrotic area fraction, and necrotic width fraction, where one SNP

on chromosome 11 was identified (Supplementary Figures 7-10).

This SNP, named S11_31660720, was also identified as associated

with the ellipse eccentricity of root necrosis in the univariate

GWAS analysis.
Candidate gene identification

Since most of the identified SNPs were located on chromosome

1, a region spanning 172.2kb was examined, leading to the

identification of 24 potential candidate genes (Supplementary

Table 1). These genes comprised a broad spectrum of functional

annotations, including roles such as ubiquitin-protein ligase,

ribosomal protein, transmembrane signal receptor, DNA-binding

transcription factor, and RNA metabolism protein, among others.

Molecular characterizations of these candidate genes suggest their

involvement in catalytic activity (GO:0003824), binding

(GO:0005488), and transcription regulator activity (GO:0140110)

(Supplementary Table 2). Biological classifications of these potential

candidate genes underscore their involvement in a wide array of

processes, such as cellular processes (GO:0009987), metabolic

processes (GO:0008152), biological regulation (GO:0065007), and

localization (GO:0051179) (Supplementary Table 3).
Discussion

Using PlantCV to extract root necrosis image traits and the 1-5

visual scoring method for foliar and root severities, we conducted a

comprehensive characterization of cassava brown streak disease.

Our aim was to identify genomic regions associated with CBSD root

necrosis image and severity traits through univariate and

multivariate GWAS analyses. Additionally, we investigated the

functions of annotated genes associated with these traits. Key

traits of interest included solidity of necrosis, convex hull area of
TABLE 2 Significant SNPs associated to Ellipse eccentricity of root necrosis and Percentage of necrosis and the phenotypic variance explained.

Trait SNP Chromosome Position P-value PVE (%)

Ellipse eccentricity of root necrosis S7_718516 7 718516 5.14 0.07

S11_31660720 11 31660720 5.22 0.01

Percentage of necrosis S1_28931143 1 28931143 5.32 0.40

S1_28972056 1 28972056 5.32 0.40

S1_28977687 1 28977687 5.32 0.40

S1_29058977 1 29058977 5.80 0.32

S1_29063012 1 29063012 5.38 0.41

S1_29103386 1 29103386 5.80 0.41
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root necrosis, ellipse eccentricity of root necrosis, percentage of

necrosis, necrotic area fraction, and necrotic width fraction. Broad-

sense and narrow-sense heritability estimates are key in providing

insights into the genetic gain achievable through selection (Holland

et al., 2002; Schmidt et al., 2019). Results showed that broad sense

heritability estimates were low to moderate for all the root necrosis

images traits while narrow sense heritability estimates were

consistently low and ranged from 0.03 to 0.22. The low to

moderate broad-sense heritability estimates provide evidence

supporting the involvement of diverse levels of genetic factors in

the manifestation of these root necrosis mage traits while the

narrow sense heritability estimates also provide additional

evidence supporting the involvement of diverse levels of additive

genetic factors. These heritability estimates indicate some genetic

influence, especially for root necrosis traits with moderate estimates.

We suggest that random factors may affect the spatial distribution

of necrotic lesions, leading to lower heritability estimates.

Additionally, we excluded images without root necrosis from our

analysis, but these images were given a score of one on a 1-5 scale.

This could mean that the set of root necrosis images may not fully

represent al l the phenotypes, potential ly resulting in

underestimated heritability for certain image traits compared to

the true genetic variation. Broad sense and narrow sense heritability

estimates for root necrosis severity scores were similar with those

previously reported (Okul Valentor et al., 2018; Ozimati et al., 2019,

2021; Nandudu et al., 2023).

Phenotypic and genetic correlations were analyzed to

understand the genetic basis of root necrosis image traits and

CBSD severities. We observed varied phenotypic and genetic

correlations among root necrosis image traits, including

significant positive correlations. Traits such as percentage of

necrosis, necrotic width fraction, and necrotic area fraction,
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exhibited both high phenotypic and genotypic correlations

(Figure 4). This means that these traits can be effective mutual

predictors for indirect selection when quantifying root necrosis,

resulting in cost efficiency, and reduced computational time.

Nonetheless, for breeders to effectively utilize highly correlated

root necrosis traits in breeding against root necrosis, it is essential

to incorporate them into selection indexes (León et al., 2021). This

would involve assigning appropriate weights to these traits based on

their economic significance and heritability. Such indexes would

enable breeders to prioritize and concentrate their efforts on the

root necrosis traits that have the most substantial influence on

overall crop enhancement. The high positive correlations between

root necrosis image traits also signify the existence of common

genetic mechanisms (Vattikuti et al., 2012; Sodini et al., 2018; van

Rheenen et al., 2019).Correlations between root necrosis traits can

be affected by various factors and one influencing factor is

pleiotropism and linkage disequilibrium (Walsh & Blows, 2009;

van Rheenen et al., 2019) Pleiotropism occurs when a single gene

has an impact on multiple traits, leading to correlations between

these traits. Another factor is linkage disequilibrium, a

phenomenon described by Walsh and Blows (2009). In linkage

disequilibrium, certain genetic variants tend to be inherited

together, creating dependencies between traits. Both pleiotropism

and linkage disequilibrium contribute to the complex relationships

observed among different traits, highlighting the intricate nature of

genetic interactions and their effects on trait correlations.

Incorporating genomic data into the analysis pipeline

constitutes a pivotal strategy for unraveling the genetic

foundations of CBSD root necrosis traits, even in scenarios

characterized by low to moderate heritability estimates (Shao

et al., 1991). We conducted a comprehensive analysis,

encompassing both univariate and multivariate GWAS
A

B

FIGURE 6

Manhattan plots of -Log10(P) showing chromosomal positions of SNP markers in univariate GWAS associated with (A) EEN; Ellipse eccentricity of
root necrosis, and (B) NECRO; Percentage of necrosis. The red line represents the significant threshold -Log10 (P) value of 5.1 which was determined
by using the effective number of independent tests on each chromosome to modify the Bonferroni correction method.
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approaches. The univariate GWAS found eight SNP markers on

chromosomes 1, 7, and 11, linked to both the ellipse eccentricity of

root necrosis and the percentage of root necrosis. The haplotype

view (Supplementary Figure 11) highlighted the 6 SNPs identified

in chromosome 1 to be in a high LD block region (Supplementary

Figure 11A). When we zoomed into the high LD block region where

the 6 SNPs clustered, three of the SNPs were seen to be in high LD

with correlations ranging from 0.9 to 0.97 (Supplementary

Figure 11B). On average, four SNPs captured the variation

explained by the significant SNPs identified on chromosome 1.

Despite being significant, these SNPs only accounted for small

proportions of phenotypic variance. These small proportions of

variance could arise due to the complexity of CBSD root necrosis

image traits’ genetic architecture which may arise from the

influence of numerous rare variants with minor effects.

Furthermore, standard GWAS methods may overlook low-

frequency polymorphisms, which could also contribute to CBSD

root necrosis image traits. Consequently, the significant SNPs

identified in this study might only explain small proportions of

phenotypic variance. The limited extent of phenotypic variability

also suggests that the underlying causal variants linked to both root

necrosis ellipse eccentricity and the percentage of root necrosis,

despite their rarity, might reside at substantial distances from the

significant SNPs pinpointed in this GWAS (Orozco et al., 2010;

Wray et al., 2011). Consequently, the actual effect size could

potentially be much more substantial than what is suggested by

the significant SNPs identified in this study. To comprehend the

impact of multiple rare variants, increasing the population size with

diverse individuals is pivotal in enhancing statistical power for their

detection. A larger sample size with diverse individuals ensures a

more comprehensive representation of rare alleles, facilitating the

identification of associations. In our study, the C2 population

exhibited moderate genetic diversity (Figure 7). However, our

sample size was significantly reduced by excluding root images

lacking necrosis, potentially limiting our ability to detect multiple

rare variants. Also, to determine causal SNPs linked to CBSD root
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necrosis, it is advised to establish a sizable biparental cassava

population with diverse root necrosis levels for precise genetic

mapping (Nzuki et al., 2017; Ferguson et al., 2019). This

population should be evaluated in various environments to

enhance statistical power. Fine mapping on regions of interest to

identify causal variants associated with synthetic associations

should be carried out. Also, integrating traditional QTL mapping

with association mapping for a thorough understanding of the

genetic architecture of CBSD root necrosis traits is key. We

highlight that the outcomes of our study relating to root necrosis

traits and CBSD severity scores align with earlier GWAS and QTL

analyses focused on CBSD severities utilizing the 1-5 scoring

method. These genomic regions include (1) chromosome 1

(Nandudu et al., 2023), (2) chromosome 11 (Kayondo et al.,

2018), (3) chromosome 11 (Nzuki et al., 2017), chromosome 11

(Masumba et al., 2017), and chromosome 11 (Kawuki et al., 2016).

This implies that certain genes or closely linked genes on these

chromosomes might play a role in contributing root necrosis image

traits and CBSD severity. Notably, such genes may also originate

from prominent founders like Namikonga and Kiroba, which have

been extensively employed in CBSD resistance breeding across

multiple cassava breeding programs. Ultimately, the persistence of

these genomic regions across various studies further emphasizes

their significance for future research endeavors aimed at

comprehending and enhancing resistance against cassava brown

streak disease.

A total of 24 potential candidate genes were identified in the

172.2kb region on chromosome 1, with diverse range of functions

crucial in the context of CBSD. These functions include ubiquitin-

protein ligase activity, potentially involved in degrading viral

components; ribosomal proteins, essential for viral replication and

translation; transmembrane signal receptors, aiding in the

recognition of viral molecules; DNA-binding transcription factors,

governing the expression of defense-related genes; and RNA

metabolism proteins, influencing viral RNA stability and

processing. Molecular characterizations revealed various gene

ontologies associated with these candidate genes. Catalytic activity

(GO:0003824) indicates their roles in enzymatic reactions that can

either facilitate or hinder CBSD viral replication and spread within

cassava plants. The identification of transporter activity

(GO:0005215) suggests that these genes may be involved in

transporting CBSD viral molecules across cellular membranes,

potentially increasing the severity of infection. Transcription

regulator activity (GO:0140110) highlights the influence of these

genes on gene expression regulation during CBSD viral responses.

The biological classification of these potential candidate genes also

highlighted their involvement in various critical processes critical

for plant-virus interactions. These encompass cellular processes

(GO:0009987), which are fundamental for viral entry and

replication within the host. Metabolic processes (GO:0008152)

underscore their roles in managing energy allocation and

resources during infection, while biological regulation

(GO:0065007) fine-tunes the plant’s responses to viral challenges.

Processes related to localization (GO:0051179) are essential for

precisely targeting viral components within the cell. Gene

ontologies catalytic activity (GO:0003824), transporter activity
FIGURE 7

Pairwise genetic dissimilarities between clones in the C2 population
were calculated using Euclidean distance. The lines were ordered
using the average clustering method.
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(GO:0005215), structural molecule activity (GO:0005198) and

molecular, cellular processes (GO:0009987), and metabolic

processes (GO:0008152) were previously reported (Amuge et al.,

2017) and their presence played a crucial role in facilitating

susceptibility to CBSD. Therefore, our study sheds light on the

complex nature of CBSD, its genetic architecture, and several

candidate genes involved in root necrosis and disease severity.

These findings have important implications for understanding

CBSD and developing strategies for resistance breeding, which is

critical for food security in East and Central Africa.
Conclusions

Using PlantCV for root necrosis traits and a 1-5 scoring method

for foliar and root severities in CBSD, we aimed to identify genomic

regions associated with CBSD root necrosis through univariate and

multivariate GWAS analyses. Key traits included solidity, convex

hull area, ellipse eccentricity, percentage of necrosis, necrotic area

fraction, and necrotic width fraction. Broad-sense heritability was

low to moderate, indicating diverse genetic factors, while narrow-

sense heritability was consistently low.

Phenotypic and genetic correlations were analyzed, revealing

significant positive correlations among root necrosis traits,

especially percentage of necrosis, necrotic width fraction, and

necrotic area fraction. Integration of genomic data identified 8

significant SNPs associated with ellipse eccentricity and percentage

of root necrosis, suggesting potential epistatic interactions with rare

variants. A total of 24 candidate genes were found, involved in

crucial processes like viral degradation, replication, transcription

regulation, and defense-related gene expression. Gene ontologies

highlighted their roles in catalytic activity, transporter activity,

structural molecule activity, cellular and metabolic processes.

These genes also played roles in cellular entry, energy allocation,

regulatory responses, localization, homeostasis, reproduction,

developmental and multicellular organismal processes,

detoxification, and growth. Some of these ontologies were

previously linked to CBSD susceptibility.

In conclusion our study has uncovered potential candidate

genes linked to CBSD, shedding light on its genetic makeup and

the intricacies of the disease. Despite our initial anticipation of

enhanced heritability estimates and strong genomic associations

through image analysis objectivity compared to the 1-5 scoring

method, the results yielded unexpectedly lower outcomes than

those achieved with the 1-5 scoring method. These findings hold

considerable importance for comprehending CBSD and devising

resistance breeding strategies, ultimately contributing to food

security in East and Central Africa.
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SUPPLEMENTARY FIGURE 1

Schematic of root necrosis processing steps; (A) root necrosis image after
processing the root disc characteristics; (B) segmentation of root necrosis

using L channel from the CIELAB (L*a*b*) (lightness, green-magenta, blue-
yellow) color space; (C) morphological image processing; (D) measure of

root necrosis.
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SUPPLEMENTARY FIGURE 2

Quantile-quantile plots of; (A) EEN; Ellipse eccentricity of root necrosis, and

(B) NECRO; Percentage of necrosis.

SUPPLEMENTARY FIGURE 3

Manhattan plots of -Log10(P) showing chromosomal positions of SNP
markers in univariate GWAS associated with (A) SD; Solidity of necrosis, (B)
CHAN; Convex hull area of root necrosis, (C) NAF; Necrotic area fraction, and

(D) NWF; Necrotic width fraction The red line represents the significant
threshold -Log10 (P) value of 5.1 which was determined by using the

effective number of independent tests on each chromosome to modify the
Bonferroni correction method.

SUPPLEMENTARY FIGURE 4

Quantile-quantile plots of; (A) SD; Solidity of necrosis, (B) CHAN; Convex hull
area of root necrosis, (C) NAF; Necrotic area fraction, and (D) NWF; Necrotic
width fraction.

SUPPLEMENTARY FIGURE 5

Manhattan plots of -Log10(P) showing chromosomal positions of SNP
markers in univariate GWAS associated with (A) CBSDs3; CBSD foliar

severity at 3 MAP, (B) CBSDs6: CBSD foliar severity at 6 MAP and CBSDs12:

CBSD root severity at 12 MAP. The red line represents the significant threshold
-Log10 (P) value of 5.112404 which was determined by using the effective

number of independent tests on each chromosome to modify the Bonferroni
correction method.

SUPPLEMENTARY FIGURE 6

Quantile-quantile plots of (A) CBSDs3; CBSD foliar severity at 3 MAP, (B) CBSDs6:
CBSD foliar severity at 6 MAP and CBSDs12: CBSD root severity at 12 MAP.

SUPPLEMENTARY FIGURE 7

Manhattan plots of -Log10(P) showing chromosomal positions of SNP

markers in multivariate GWAS associated with (A) convex hull area of root
necrosis, percentage of necrosis, necrotic area fraction and necrotic width

fraction, (B) necrotic area fraction and necrotic width fraction, (C) ellipse
eccentricity of root necrosis, percentage of necrosis, necrotic area fraction
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and necrotic width fraction, (D) percentage of necrosis, necrotic area fraction
and necrotic width fraction, (E) percentage of necrosis, necrotic area fraction

and CBSD severity at 12 months after planting (CBSDS12).The red line

represents the significant threshold -Log10 (P) value of 5.112404 which was
determined by using the effective number of independent tests on each

chromosome to modify the Bonferroni correction method.

SUPPLEMENTARY FIGURE 8

Quantile-quantile plots of (A) convex hull area of root necrosis, percentage of

necrosis, necrotic area fraction and necrotic width fraction, (B) necrotic area

fraction and necrotic width fraction, (C) ellipse eccentricity of root necrosis,
percentage of necrosis, necrotic area fraction and necrotic width fraction, (D)
percentage of necrosis, necrotic area fraction and necrotic width fraction, (E)
percentage of necrosis, necrotic area fraction and CBSD severity at 12

months after planting (CBSDS12).

SUPPLEMENTARY FIGURE 9

Manhattan plots of -Log10(P) showing chromosomal positions of SNP

markers in multivariate GWAS associated with (A) percentage of necrosis,

CBSD foliar severity at 3 MAP, and CBSD foliar severity at 6 MAP and (B)
percentage of necrosis and CBSD root severity at 12 MAP. The red line

represents the significant threshold -Log10 (P) value of 5.112404 which was
determined by using the effective number of independent tests on each

chromosome to modify the Bonferroni correction method.

SUPPLEMENTARY FIGURE 10

Quantile-quantile plots of (A) percentage of necrosis, CBSD foliar severity at 3

MAP, and CBSD foliar severity at 6 MAP and (B) percentage of necrosis and
CBSD root severity at 12 MAP.

SUPPLEMENTARY FIGURE 11

(A) Haplotype view chromosome 1 where the six SNPs associated to the
percentage of necrosis were identified. (Red color intensity indicates the

intensity of r2, i.e., higher color intensity means higher r2). (B) Haplotype view
of the 172.2kb region on the chromosome 1 where the six SNPs associated to

the percentage of necrosis were identified. (Red color intensity indicates the
intensity of r2, i.e., higher color intensity means higher r2).
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